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Background: Digital radiography (DR) is a common and widely available
examination. However, spinal DR cannot detect bone marrow edema,
therefore, determining vertebral compression fractures (VCFs), especially fresh
VCFs, remains challenging for clinicians.

Methods: We trained, validated, and externally tested the deep residual network
(DRN) model that automated the detection and identification of fresh VCFs from
spinal DR images. A total of 1,747 participants from five institutions were enrolled
in this study and divided into the training cohort, validation cohort and external
test cohorts (YHDH and BMUH cohorts). We evaluated the performance of DRN
model based on the area under the receiver operating characteristic curve (AUC),
feature attention maps, sensitivity, specificity, and accuracy. We compared it with
five other deep learningmodels and validated and tested themodel internally and
externally and explored whether it remains highly accurate for an external test
cohort. In addition, the influence of old VCFs on the performance of the DRN
model was assessed.

Results: The AUC was 0.99, 0.89, and 0.88 in the validation, YHDH, and BMUH
cohorts, respectively, for the DRN model for detecting and discriminating fresh
VCFs. The accuracies were 81.45% and 72.90%, sensitivities were 84.75% and
91.43%, and specificities were 80.25% and 63.89% in the YHDH and BMUH
cohorts, respectively. The DRN model generated correct activation on the
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fresh VCFs and accurate peak responses on the area of the target vertebral body
parts and demonstrated better feature representation learning and classification
performance. The AUCwas 0.90 (95% confidence interval [CI] 0.84–0.95) and 0.84
(95% CI 0.72–0.93) in the non-old VCFs and old VCFs groups, respectively, in the
YHDH cohort (p = 0.067). The AUC was 0.89 (95% CI 0.84–0.94) and 0.85 (95% CI
0.72–0.95) in the non-old VCFs and old VCFs groups, respectively, in the BMUH
cohort (p = 0.051).

Conclusion: In present study, we developed the DRN model for automated
diagnosis and identification of fresh VCFs from spinal DR images. The DRN
model can provide interpretable attention maps to support the excellent
prediction results, which is the key that most clinicians care about when using
the model to assist decision-making.
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Introduction

Vertebral compression fractures (VCFs) are a common clinical
problem, with an annual incidence of approximately 1.5 million in
the United States (Goldstein et al., 2015; Madassery, 2020).
Osteoporosis, trauma, and neoplastic infiltration are the most
common etiological causes of VCFs (Mauch et al., 2018). VCFs
are associated with back pain, reduced mobility, and spinal kyphosis
(Goldstein et al., 2015). In addition, VCFs may lead to a lower
health-related quality of life and higher long-term mortality.
Therefore, accurate detection and rapid diagnosis of this
condition are essential to ensure that patients with the suspected
disease receive timely treatment (Clark et al., 2016; Petritsch et al.,
2017; Kim KC. et al., 2021).

Percutaneous vertebroplasty has been widely applied to treat
osteoporotic VCFs; however, cement augmentation is only effective
for fresh VCFs. Therefore, clinicians must diagnose patients with
fresh VCFs as early as possible (differentiating fresh VCFs from
normal vertebrae and old VCFs), and promptly evaluate the surgical
strategy and etiology of fresh VCFs. Magnetic resonance imaging
(MRI), particularly T2-weighted imaging with fat suppression (FS
T2WI), is regarded as the most reliable imaging method for
determining the presence of a fresh fracture owing to its
excellent ability and sensitivity to detect vertebral hemorrhages
and bone marrow edema in fresh VCFs (Kaup et al., 2016;
Frellesen et al., 2018). However, the long appointment cycle,
claustrophobia, and contraindications, such as metal implants,
are common limitations of MRI (Chen et al., 2022). Furthermore,
the high economic burden and discomfort due to loud noise may
prevent its widespread application.

In clinical practice, digital radiography (DR) is the frontline
imaging examination for the diagnosis of fractures, including
limb and spinal fractures, due to it being the fastest and most
accessible imaging modality (Kim KC. et al., 2021; Kim DH. et al.,
2021). However, spinal DR primarily provide information about
vertebral morphology and cannot detect acute bone marrow
edema caused by fresh VCFs; therefore, determining fresh
VCFs from spinal DR remains challenging for clinicians.
Radiomics and deep learning (DL) models have achieved
excellent performance for diagnosis and application (He et al.,
2020; Mu et al., 2020). In addition, many DL models based on DR

have been developed and used to achieve partial functions of MRI
and echocardiography (Jeong et al., 2021).

