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Hydrogel is considered as a promising candidate for wound dressing due to its
tissue-like flexibility, goodmechanical properties and biocompatibility. However,
traditional hydrogel dressings often fail to fulfill satisfiedmechanical, antibacterial,
and biocompatibility properties simultaneously, due to the insufficient intrinsic
bactericidal efficacy and the addition of external antimicrobial agents. In this
paper, hydroxyl-contained acrylamide monomers, N-Methylolacrylamide (NMA)
and N-[Tris (hydroxymethyl)methyl] acrylamide (THMA), are employed to prepare
a series of polyacrylamide hydrogel dressings xNMA-yTHMA, where x and y
represent the mass fractions of NMA and THMA in the hydrogels. We have
elucidated that the abundance of hydroxyl groups determines the antibacterial
effect of the hydrogels. Particularly, hydrogel 35NMA-5THMA exhibits excellent
mechanical properties, with high tensile strength of 259 kPa and large tensile
strain of 1737%. Furthermore, the hydrogel dressing 35NMA-5THMA
demonstrates remarkable inherent antibacterial without exogenous
antimicrobial agents owing to the existence of abundant hydroxyl groups.
Besides, hydrogel dressing 35NMA-5THMA possesses excellent
biocompatibility, in view of marginal cytotoxicity, low hemolysis ratio, and
negligible inflammatory response and organ toxicity to mice during treatment.
Encouragingly, hydrogel 35NMA-5THMA drastically promote the healing of
bacteria-infected wound in mice. This study has revealed the importance of
polyhydroxyl in the antibacterial efficiency of hydrogels and provided a simplified
strategy to design wound healing dressings with translational potential.
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1 Introduction

The skin is the main defense mechanism of the human body, which is the protective
barrier between the external environment and the internal organs. It protects various tissues
and organs from physical, mechanical, chemical and pathogenic microbiological attacks
(Wang et al., 2021; Ding et al., 2023; Qiao et al., 2023). At the same time, the skin is also
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involved in important physiological activities and plays a key role in
maintaining homeostasis in the body. But it is vulnerable to external
injuries, such as severe friction and sharp cuts, which may lead to
skin trauma and loss of barrier function and be attacked by bacteria,
fungi, viruses and other microorganisms in the external
environment (Shortridge and Flamm, 2019; Zhao et al., 2020).
Although mild skin injuries can heal naturally, the healing
process of severe skin injuries may be disturbed by many factors,
such as bacterial infection, chronic inflammation, diabetes, etc.,
which make it difficult to heal. In some cases, infection may
further worsen and even lead to systemic infections, such as
septicemia (Zhou et al., 2021; Song et al., 2024). Therefore, it is
highly desirable to develop effective skin wound dressing to
prevent infection.

