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Combination therapy with oral administration of several active ingredients is a
popular clinical treatment for cancer. However, the traditional method has poor
convenience, less safety, and low efficiency for patients. The combination of
traditional pharmaceutical techniques and advanced material conversion
methods can provide new solutions to this issue. In this research, a new kind
of hybrid film was created via coaxial electrospraying, followed by a casting
process. The films were composed of Reglan and 5-fluorouracil (5-FU)-loaded
cellulose acetate (CA) core-shell particles in a polyvinylpyrrolidone (PVP) film
matrix. Microscopic observations of these films demonstrated a solid cross
section loaded with core-shell particles. X-ray diffraction and Fourier-
transform infrared tests verified that the Reglan and 5-FU loaded in the films
showed amorphous states and fine compatibilities with the polymeric matrices,
i.e., PVP and CA, respectively. In vitro dissolution tests indicated that the films
were able to provide the desired asynchronous dual-drug delivery, fast release of
Reglan, and sustained release of 5-FU. The controlled release mechanisms were
shown to be an erosion mechanism for Reglan and a typical Fickian diffusion
mechanism for 5-FU. The protocols reported herein pioneer a new approach for
fabricating biomaterials loaded with multiple drugs, each with its own controlled
release behavior, for synergistic cancer treatment.
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1 Introduction

Combined therapy for cancer is a popular clinical approach (Shen et al., 2020; Wu et al.,
2022; Liu et al., 2023; Wang et al., 2024), wherein patients are frequently administered
several kinds of dosage forms of the drugs for achieving synergistic anticancer effects in the
clinic; this approach has low compliance owing to administration inconvenience (Verma
et al., 2023; Tian et al., 2024). Furthermore, the side effects are often of significant concern
(Huang et al., 2024a; Zhang et al., 2024a; Zhan and Zhang, 2024). One clinical practice of
combined therapy entails oral administration of the therapeutics to the patients along with
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an initial antiemetic drug to prevent strong gastrointestinal
discomfort; the main therapeutic drugs are administered
approximately half an hour after the initial drug (Lang et al.,
2023; Zhang et al., 2023). Thus, all-in-one dosage forms are
always welcomed by patients to achieve safe, effective, and
convenient drug delivery (Zhao et al., 2023). However, the
fabrication of all-in-one dosage forms poses a significant
challenge to researchers in the fields of pharmaceutics, materials
science, engineering, nanoscience, and nanotechnology (Tan et al.,
2023; Yang et al., 2023).

Compared to traditional pharmaceutical techniques such as
tablets and pellets, pharmaceutical nanotechniques offer a series
of advantages in tailoring the components, compositions, and spatial
distributions when loading the active ingredients (Cai et al., 2022;
Wang et al., 2023a; Cai et al., 2023; Mushtaq et al., 2023; Hao et al.,
2024), and are therefore more powerful for creating novel all-in-one
dosage forms or multifunctional medicated nanomaterials. One
example of this is electrospinning, which is facile for loading
various kinds of components within a nanofiber, provided they
can dissolve in a certain solvent or solvent mixture (Kang et al., 2020;
Yang et al., 2022; Peng et al., 2024). Alternatively, these components
can be tailored to have their own chambers within the structured
nanofibers, provided there are no co-dissolved solvents for blend
electrospinning (Yao et al., 2018; Yao et al., 2022; Brimo et al., 2023).
Moreover, such multichamber structured nanofibers can be
produced in a single step in a straightforward manner (Yu et al.,
2024). The nozzle of a spinneret at the macroscale can be explored as
a template to duplicate a wide variety of complex multicompartment
nanoproducts through electrospinning (Song et al., 2023; Tabakoglu
et al., 2023). These fundamental multichamber nanoproducts
include but are not limited to, the core-shell (Shi et al., 2024a;
Han et al., 2024), Janus (Zhang et al., 2024b; Yan et al., 2024; Zhou
et al., 2024b), trilayer core-shell (Wang et al., 2020; Wang et al.,
2023b), trisection Janus (Wang et al., 2017; Jiang et al., 2024; Xu
et al., 2024b), combinations of Janus and core-shell (Li et al., 2024),
and abundant derivatives (Li et al., 2022; Guler et al., 2023) of these
multichamber structures. For example, the derivatives of trilayer
core-shell nanofibers can be used as drug gradient distribution
nanofibers for sustained release (Wang et al., 2023c) and as drug
discrete distribution nanofibers for accurate biphasic release (Liu
et al., 2024). Among these multichamber structures, the double-layer
core-shell structure is the most fundamental form (Qain et al., 2023;
Chen et al., 2024a), which has received abundant attention in almost
all scientific fields (Cao and Ding, 2022; Shi et al., 2024a).
Electrospun core-shell nanofibers have been widely explored for
potential applications in tissue engineering (Wang et al., 2017; Zhu
et al., 2024), food packaging (Huang et al., 2022), energy conversion
and storage (Yu et al., 2023; Wei et al., 2024), wound dressing (Khan
et al., 2024), functional fabrics (Zhang et al., 2024c), drug delivery
(Xie et al., 2022; Gong et al., 2024), and treatment of pollutants in air,
water, and soil (Song et al., 2022; Li et al., 2023; Su et al., 2024). It is
therefore clear that these multichambered structures, particularly
the core-shell structures, play important roles in the development of
novel all-in-one dosage forms for cancer therapy.