To the best of our knowledge, a limited number of studies have
focused on DL models for identifying fresh VCFs from DR. In this
study, we developed the deep residual network (DRN) model that
automated the identification of fresh VCFs from spinal DR images and
explored whether it remains highly accurate for an external test cohort.

Materials and methods

Study design and participants

This multi-institutional retrospective study included the eligible
participants from five institutions. From November 2016 to July 2023,
1,747 participants who underwent spinal MRI and DR within 2 weeks
of back painwere enrolled in this study.We excluded 3,858 participants,
including those in whomwith more than 1 week between DR andMRI
examinations (n = 1,745) and those without complete raw data and
qualified DR/MRI images (n = 2,113). Notably, participants with old
VCFs, those with suspectedmalignant VCFs, and those who underwent
surgical treatments, such as vertebroplasty, fixation, and fusion surgery,
were not excluded to improve the robustness of our model. The study
flowchart and detailed inclusion and exclusion are shown in Figure 1
and the Supplementary Appendix (p. 3).

This study was approved by the Ethics Committees of the five
hospitals and was conducted in accordance with the ethical
principles of the Declaration of Helsinki. We used only
preexisting medical data; therefore, the requirement for informed
consent was waived for this retrospective study. The work was
compliant with the STROCSS criteria (Mathew et al., 2021).

Radiological examination

The participants underwent routine anteroposterior and lateral
lumbar spine radiography using DR instruments of six devices. All
MR scans were acquired using a 1.5-T or 3.0-T MR system with a
multichannel phased-array spine coil, and FS T2WI was performed
using a turbo spin-echo sequence. The image acquisition parameters
and details of the DR instruments of each institution are presented

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Zhang et al. 10.3389/fbioe.2024.1397003

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1397003


in the Supplementary Appendix (p. 3). The DR andMR images were
stored and retrieved using a picture archiving and
communication system.

Ground truth

The whole spinal DR image, without the segmentation and
delineation of region of interest (ROI), were labelled based on spinal
MRI. FS T2WI is regarded as the standard reference for identifying
fresh VCFs owing to its excellent ability to visualize and characterize
high-signal areas and bonemarrow edema (Genant and Jergas, 2003;
Zhang et al., 2023). The sagittal MRI and lateral DR images were
analyzed by at least one radiologist and one spinal surgeon. Any
disagreements were resolved through consensus discussions.

Data partition

A total of 1,312 participants from three institutions were
divided into a training cohort (n = 1,050; male: 416, 39.62%)
and a validation cohort (n = 262; male: 118, 45.04%) based on the
patient identification number (first 80% in the training cohort, the
remaining 20% in the validation cohort) to train and validate the
DRN model. A total of 221 participants (male: 100, 45.25%) and
214 participants (male: 87, 40.65%) from the other two
institutions, were divided into YHDH and BMUH cohorts
based on their respective institutions, and were categorized as
external test cohorts to evaluate the external generalizability of the
DRN model.

Model development

The DRN model was developed based on a previously reported
101-layer residual network (He et al., 2016), and trained on classified

spinal DR images of patients in the training cohort. The architecture
of the DRN included an input layer, a first layer (a 7 ×
7 convolutional layer and an output channel of 64), and second
to fifth layers (four residual modules). Each residual module
comprised several residual blocks, a global average pooling layer
(performing global average pooling on the output of the last residual
module), and a fully connected layer (connecting the output of the
global average pooling layer to a fully connected layer for the
classification task).

The input images from the training cohort were resized to
224 × 224 pixels. We performed image augmentation and
amplification of the original images using a horizontal flip to
reduce overfitting. This normalization process allows the image
data to converge smoothly during training, thereby improving the
model’s stability and training effectiveness. All loss values were
summed and used to measure the model’s performance. The DRN
model was trained based on ImageNet pre-trained parameters. The
Adam optimizer was utilized in this model, and the parameters to
be optimized and the learning rate were passed to it. The Adam
optimizer is an adaptive learning rate optimization algorithm that
automatically adjusts the learning rate based on the gradients of
the parameters, which results in more efficient updates of the
model’s weights. The learning rate was set to 0.0001. The batch size
was 6, and the number of training epochs was 200. All the
development processes were performed using the PyTorch
framework. Detailed information on the development processes,
parameters, software, and packages is presented in the
Supplementary Appendix (p. 4).