Traditional wound dressings, such as gauze, cotton, bandages,
etc., have been widespreadly used in clinical treatment (Wei et al.,
2021; Priya et al., 2024). However, these traditional dressings lack
antibacterial properties and need to be changed frequently, easily
destroying new skin tissue due to easy adhere to tissue and
increasing the risk of infection (Zhou et al., 2022; Zhou et al.,
2023a). In recent years, new wound dressings with excellent
antibacterial properties, good biocompatibility, and promotion of
wound healing have been gradually developed (Zhang et al., 2021).
Among them, hydrogel materials have gradually become a research
hotspot in wound dressings due to their unique water-rich three-
dimensional network structure, mechanical properties similar to soft
tissue, easy drug-loading structure, and rich functional groups
(Farahani and Shafiee, 2021; Guo et al., 2021). Commonly
hydrogel used for wound dressings include natural
polysaccharides (chitosan, sodium alginate, and so on) and
polyacrylamides et al. (Peng et al., 2022). Some chemical cross-
linking agents, such as glutaraldehyde, etc., show obvious
cytotoxicity (Guo et al., 2021; Giulia Mugnaini, 2023). Hence,
physically cross-linking hydrogels with stable three-dimensional
network structures, which formed based on supramolecular
interactions (hydrogen bonds, ionic bonds, complexation, etc.),
are ideal candidates for developing hydrogel antimicrobial
dressings. According to whether the hydrogel is loaded with
exogenous antimicrobial agents, hydrogel antibacterial dressings
can be divided into hydrogel wound dressings loaded with
antibacterial agents and inherent antibacterial hydrogel wound
dressings (Li et al., 2023; Zhao et al., 2023). Wound dressings
loaded with antimicrobials need to add exogenous antimicrobial
agents (antibiotics, metal ions, cationic antimicrobials, natural
antimicrobials, etc.) to the hydrogel substrate. In general, the
composition of these hydrogel antibacterial dressing is complex
(Hu et al., 2018; Zhang et al., 2023b; Zhang et al., 2024). Moreover,
the drug resistance, safety, addition amount and release rate of
antimicrobial agents need to be considered. It is worth noting that
the addition of exogenous antimicrobial agents usually affects the
mechanical properties of the hydrogel substrate (Supplementary
Tabel S1) (Li et al., 2018; Zhou et al., 2023b; Moradi et al., 2023). The
inherent antibacterial hydrogel wound dressings is prepared by
hydrogel materials with antibacterial activity. However, at
present, most of the inherent antibacterial hydrogel wound
dressings also introduce cationic groups into the hydrogel
molecular chain or introduce metal ions through ion
coordination. However, excessive cations and metal ions usually

cause irritation and damage to normal cells, causing allergies and
other symptoms (Cui et al., 2023; Li et al., 2024). In view of the fact
that it is difficult for existing hydrogel dressings to achieve a
satisfactory balance between multiple functions. Therefore, it is
urgent to develop new type of physically cross-linking inherent
antibacterial hydrogel wound dressings with simple components,
non-cationic type, excellent mechanical properties and high
biocompatibility.

Commonly natural polysaccharide hydrogels containing many
hydroxyl groups in the molecular chain, such as chitosan, sodium
alginate, possess certain antibacterial properties (Zhang et al., 2023a;
El-Sayed et al., 2023; Lin et al., 2023). However, Due to its poor
solubility in water, the prepared hydrogels possess low hydroxyl
content and no abundant hydrogen bonding interactions, resulting
in weak mechanical properties and unsatisfactory antibacterial
activity (Dong et al., 2022; Jiang et al., 2022). Polyacrylamide
hydrogel containing a large number of amide groups is prepared
by polymerization with high concentration of acrylamide monomer.
Polyacrylamide hydrogel exhibit good mechanical properties due to
abundant hydrogen bonding interactions deriving from amide
groups (Zhao et al., 2021; Liu et al., 2023; Wang et al., 2023).
Unfortunately, its antibacterial performance is weak. The
integration of hydroxyl groups into polyacrylamide hydrogel is
expected to enhance its antibacterial properties and mechanical
properties. In this paper, acrylamide hydrogel monomers
N-Methylolacrylamide (NMA) and N-[Tris (hydroxymethyl)
methyl] acrylamide (THMA), containing hydroxyl groups were
selected to prepare non-ionic, physically cross-linking, hydroxyl-
rich hydrogel dressings xNMA-yTHMA with different monomer
content by free radical polymerization. The micro-morphology,
mechanical properties, swelling, biocompatibility and antibacterial
activity of hydrogels were verified by experiments. Hydroxyl-rich
xNMA-yTHMA hydrogels not only show excellent mechanical
properties and antibacterial properties, but also possess high
biocompatibility. This provides a new strategy for development
of hydrogel dressings with high biocompatibility, excellent
mechanical properties and strong antibacterial properties.