Compared with electrospun core-shell nanofibers,
electrosprayed core-shell micro, and nano particles have received
less attention, even though both are top-down nanofabrication
methods having obvious advantages over bottom-up methods

during large-scale production (Isaacofft and Brown, 2017; Ahmed
et al., 2024; Chen et al., 2024b). A simple search in Web of Science
returns 1,421 items with “electrospun core-shell nanofibers” or
“electrospun core-sheath nanofibers” as the search topic, whereas
the number of items returned for “electrosprayed core-shell
particles” or “electrosprayed core-shell microparticles” or
“electrosprayed core-shell nanoparticles” is only 59 (search date:
2024-Jan-27). This finding is attributed to the fact that the core-shell
medicated particles are often reported to be widely prepared using
bottom-up chemical synthesis methods, which make it difficult for
creating core-sheath nanofibers. In addition to the advantages
similar to those of coaxial electrospinning, such as the single-step
fabrication, straightforward implementation, and manufacture
using structured nozzles of the spraying heads as templates, the
coaxial electrospraying approach for creating core-shell particles has
the advantage of being able to treat a broader range of raw materials
through top-down fabrication (Ji et al., 2023; Xu et al., 2023). There
are only approximately 200 filament-forming polymers that can be
converted to nanofibers through electrospinning, and these often
have narrow electrospinnable windows (Sivan et al., 2022a; Yu et al.,
2024). In sharp contrast, there are numerous materials that can be
transformed into particles via electrospraying (Sun et al., 2023).
Furthermore, electrospraying enables the preparation of solid
particles from dilute polymeric solutions (Tabakoglu et al., 2023),
and this process can be scaled up more easily than many of the
bottom-up particulate synthesis processes.

Although new nanotechniques have become popular for
creating novel functional nanomaterials (Wang and Feng, 2022;
Wu and Li, 2022; Dong et al., 2023), real applications of
nanobiomaterials in the clinic and for commercial purposes
remain very limited (Xuan et al., 2023; Huang et al., 2024b; Yu
and Zhou, 2024). There are still numerous dosage forms available in
drugstores that are prepared using traditional pharmaceutical
techniques and could one day be replaced by advanced
nanoproducts. Accordingly, based on expanding the real
applications of nanodrug-delivery systems (DDSs) prepared using
advanced nanotechniques, it is hypothesized that combinations of
advanced nanomethods with traditional pharmaceutical techniques
would enable new methods for producing novel hybrid DDSs
containing nanoscale medicated materials. Based on this proof-
of-concept idea, this study investigates the combination of coaxial
electrospraying and traditional film casting to produce novel
anticancer DDSs. The all-in-one casting films contain both
electrosprayed core-shell particles loaded with 5-fluorouracil (5-
FU, sustained release) and Reglan (rapid release) in a homogeneous
distribution prepared by a combination technique, which is
anticipated to provide asynchronous dual-drug delivery for
synergistic treatment of colon cancer.