Model test and evaluation

We assessed the diagnostic performance of the DRN model in
both the validation and external test cohorts using the best model
training weights and the same thresholds. In the present study, the
DRN model was compared with previous competitive models,

FIGURE 1
Study flowchart.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Zhang et al. 10.3389/fbioe.2024.1397003

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1397003


including 50-layer residual network (ResNet-50) (He et al., 2016),
Shufflenet-v2 (Zhang et al., 2018), EfficientnetV2-S (Tan and Le,
2021), EfficientnetV2-M (Tan and Le, 2021), and EfficientnetV2-L
(Tan and Le, 2021) to verify the effectiveness of the DRNmodel. The
diagnostic efficacy of the models for identifying fresh VCFs were
analyzed. The true positive (TP), true negative (TN), false positive
(FP), false negative (FN), accuracy, balanced accuracy, sensitivity,
and specificity of the different models were calculated. The TP event
is defined as correct identified the VCFs fromX-ray images. Receiver
operating characteristic (ROC) curves were used to assess the
sensitivity and specificity of the models, and the area under the
ROC curves (AUC) was used to describe the discriminative power of
the models. In addition, the macro- and micro-averaged ROC
curves, precision recall (PR) ROC, and PR AUC were included in
the evaluation metrics.

Subgroup analysis

Both fresh and old VCFs can lead to changes in vertebral
morphology. Therefore, in clinical practice, even if there are
changes in vertebral morphology observed on a participant’s
spinal DR, clinicians still find it challenging to accurately identify
fresh VCFs solely through visual inspection. In order to assess the
impact of the simultaneous presence of old VCFs on the diagnostic
results of the DRN model, we grouped participants of the external
test cohorts based on whether they had concomitant old VCFs, and
the subgroup analysis was conducted to further evaluate the
diagnostic efficiency of the model for fresh VCFs.

Visualization

Visualization experiments based on gradient-weighted class
activation mapping (Grad-CAM) have been previously
conducted to locate and identify the activation area over the
input images to explain the feature learning and classification
results of the DL models (Panwar et al., 2020; Liu C. et al., 2021).
In addition, Grad-CAM technology uses gradient information
flowing into the last convolution layer to assess the weight of
each neuron in the final decision of the fresh VCFs (Mu
et al., 2021).

Statistical analysis

All statistical analyses were performed using SPSS Statistics
software version 22.0. (SPSS Inc., Chicago, IL, United States of
America). and Python version 3.7. We used the bootstrap sampling
to calculate the confidence interval directly (n_bootstrap = 1,000),
and take the desired percentile of the bootstrap estimates as the
bounds of the confidence interval. Normally distributed continuous
variables were represented as means ± standard deviations and
categorical variables as percentages (%). The Student’s t-test and
Mann–Whitney U test were used to compare continuous clinical
variables, where appropriate. The chi-squared test or Fisher’s exact
test was used for categorical variables. Statistical significance was set
at p-value <0.05.

Results

Population characteristics

A totally of 1,747 participants (572 fresh VCFs and 1,175 non-fresh
VCFs; 721 male and 1,026 female) with a mean age of 62.08 ±
13.92 years, were enrolled in this study (Supplementary Appendix
p. 6). The training cohort from the three institutions included
1,050 participants (355 fresh VCFs and 695 non-fresh VCFs;
416 male and 634 female), with a mean age of 62.78 ± 13.50 years.
In addition, there were 228 participants diagnosed with lumbar fresh
VCFs in the training cohort. The validation cohort from the same three
institutions included 262 participants (88 freshVCFs and 174 non-fresh
VCFs; 118 male and 144 female), with a mean age of 61.97 ±
13.05 years, and there were 32 participants diagnosed with lumbar
fresh VCFs in the validation cohort. The external test cohorts were
obtained from YHDH and BMUH. The YHDH cohort included
221 participants (59 fresh VCFs and 162 non-fresh VCFs; 100 male
and 121 female), with a mean age of 56.8 ± 16.26 years. The BMUH
cohort included 214 participants (70 fresh VCFs and 144 non-fresh
VCFs; 87 male and 127 female), with a mean age of 64.28 ± 13.12 years.
Additionally, 117 (11.14%) participants in the training cohort, 31
(11.83%) in the validation cohort, 56 (25.34%) in the YHDH cohort,
and 47 (21.96%) in the BMUH cohort were diagnosed with old VCFs
(or combined old VCFs). Detailed demographics of each cohort are
shown in Table 1 and the Supplementary Appendix (p. 7, 8).