2 Results and discussion

2.1 Preparation and mechanical properties
of hydrogels

A schematic diagram illustrating the process of preparing the
composite hydrogel by N-Methylolacrylamide (NMA) and N-[Tris
(hydroxymethyl)methyl] acrylamide (THMA), was presented in
Scheme 1. NMA and THMA were dissolved in PBS and then the
initiator 1,2-Bis(2-(4,5-dihydro-1H-imidazole-2-yl)propan-2-yl)
diazene dihydrochloride (AIBI) was added to form a pre-polymer
solution. The pre-polymer solution was added to a suitable mold and
polymerized by heating at 40°C. According to the different
concentrations of NMA and THMA monomers, different
hydrogels were prepared and named as xNMA-yTHMA, where x
and y represent the mass fraction of NMA and THMA in hydrogels,
respectively. The shape and size of the mold can be designed
according to the requirement. The detailed preparation procedure
is displayed in the Supplementary Material.
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The light transmittance of the hydrogel is above 90% within the
visible wavelength ranging from 400 nm to 800 nm, demonstrating
excellent transparency (Figure 1A; Supplementary Figure S1),
which could facilitate wound monitoring during therapy.
Sufficient mechanical strength facilitates well fitness between
hydrogel and wound, which is the perquisite for ideal wound
dressing. Here, the mechanical strengths of the series of
hydrogels xNMA-yTHMA were measured. This series of
hydrogels exhibit excellent adhesion, flexibility and tensile
properties (Figure 1B). The elongation at break of this series of
hydrogels is more than 1,000% (Figure 1C; Supplementary Tabel
S2). When the total monomer content was 35% and 40%, the
hydrogels xNMA-yTHMA showed excellent tensile strength above
200 kPa (Figure 1F; Supplementary Tabel S2). It is worth noting
that the addition of THMA can enhance the elongation at break
and tensile strength of hydrogels when the total monomer
concentration is unchanged, which may be attributed to the tri-
hydroxyl structure of THMA. In addition, this series of hydrogels
can withstand a large compression deformation of 70% without
breaking, and the compression strength is higher than 280 kPa
(Figures 1D, G; Supplementary Tabel S2). The adhesion properties
of the hydrogels were evaluated by the lap shear experiments. The
hydrogel with higher hydroxyl group concentration showed better
adhesion strength, which was greater than 10 kPa (Figures 1E, H;
Supplementary Tabel S2). Besides, the swelling rate of the
hydrogels in PBS are measured as 475%–600%, suggesting that
it could absorb a large amount of tissue osmotic fluid at the wound
(Supplementary Figure S3). The hydrogels possess a loose and
porous construction, allowing them to absorb plenty of water
(Supplementary Figure S3). When the water is adsorbed into
the pores, they form hydrogen bonds with the amide bonds and
hydroxyl groups on the hydrogel chains, causing an increase in
distance between the hydrogel chains and resulting in material
expansion. In particular, hydrogel 35NMA-5THMA shows the best
mechanical properties. The elongation at break is up to 1737%, and
the tensile strength and compressive strength are 259 kPa and
453 kPa, respectively (Figures 1C–H; Supplementary Figure S2;
Supplementary Table S2). The excellent mechanical properties of
hydrogels xNMA-yTHMA are attributed to the formation of
multiple hydrogen bonds between amide groups and
hydroxyl groups.

2.2 Antibacterial properties of
hydrogels in vitro

Then, we explored the antibacterial effects of the above prepared
hydrogels by the contact sterilization test against two common
pathogenic microorganisms (S. aureus and Escherichia coli) in
skin wounds. To verify the hypothesis that -OH contribute the
bacterial killing efficacy, the 40a.m. hydrogel was used as a control,
which is similar to xNMA-yTHMA does not contain the -OH.
Firstly, the optical density data of culture media containing S. aureus
and E. coli. were directly observed after co-culturing with different
different formulation hydrogels for 24 h, with clearer media
indicating higher inhibition efficiency (Figure 2A). The co-culture
medium of the control and 40a.m. groups exhibited significant
turbidity, indicating a substantial growth of S. aureus. In
contrast, the co-culture medium of hydroxy-rich hydrogels
30NMA-0THMA, 35NMA-0THMA, 30NMA-5THMA, 40NMA-
0THMA, and 35NMA-5THMA gradually became clear, suggesting
the inhibition of bacterial proliferation. Among them, the co-culture
medium of 40NMA-0THMA and 35NMA-5THMA was the
clearest, suggesting the strongest inhibition of S. aureus. Similar
results were observed in the treatment of E. coli, where 30NMA-
5THMA, 40NMA-0THMA and 35NMA-5THMA exhibited the
most potent inhibition effects. Subsequently, the growth curves of
S. aureus and E. coli treated without or with different hydrogels in
24 h (Figures 2B, C). The bactericidal efficacy of 40a.m. is poor
compared with other groups that contained NMA or THMA,
suggesting -OH may account for the antibacterial property of the
hydrogels. The inhibition efficacy of S. aureus was similar for
35NMA-0THMA and 30NMA-5THMA groups, which were
slightly higher than 30NMA-0THMA, possibly due to more -OH.
40NMA-0THMA and 35NMA-5THMA almost completely
suppressed S. aureus proliferation, as indicated by the marginal
changes of OD600 from 0 to 24 h. For E. coli, the inhibition efficacy
for 30NMA-0THMA and 35NMA-0THMA was feeblish. After
increasing the -OH content of the hydrogels, the antibacterial
effect of 30NMA-5THMA, 40NMA-0THMA and 35NMA-
5THMA was significantly improved.