The desired asynchronous dual-drug delivery approach
comprises a first-stage release of Reglan, which was realized
through fast dissolution of the soluble matrix,
i.e., polyvinylpyrrolidone K30 (PVP K30), under acidic
conditions. The second-stage release of 5-FU was achieved using
electrosprayed core-shell cellulose acetate (CA) nanoparticles under
medium conditions that were freed by the dissolution of the casting
films in the first stage. Reglan is designed to be released in a pulsatile
manner, which is favored by patients owing to its therapeutic effect
of preventing vomiting. Reglan is also called metoclopramide or
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chloramphenicol; it is a white to light-yellow crystalline powder with
the molecular formula C14H22ClN3O2. It is also known as 4-amino-
5-chroro N-(2-diethylamine)-2-methoxybenzamide. Reglan is
soluble in chloroform, slightly soluble in ethanol or acetone, and
almost insoluble in ether and water, but soluble in an acidic solution.
Reglan has a strong central antiemetic effect and is frequently
exploited for nausea, vomiting, belching, loss of appetite, and
indigestion (Shafi et al., 2023). The drug 5-FU is a white
crystalline powder that is slightly soluble in water and ethanol,
almost insoluble in chloroform, and soluble in dilute hydrochloric
acid or sodium hydroxide solution. It is an antimetabolic and
antitumor drug whose local concentration maintenance time is
positively correlated with the therapeutic effect. Its plasma half-
life is extremely short (10–30 min), thus requiring frequent
administration; it also has significant side effects, because of
which sustained release is highly desired by patients (Xie et al.,
2018; Feng et al., 2022).

2 Materials and methods

2.1 Materials

The drugs 5-FU and Reglan were purchased from TCI Shanghai
Co., Ltd. (Shanghai, China). The polymeric matrices PVP K30
(Mw = 58,000) and CA (Mw = 50,000) were purchased from
BASF Shanghai Co., Ltd. (Shanghai, China) and Shanghai
Haosheng Biotechnol. Co., Ltd. (Shanghai, China), respectively.
The organic solvents anhydrous ethanol, chloroform (analytical
grade), and dimethylacetamide (DMAc) were obtained from
Sinopharm Reagent Co., Ltd. (Shanghai, China). All the other
raw materials were of analytical grade, and water was double-
distilled before use.

2.2 Combined process of fabricating all-in-
one medicated films

After some preliminary experiments, four working fluids were
determined for the combined fabrication process: 1) For preparing
the monolithic 5-FU/CA composite particles, 3.0 g of 5-FU and 9.0 g
of CA were co-dissolved in 300 mL of a solution containing DMAc,
acetone, and ethanol in a volume ratio of 2:3:1 correspondingly. 2)
To prepare the core-shell particles via coaxial electrospraying, the

core fluid was prepared by dissolving 6.0 g of 5-FU and 9.0 g of CA
in 300 mL of a solution containing DMAc, acetone, and ethanol in a
volume ratio of 2:3:1; further, the shell fluid was prepared by
dissolving 9.0 g of CA in 300 mL of a solution containing DMAc,
acetone, and ethanol in a volume ratio of 1:4:1. 3) For the casting
film preparation, 3.0 g of Reglan and 15.0 g of PVP K30 were
dissolved in 100 mL of chloroform, and 12.0 g of 5-FU-loaded
core-shell particles were suspended in this Reglan/PVP solution.