Visualization experiments

As shown in Figure 2, we visualized the feature attentionmaps of
different DL models using the Grad-CAM technique, which
intuitively illustrated the effectiveness of our DRN model. The
DRN model generated correct activation on the fresh VCFs and
accurate peak responses on the area of the target vertebral body parts
and demonstrated better feature representation learning and
classification performance. The attention heatmap is designed to
refine attention on the most distinctive region; however, ResNet-50,
Shufflenet-v2 and EfficientnetV2-S generated wider, even erroneous,
activation areas than the target vertebral body.

In addition, Grad-CAM demonstrates different feature attention
maps for different predicted results of DRN model. The generated
focused peak responses for images with FP predictions were similar
to those of the TP images; however, the activated area corresponded
to the erroneous vertebral body or the area outside of the vertebral
body. The DRN model generated a low intensity activation area or
no peak responses for TN and FN images (Figure 3).

Diagnostic performance of the DRN model

The AUC was 0.99, 0.89, and 0.88 in the validation, YHDH, and
BMUH cohorts, respectively, for the DRN model for detecting and
discriminating fresh VCFs (Figure 4). Moreover, the validation
cohort had an accuracy of 96.62%, sensitivity of 93.18%, and
specificity of 98.35%. The accuracies were 81.45% and 72.90%,
sensitivities were 84.75% and 91.43%, and specificities were
80.25% and 63.89% in the YHDH and BMUH cohorts,
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respectively (Table 2). The detailed performance of the DRN in
different cohorts is shown in the Supplementary Appendix (p. 8, 10).
In addition, the results of the DRN with different parameters are
shown in the Supplementary Appendix (p. 11, 12).

In the present study, the DRN model was compared with
previous DL models regarding the ability to discriminate fresh

VCFs to evaluate its effectiveness. The AUC of ResNet-50,
Shufflenet-v2, EfficientnetV2-S, EfficientnetV2-M, and
EfficientnetV2-L were 0.89, 0.89, 0.15, 0.29, and 0.22,
respectively, in the YHDH cohort and 0.84, 0.84, 0.52, 0.46, and
0.49, respectively, in the BMUH cohort (Figure 5). The accuracy,
sensitivity, and specificity of the validation and external test cohorts

TABLE 1 Baseline characteristics of cohorts.

Training cohort Validation cohort External test cohorts

n = 1,050 n = 262 YHDH (n = 221) BMUH (n = 214)

FVCF cases 355 (33.81%) 88 (33.59%) 59 (26.7%) 70 (32.71%)

non-FVCF cases 695 (66.19%) 174 (66.41%) 162 (73.3%) 144 (67.29%)

Age (years) 62.78 ± 13.50 61.97 ± 13.05 56.8 ± 16.26 64.28 ± 13.12

Sex, no. (%)

Male 416 (39.62%) 118 (45.04%) 100 (45.25%) 87 (40.65%)

Female 634 (60.38%) 144 (54.96%) 121 (54.75%) 127 (59.35%)

FVCF distribution, no. (%)

Thoracic 127 (35.77%) 56 (63.64%) 22 (37.29%) 23 (32.86%)

Lumbar 228 (64.23%) 32 (36.36%) 37 (62.71%) 47 (67.14%)

Diagnosis of OVCF, no. (%)

OVCF 117 (11.14%) 31 (11.83%) 56 (25.34%) 47 (21.96%)

non-OVCF 933 (88.86%) 231 (88.17%) 165 (74.66%) 167 (78.04%)

FIGURE 2
Attention heatmaps of different models for representative participants. T1-weighted imaging (T1WI), T2WI, FS T2WI, DR image, and attention
heatmaps of different models of participants whowere predicted successfully in (A) fresh VCFs and (B) non-fresh VCFs group. The fresh VCFs are pointed
by the red boxes.
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for each model are listed in Table 2. The ROC curves in the
validation cohort and the overall external test cohort for the
models are shown in the Supplementary Appendix (p. 13, 14).