Furthermore, the standard plate-counting experiment was
performed to evaluate the antibacterial properties of the
hydrogels, as it could provide more distinctive comparison of the

SCHEME 1
(A) Diagram of the synthesis of hydrogel. (B) Schematic diagram of skin wound healing.
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different hydrogels on decreasing bacteria colony. Compared to the
dense colony distribution of the control groups, the number of
colony-forming unit (CFU) of S. aureus and E. coli reduced to a
certain extent after co-culturing with the hydrogel 40a.m.
(Figure 3A). By statistical analysis, the bacteriostasis rate of
40a.m. is below 50%, indicating feeble antibacterial property of
the hydrogel 40a.m. without -OH (Figure 3B). The drastic
reduction of colony numbers occurred with the bacteriostasis rate
above 90%, when hydroxy-rich xNMA-yTHMA were employed to
co-culture with S. aureus and E. coli. Particularly, almost all S. aureus
and E. coli lost viability and no colonies were formed after co-
culturing bacteria with the hydrogel 30NMA-5THMA, 40NMA-

0THMA and 35NMA-5THMA, demonstrating outstanding
bacteriostatic performance (Figures 3A, B).

Furthermore, SEM revealed the morphology changes of S.
aureus and E. coli after incubating with the hydrogels. For S.
aureus, the morphology showed no significant changes compared
with the untreated ones, and generally remained the normal
spherical shape after treating with 40a.m. However, after treating
with polyhydroxyl hydrogels (xNMA-yTHMA), the membrane
structure of S. aureus gradually collapsed or even ruptured with
the increase of hydroxyl content. The most severe rupture of the
morphology was observed in the 40NMA-0THMA and 35NMA-
5THMA groups, with most S. aureus collapsed into pieces. The

FIGURE 1
Mechanical properties of hydrogels. (A) The transmittance of different hydrogels within the visible wavelength ranging from 400 nm to 800 nm. (B)
Images of hydrogel samples in adhesive, flexible and stretchable forms. (C) Tensile stress-strain curves of different hydrogels. (D) Compressive stress-
strain curves of different hydrogels. (E) Load and displacement curves of different hydrogels in adhesion shear test. (F) Tensile strength of hydrogels. (G)
Compression strength of different hydrogels. (H) Adhesion strength of different hydrogels.
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structural deformation of E. coli also occurred when -OH was
introduced in the hydrogels. The structures generally remained
normal rod-shape treated with hydrogel 40a.m. and 30NMA-
0THMA. Increase of -OH content led to bacterial deformation to
a certain extent (35NMA-0THMA and 30NMA-5THMA). The
most aggravated structural disruption was observed in 40NMA-
0THMA and 35NMA-5THMA with highest -OH content. In these
groups, most E. coli lost their rod-like shape, shrinking and
collapsing into irregular fragments (Figure 3C; Supplementary
Figure S4). The SEM results suggest that the polyhydroxyl
hydrogels may inhibit bacteria by contacting and draining the
intracellular substances, leading to the destruction of homeostasis.