A homemade concentric spinneret was used to set up the coaxial
electrospraying apparatus. The other parts included two fluid drivers
(KDS100 and KDS200, Cole-Parmer, United States of America) for
quantitatively pumping the core and shell working fluids with an
accuracy of 0.01 mL/h, a high-voltage generator (60 kV/2 mA,
Wuhan Hua-Tian High Power Co., Ltd., Wuhan, China), and a
collector comprising a cardboard wrapped with aluminum foil.
After some optimizations, the working conditions were determined
as follows: core and shell fluid flowrates of 1.0 and 1.0 mL/h,
respectively; an applied voltage of 18 kV; and a collection distance
of 20 cm between the nozzle of the spinneret and collector. The
suspensions containing Reglan and core-shell particles were degassed
through an ultrasonic instrument in an ice bath for better
implementation (Wang et al., 2023a). Later, the suspensions were
placed in an oven at a temperature of 40°C until a constant weight was
achieved. Other parameters are included in Table 1.

2.3 Characterizations

2.3.1 Morphology and inner structure
The surface morphologies of the Electrohydrodynamic

atomization (EHDA) products (S1, S2, and S3) were assessed by
scanning electron microscopy (SEM, FEI Quanta G450 FEG, Inc.,
Hillsboro, OR, United States of America). To render their electrical
conductivities, the samples were sputter-coated with gold in an
argon atmosphere before evaluation, and the images were obtained
at an excitation voltage of 10 keV. The inner structures of the
electrosprayed particles S2 and S3 were evaluated by transmission
electron microscopy (TEM, JEM2100F, JEOL, Tokyo, Japan). A
lacy carbon-coated copper grid was fixed on the collector for
approximately 2 min during the sampling processes. Then, cross
sections of the hybrid films were obtained through direct manual
breakage. The diameter and size distributions of the electrosprayed
particles were evaluated based on measurements from over
100 locations on the SEM images.

TABLE 1 Parameters for manufacturing the electrosprayed medicated products.

No. Production Parameters for electrosprayinga Products Drug content (%)

V (kV) F (mL/h) D (cm)

Core Shell Reglan 5-FU

S1 Single-fluid blend electrospraying 18 -- 2.0 20 Dented concave particles -- --

S2 Single-fluid blend electrospraying 18 2.0 -- 20 Spherical particles -- 25%

S3 Coaxial electrospraying 18 1.0 1.0 20 Core-shell particles -- 25%

S4 Coaxial electrospraying and film casting 18 1.0 1.0 20 Solid films 10% 10%

aThe symbols V, F, and D represent the applied voltage, fluid flow rate, and distance between the nozzle of the spinneret and collector, respectively.
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2.3.2 Physical state and compatibility
A Bruker D8 Advance X-ray diffractometer (XRD, Bruker,

Bremen, Germany) was utilized to obtain the XRD patterns,
which were recorded from 10° to 60° in the continuous mode
at a scanning speed of 5°/min and step size of 0.02°. The
attenuated total reflection Fourier transform infrared (ATR-
FTIR) spectra were then recorded using a Spectrum
100 spectrometer (Perkin-Elmer, Waltham, MA, United States
of America) in the scanning range of 500–4,000 cm-1 with a
resolution of 2 cm-1.

2.4 Drug loading efficiency and in vitro
dissolution tests

The drug loading efficiencies (LEs, %) were calculated according
to Eq. (1):

LE %( ) � Qd

Qp
× 100% (1)

whereQd andQp represent the detected and theoretical amounts of the
drugs during preparation. To prepare the electrosprayed medicated
particles S2 and S3, specific amounts of their powders were weighed and
dissolved in a solution containing DMAc, acetone, and ethanol in a
volume ratio of 2:3:1. Then, approximately 1 mL of each solution was
dripped into 100 mL of water under ultrasonic conditions. After
filtration, the aqueous solution was measured to determine the 5-FU
loading in the particles. The LE (%) value of Reglan in the solid film was
determined through an in vitro dissolution test.