The influence of old VCFs on the
performance of the DRN model

The influence of old VCFs on the performance of the DRN
model in identifying fresh VCFs was assessed in the subgroups.
Detailed demographics of each subgroup of the YHDH and
BMUH cohorts are shown in Table 3. The AUC was 0.90
(95% confidence interval [CI] 0.84–0.95) and 0.84 (95% CI

0.72–0.93) in the non-old VCFs and old VCFs groups,
respectively, in the YHDH cohort (p = 0.067). The AUC was
0.89 (95% CI 0.84–0.94) and 0.85 (95% CI 0.72–0.95) in the non-
old VCFs and old VCFs groups, respectively, in the BMUH
cohort (p = 0.051) (Table 4). The confusion matrix for each
subgroup is shown in Figure 6, and attention heatmaps of DRN
in old VCFs group of external test cohorts is shown in Figure 7.

Discussion

MRI is the imaging modality of choice for identifying fresh VCFs;
however, its clinical utility is limited by many factors, including the

FIGURE 3
Attention heatmaps of the DRNmodel in the external test cohorts. The image on the left is the FS T2WI; The image in themiddle is corresponding DR
image; the image on the right is the corresponding attention heatmap of the DRN model. The fresh VCFs are pointed by the red boxes.

FIGURE 4
Performance of the DRN model in the validation and external test cohorts. ROC curves and confusion matrix of DRN model in (A) the validation
cohort, (B) the YHDH cohort and (C) the BMUH cohort.
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high cost and time involved. DL and machine learning (ML) models
have been explored with the development of artificial intelligence and
radiomics for the diagnosis and differential diagnosis of fresh VCFs
(Chen et al., 2022). Several studies have shown the promising ability of
DL and ML models to meet or surpass the performance of human
experts on many survival prediction and medical imaging analysis
tasks, involving multiple imaging modalities and application areas
(Liu X. et al., 2021). However, DL and ML models have not been
utilized in large-scale clinical practice. The gap between the success of
these models in research and that in clinical settings must be
addressed as an essential part of every DL model. At least two

major factors hinder the translation of DL models into clinical
practice: 1) the workload of manual segmentation, which can
hardly be accomplished in a clinical workflow, and 2) the low
external generalizability of the model to external institutions. In
this study, we successfully overcame this resistance to clinical
translation. We developed and evaluated the DRN model for the
diagnosis of fresh VCFs from spinal DR images and found that the
AUC for the overall model performance was greater than 0.88 in the
external test cohorts. The attention heatmaps showed that the DRN
model generated the correct activation of the target vertebral body
parts and avoided manual segmentation.

FIGURE 5
Performance of other models in external test cohorts. ROC curves of ResNet-50, Shufflenet-v2, EfficientnetV2-S, EfficientnetV2-M and
EfficientnetV2-L models in (A) (the first line) YHDH cohort and (B) (the second line) BMUH cohort.

TABLE 2 Performance of the models in the validation and external test cohorts.

DRN ResNet-50 Shufflenet-v1 EfficientnetV2-S EfficientnetV2-M EfficientnetV2-L

Validation

Accuracy (%) 96.95 96.95 96.18 72.90 67.56 66.79

Sensitivity (%) 93.18 94.32 95.45 36.36 4.55 2.27

Specificity (%) 98.85 98.28 96.55 91.38 99.43 99.43

Balanced accuracy 96.02 96.30 96.00 63.87 51.99 50.85

YHDH

Accuracy (%) 81.45 68.33 74.66 59.73 74.66 74.21

Sensitivity (%) 84.75 96.61 91.53 0.00 6.78 6.78

Specificity (%) 80.25 58.02 68.52 81.48 99.38 98.77

Balanced accuracy 82.50 77.32 80.03 40.74 53.08 52.78

BMUH

Accuracy (%) 72.90 72.90 65.42 54.21 67.75 62.62

Sensitivity (%) 91.43 90.00 91.43 50.00 5.71 11.43

Specificity (%) 63.89 64.58 52.78 56.25 97.92 87.50

Balanced accuracy 77.66 77.29 72.11 53.13 51.82 49.47
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Full automation and visualization