Collectively, the above data strongly support that the -OH is
responsible for the observed antibacterial effects in a concentration-
dependent manner. The underlying mechanism of polyhydroxyl
hydrogels for the sterilization may be that the hydroxyl groups on
the hydrogel can interact with the bacterial membrane, resulting in
the destruction of the membrane structure, thus effectively killing
bacteria. Importantly, the excellent antibacterial effects were
achieved exclusively by the intrinsic property of the hydrogel
without loading of external agents. Compared with conventional
hydrogels loaded with exogenous antimicrobial agents (such as
antibiotics, metal ions, cationic antimicrobials, natural
antimicrobials, etc.), these simple polyhydroxyl hydrogels with
inherent antimicrobial properties may provide more favorable
bio-compatibility.

2.3 Biocompatibility of the hydrogels

As the prerequisite for biomedical applications, the safety of the
antibacterial hydrogels 30NMA-0THMA, 40NMA-0THMA and

35NMA-5THMA was evaluated in respect to the hemolysis and
cell viability. Encouragingly, the tested formulations with potent
bacteria-killing efficacy showed negligible influence on the integrity
of red blood cells. The hemolysis rates of 30NMA-0THMA,
40NMA-0THMA and 35NMA-5THMA were below 5%, the
threshold for safety use (Figure 4A). Moreover, the above
hydrogels could accelerate blood clotting, as indicated by the
lower dynamic coagulation index (BCI) compared with the gauze
and negative controls (Supplementary Figure S5). In addition, The
in vivo hemostatic capacity of the hydrogels was examined in a
mouse model of liver bleeding. Application of the hydrogel 35NMA-
5THMA to the bleeding site of the liver significantly reduced blood
loss (Supplementary Figure S6). The excellent antibleeding effect of
the hydrogel could be attributed to the physical blocking of bleeding
defects by the 3D hydrogel network and the adhesion of the hydrogel
to the tissue surface. At the same time, the positively charged amino
groups on the hydrogel interact with the negatively charged platelets
by electrostatic force, thus activating the blood clotting process. The
Cell Counting Kit 8 (CCK-8) was then used to assess the impact of
the multifunctional hydrogel on the activity of mouse fibroblasts
(L929). As shown in Figure 4B, after 24 h of co-culture with the
hydrogel, there was no significant difference in cell survival data
compared to the blank control. Subsequently, the survival of
L929 cells were directly observed by the living/dead staining after
24 h of co-culture with the hydrogel. The living cells with intact
membranes were stained with calcein-AM (green signal), and the
dead cells were labeled with PI (red signal). The cells in all groups
demonstrated bright green fluorescence with no noticeable red
signal, and the observation at higher magnification found no
obvious morphological changes (Figure 4C), confirming the
excellent biocompatibility of the multifunctional hydrogel for
wound dressings. Overall, the hemostasis and biocompatibility

FIGURE 2
Evaluations of antibacterial properties of the hydrogels. (A) The photos of the culture medium containing S. aureus and E. coli after culturing with
different hydrogel for 24 h. The growth curves of S. aureus (B) and E. coli (C) treated without (control group) or with different hydrogels in 24 h. The error
bar is the standard deviation (n = 3).
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properties synergistically to support the translational potential of
composite hydrogels in wound healing.

2.4 In vivo wound healing

A full-thickness wound infection mouse model using S. aureus
was constructed to evaluate the healing efficacy of a composite
hydrogel as a wound dressing (Figure 5A). The hydrogel 35NMA-
5THMA exhibiting satisfying biocompatibility, mechanical
properties, and antimicrobial efficacy, was selected to treat the
infected wounds. The wound closure of the mouse of the control

group was significantly slower than that in the hydrogel-treated
group. At day 14, while large wound area still existed in the control
group, which was even deepened as the deterioration of bacterial
infection (Figure 5B). In sharp contrast, almost complete healing of
the wound was achieved after hydrogel therapy. Measurement of the
wound area throughout the entire healing process showed that the
wound closure rate in the hydrogel group reached 100%, in contrast
to the 62% of the control group (Figure 5C; Supplementary Figure
S7). The calculation of wound areas was consistent with the
observation (Figure 5D). The wound healing rates of hydrogel
group and control group are calculated as 3.59 cm2/d and
2.16 cm2/d, respectively, that is 1.67-fold compared to control

FIGURE 3
Evaluations of antibacterial properties of the hydrogels. (A) Photographs of the bacterial colonies of E. coli and S. aureus on agar plates after co-
culturing without (control) and with different hydrogels for 24 h. (B)Quantitative results of the antibacterial properties of the hydrogels against S. aureus
and E. coli. ****p < 0.0001. (C) SEM images of E. coli and S. aureus after co-culturing without (control) and with different hydrogels.
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group, which is superior to the reported hydrogel dressings
(Supplementary Table S1). The accelerated healing is most
possibly due to the potent bacterial inhibition and hemostatic
capacities of the hydrogels. Taken together, the results of these in

vivo experiments confirm the excellent wound healing efficacy in
vivo. Further, hematoxylin-eosin (H&E) staining and Masson’s
trichrome staining were used for histological analysis of the
wounds on day 5 and day 14 (Figure 5E). H&E staining images

FIGURE 4
Biocompatibility characterization of hydrogels. (A) Hemocompatibility of hydrogels with different monomer concentrations. “+” and “−” represent
positive control and negative control, respectively. The error bar is the standard deviation (n = 3). ****p < 0.0001. (B) CCK-8 assay of L929 cells for cell
viability testing of the hydrogels after culturing 24 h. (C) Live/dead staining of L929 cells after 24 h of incubation with hydrogel. Scale bar: 100 μm.

FIGURE 5
In vivo wound healing performance of the hydrogel. (A) Experimental procedures using hydrogels for wound treatment. (B) Photographs of skin
wound treated with PBS (control) and hydrogel dressing from day 0 to day 14, respectively. Scale bar: 5 mm. (C) Schematic diagram of the wound area of
control and hydrogel for 14 days. (D) Evolution of wound area on day 0, 3, 7, 11, and 14. The error bar is the standard deviation (n = 3). ****p < 0.0001. (E)
H&E and Masson’s trichrome staining of wound tissues on day 5, and 14 for different treatments. Scale bar: 100 μm. (F) The epithelium thickness of
wound tissues on day 5, and 14 for different treatments. The error bar is the standard deviation (n = 3).
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in the treatment group showed dense connective tissue, reduced
inflammation, and thickened epithelium compared to the control
group. On day 14, the wound’s epidermis was almost completely
healed, with a thickness of 106.4 μm (Figure 5F). Masson’s staining
shows that the amount of regenerated collagen in the wound
gradually increases with the passage of time during the healing
process (blue). Compared to the control group, the collagen
deposition in the hydrogel dressing group was the highest and
densest. This finding further supports the idea that the composite
hydrogel can effectively enhance wound healing when used as a
wound dressing. In addition, histological analysis of mouse organs
(liver, spleen, kidney, heart, and lungs) showed no noticeable organ
damage after 14 days of treatment in mice
(Supplementary Figure S8).