To the best of our knowledge, this study is the first to develop
and test a fully automated DL diagnosis model for fresh VCFs based
on spinal DR images and achieve visualization. The segmentation
and delineation of ROI in DL or ML models require considerable
time and effort. Therefore, achieving fully automated positioning
and detection of fresh VCFs and reducing the complexity of

segmentation is necessary. In previous studies on DL models, the
diagnosis and detection of fresh VCFs from spinal DR images
required segmentation of each vertebral body from the whole
thoracic and lumbar vertebrae (Chen et al., 2022; Xu et al., 2023).

In present study, we achieved fully automated positioning and
detected fresh VCFs with no ROI requirement using our DRN
model. The local perception property and local feature extraction
capability of four convolution layers endows the DRNmodel with an

TABLE 3 Baseline characteristics of the subgroups in the external test cohorts.

YHDH cohort BMUH cohort

Non-OVCF (n = 165) OVCF (n = 56) P Non-OVCF (n = 167) OVCF (n = 47) P

Age (years) 53.43 ± 16.25 66.74 ± 11.35 <0.001 62.44 ± 12.72 70.81 ± 12.26 <0.001

Sex, no. (%) 0.677 0.331

Male 76 (46.06%) 24 (42.86%) 65 (38.92%) 22 (46.81%)

Female 89 (53.94%) 32 (57.14%) 102 (61.08%) 25 (53.19%)

FVCFs, no. (%) 0.714 <0.001

FVCF 43 (26.06%) 16 (28.57%) 44 (26.35%) 26 (55.32%)

non-FVCF 122 (73.94%) 40 (71.43%) 123 (73.65%) 21 (44.68%)

TABLE 4 Performance of the DRN model for subgroups in the external test cohorts.

YHDH cohort BMUH cohort

Non-OVCF OVCF P Non-OVCF OVCF P

AUC 0.9 (0.84–0.95) 0.84 (0.72–0.93) 0.067 0.89 (0.84–0.94) 0.85 (0.72–0.95) 0.051

Accuracy (%) 81.82 (75.76–87.27) 80.36 (69.64–91.07) - 73.05 (66.47–79.04) 72.34 (59.57–85.11) -

Sensitivity (%) 79.07 (66.67–90.01) 100 (100–100) - 97.73 (92.31–100) 80.77 (65.22–95.83) -

Specificity (%) 82.79 (75.42–89.08) 72.5 (58.53–85.71) - 64.23 (55.65–72.36) 61.9 (40.91–82.63) -

F1 score 0.69 (0.58–0.79) 0.74 (0.56–0.87) - 0.66 (0.55–0.74) 0.76 (0.63–0.88) -

FIGURE 6
Performance of the DRNmodel in the subgroups of the external test cohorts. ROC curves and confusionmatrix of the DRNmodel in (A) the non-old
VCFs group and (B) the old VCFs group of the YHDH cohort. ROC curves and confusion matrix of the DRNmodel in (C) the non-old VCFs group and (D)
the old VCFs group of the BMUH cohort.
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advantage in handling spinal DR image, enabling the DRNmodel to
capture intricate details and structural information of fresh VCFs,
thereby improving the recognition and automatic localization
capabilities for the fresh VCFs. Intermediate activation layers
were visualized to assess the accuracy of the positioning function
in the DL network to explore the detection process and DL features.
Our model enables better feature representation learning and a clear
activation heatmap compared to other methods, as shown in the
results of the Grad-CAM and final output, which allows better
automatic positioning performance for the identification of fresh
VCFs. In addition, we attempted to identify fresh VCFs in the C-arm
DR images based on our models; however, we did not achieve
accurate detection. Therefore, multicenter analyses with a large
number of C-arm images of the spine are required to explore
more stable and accurate DL models to determine the surgical
segments and prevent surgical accidents.