3 Conclusion

In a word, hydrogels were prepared by free radical polymerization
of hydroxyl-functionalized acrylamidemonomers, NMA and THMA.
According to the varying concentrations of NMA and THMA, the
hydrogels were prepared and named as xNMA-yTHMA (30NMA-
0THMA, 35NMA-0THMA, 30NMA-5THMA, 40NMA-0THMA,
and 35NMA-5THMA). These physically cross-linked hydrogels
exhibited excellent tensile properties, adhesion, and swelling, which
may be attributed to the ability of hydrogen bonds to break and
recombine. The incorporation of THMA enhanced the mechanical
properties of the hydrogels. Particularly, 35NMA-5THMA possess
high tensile strength of 259 kPa, large tensile strain of 1737%, and
ideal compressive property. in vitro antibacterial experiments
demonstrated that the antibacterial property of hydrogels xNMA-
yTHMA gradually enhanced with the increase of NMA and THMA
monomer content, that is, the increase of hydroxyl content. Hydrogels
40NMA-0THMA and 35NMA-5THMA showed remarkable and
long-lasting antibacterial capabilities to the common pathogenic
microorganisms S. aureus and E. coli. In addition, the hydrogels
displayed good blood and cell compatibility according to blood
compatibility tests, live/dead cell staining, and CCK-8 assays, as
well as sufficient hemostatic ability for treating skin wounds.
Moreover, after treating mice wounds with hydrogel 35NMA-
5THMA, the wound healing rate was significantly faster (1.67-fold)
compared to the BPS group, and no inflammatory reaction was
observed. Besides, collagen deposition increased, and almost no
scar formation or apparent organ damage was observed after
14 days of treatment. This suggests that the hydrogel dressing
based on the hydroxy-rich hydrogel 35NMA-5THMA can
effectively kill bacteria, reduce inflammation, and promote healthy
epidermal regeneration. This hydroxy-rich inherent antibacterial
material holds great promise as a wound repair material.

4 Experimental

4.1 Materials and instrumentation

N-methylacrylamide (NMA) (purity 98%) was obtained from
Shanghai Energy Chemical Company, while N-tri (hydroxymethyl)
acrylamide (THMA) (purity 98%) and 2,2′-azo [2-(2-imidazole-2-yl)

propane]dihydrochloride (AIBI) (purity 98%) were acquired from
Shanghai Bide and Shanghai Shawn respectively. S. aureus (S. aureus,
BNCC 186335) and E. coli (E. coli, BNCC 13264), collected fromBeNa
Culture Collection, were cultured in nutrient broth (NB) and nutrient
agar (NA)medium purchased fromHope Biotech in Qingdao, China.
Mouse fibroblasts (L929), purchased from BeNa Culture Collection,
were cultured in Dulbecco’s modified medium supplemented with
fetal bovine serum obtained from GIBCO fetal bovine serum in
Australia and trypsin. Live/dead staining reagents calcein-AM
(AM) and propyl iodide (PI) were purchased from Bidder and
their working concentrations were 2 μM and 10 μM, respectively.
Unless otherwise stated, all reagents were used as received without
further purification. All animal experiments strictly followed the
guidelines of the National Regulations on the Care and Use of
Laboratory Animals in China and were approved by the Animal
Ethics Committee of Hainan University. BALB/c female mice aged
6–8 weeks weighing between 18–20 g each were purchased from SJA
Laboratory Animal Co., Ltd., Hunan; they were housed in a
temperature-controlled room maintained at 22°C ± 2°C with daily
monitoring of their water intake and diet. The UV-visible
transmission spectra were measured by a UV-visible
spectrophotometer (Shimadzu, UV2600i, Japan). The mechanical
properties of the hydrogels were evaluated using a universal testing
machine (Shimadzu, AGS-X, Japan). The appearance of bacteria was
observed by emission scanning electron microscopy (Thermo
Scientific, Verios G4 UC, US). The optical density (OD600) values
of the above bacterial solutions were measured with a microplate
reader (Molecular Devices, SpectraMax iD3, Shanghai). Live/dead
staining assay was observed under a laser confocal microscope
(FV1200, Olympus, Japan).

4.2 Synthesis of hydrogels

We developed a composite hydrogel dressing by combining
N-methylacrylamide (NMA) and N-tri (hydroxymethyl) acrylamide
(THMA). In short, we dissolved N-methylacrylamide and N-tri
(hydroxymethyl) acrylamide in phosphate buffered saline (PBS) to
create a composite solution. Next, we dissolved the composite
solution in the ultrasonic cleaning machine for 30 min and
thoroughly mixed it. We then add the initiator AIBI (0.25 wt% of
NMA and THMA) and mix thoroughly. The resulting solution is
transferred to a special mold and placed in an oven at 40°C to form a
gel. Hydrogels are named 30NMA-0THMA, 35NMA-0THMA,
30NMA-5THMA, 35NMA-5THMA, and 40NMA-0THMA,
depending on their monomer concentration.
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