In addition, many DL models are dedicated to segmenting bones
and vertebrae from radiological images (Huang et al., 2020;Wennmann
et al., 2022a). Klinder et al. (Klinder et al., 2009) reported an automated
model-based vertebral detection, identification, and segmentation
method; this model can achieve an identification success of more
than 70% for a single vertebra. Wennmann et al. (Wennmann et al.,
2022b) explicitly provided segmentations of vertebrae based on U-Nets,
which trained 106 patients from eight centers. These findings may
strengthen our future studies on DLmodels, particularly those focusing
on automatic segmentation and the identification of spinal diseases. For
example, by utilizing the hierarchical structure of the DRNmodel as the
encoder and integrating the U-shaped architecture of segmentation
models like U-Net, we may can achieve a sophisticated approach aimed
at enhancing the model’s versatility and performance. This integrated
approach not only enhances the model’s versatility, but also opens new
possibilities for image segmentation problems in various
application scenarios.

Robustness and external generalizability

Previous studies have reported that bone signal intensities and
radiomic features can markedly deviate between different scanners and
protocols of MRI, computed tomography, and radiography
(Wennmann et al., 2022c; Wennmann et al., 2022d). In addition,

models that are developed and tested on a single cohort may be
prone to overfitting, resulting in the final model performing well
only for images in that cohort and showing low accuracy in other
datasets (Ueda et al., 2023).

In previous studies, only a single dataset was used for the
development of the DL model, and the images used for
development and testing were obtained from the same dataset
(Chen et al., 2022; Xu et al., 2023). The training and test cohorts
of our study were collected from different institutions and using
different scanners to prevent overfitting and enhance robustness and
external generalizability. In this study, the participants in the
training cohort were recruited from three hospitals, which
improved the robustness of the DRN model. In addition, two
external test cohorts were used to assess the external
generalizability of the DRN model, and a high AUC (0.89 and
0.88 in the YHDH and BMUH cohorts, respectively) was achieved.
Although variations in DR instruments, image acquisition
parameters, age, gender composition, and other factors may
contribute to the model’s slightly superior results in the YHDH
cohort, these results still strongly support the stability and excellent
performance of our DRN model on external test cohorts.

It is difficult to identify fresh VCFs, particularly differentiating
them from old VCFs, based on DR images in clinical practice. Both
fresh and old VCFs can result in similar morphological changes in
the vertebral body, such as loss of height, wedging, or deformity.
These changes can be visually similar, making it difficult to
differentiate between the two types VCFs based solely on the
limited information of DR images. Therefore, multiple normal
vertebral columns and old VCFs were included in this study to
improve the robustness of the model and evaluate whether the DRN
model’s detection of fresh VCFs would be affected. The results of the
subgroup analysis showed that the AUC of the DRN model
decreased in the old VCFs group compared to the non-old VCFs
group (both in two external test cohorts); however, the p-value
between the two subgroups was greater than 0.05 (YHDH, p = 0.067;
BMUH, p = 0.051). This indicated that there was no significant
difference in the diagnostic performance between the two
subgroups, i.e., the diagnostic process of the DRN was not
affected by the presence of old VCFs. In addition, as shown in
Figure 7, there were no peak responses generated in the area of old
VCFs which indicates that the DRN model has learned to

FIGURE 7
Attention heatmaps of the DRN model in the old VCFs group of the external test cohorts. The image on the left is the DR image of participants
without fresh VCFs who were predicted successfully; the image on the right is the corresponding attention heatmap of the DRNmodel. The old VCFs are
pointed by the yellow boxes.
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distinguish fresh VCFs from normal vertebrae and old VCFs based
on specific features.

Limitations

This study has some limitations. In general, anteroposterior and
lateral radiographs are jointly captured for spinal DR interpretation.
However, only lateral views are collected and used to identify fresh
VCFs in the present study, and the lack of anteroposterior
radiographs may have resulted in the loss of some imaging
features in the DR images. In addition, the influence of
malignant VCFs on the performance of the DRN model and the
ability of the DRN model to distinguish between benign and
malignant VCFs were not further evaluated. However,
noninvasive differentiation of benign versus malignant VCFs is a
potentially important clinical application, particularly for patients
with VCFs without typical morphological features.

Conclusion

In the present study, we developed the DRN model for automated
diagnosis and identification of fresh VCFs from spinal DR images. The
DRN model can provide interpretable attention maps to support the
excellent prediction results, which is the key that most clinicians care
about when using the model to assist decision-making.
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