The in vitro dissolution tests were conducted in accordance with
the Chinese Pharmacopoeia (2020 Ed.), and the paddle method was
employed along with an RCZ-8A dissolution apparatus (Tianjin
University Radio Factory, China) and seven vessels. The test
conditions involved a rotation speed of 50 rpm and a dissolution
media temperature of 37°C ± 1°C. For the medicated products S2, S3,

FIGURE 1
Diagram showing the combination of coaxial electrospraying and fluid casting techniques to create a hybrid medicated film loaded with two
synergistic drugs.
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and S4, powders of respective weights of 0.1 g, 0.1 g, and 0.25 g were
placed in the vessels with a constant 5-FU feed. The dissolution
media (600 mL) used was 0.01 N HCl (pH = 2.0) for the first 2 h to
mimic the gastric juices artificially, and an equivalent volume of
sodium hydroxide was subsequently added to the dissolution media
to adjust the pH to 7.0 to simulate the intestinal fluids artificially. For
the S4 sample, the residues from the in vitro dissolution test were
separated and dried naturally for SEM observations.

At predetermined time intervals, 5.0 mL volumes of the dissolution
media were withdrawn for sampling, and equal volumes of fresh media
were added to maintain constant volumes. The absorbance values of the
samples were measured using a UV‒vis spectrophotometer (Unico
Instrument Co., Ltd., Shanghai, China). The amounts of Reglan and
5-FU in the samples were then calculated using their predetermined
calibration curves. No mutual interference was observed between the
dissolutions of Reglan and 5-FU due to the blankCA coating in the core-
shell particles.

2.5 Statistical analysis

All the experimental data are presented as mean ± SD. The
results from the in vitro dissolution tests were analyzed using a one-

way ANOVA, and the significance level threshold was set at 0.05.
Thus, p (probability) values lower than 0.05 were considered to be
statistically significant.

3 Results and discussion

3.1 Combined coaxial electrospraying and
fluid casting

Electrospinning as an advanced nanofabrication technique is
rapidly gaining applications in a wide variety of fields (Bai et al.,
2022; Cao et al., 2022; Chen et al., 2023a; Shi et al., 2024b); its
success is attributable to a series of unique properties, such as
straightforward, single-step, and flexible fabrication, in addition
to the use of an inexpensive apparatus (Sivan et al., 2022b; Lv
et al., 2024a; Lv et al., 2024b). Among these, its flexibility allows
conveniently combining electrospinning with many traditional
techniques and advanced chemical and physical methods (Yu
and Xu, 2023; Yu and Zhou, 2024). Similar to electrospinning,
electrospraying also allows facile combinations with other
fabrication methods to develop new material conversion
approaches. A diagram showing the compatibility between

FIGURE 2
Implementation of coaxial electrospraying: (a1) and (a2) a detachable concentric spinneret as a key part of the coaxial electrospraying apparatus; (B)
digital image of the coaxial electrospraying apparatus for creating the core-shell particles S3, where the bottom-left inset indicates the deposition of
electrosprayed particles for three letters (ZNU); (C) connections of the spinneret with two working fluids and an alligator clip from the power supply; (D)
typical electrostatic atomization process and (E) its Taylor cone for generating homogeneous CA-5-FU particles; (F) coaxial atomization process
and (G) its typical compound Taylor cone.
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coaxial electrospraying and solvent casting is depicted
in Figure 1.

Effective conversion of the electrosprayed medicated particles to
suitable dosage forms is always an important process in drug delivery
(Alfatama et al., 2024). After preparation, the core-shell particles can
be placed in capsules for direct oral administration or subjected to
additional processing to add new types of functions. Solvent casting is
a common method for creating lipid and polymeric films in
pharmaceuticals. The further casting of the electrosprayed core-
shell particles is useful not only for convenient oral delivery and
easy shipping and storage but also for loading new active ingredients
for synergistic therapy. This proof-of-concept idea is expected to be
useful for developing other multifunctional biomaterials in the future.

It must be noted that coaxial electrospraying is the key technique in
the proposed combination. In this study, a detachable spinneret was
developed for the coaxial electrospraying process, which has also been
used in other EHDA processes, such as single-fluid electrospinning and
coaxial electrospinning (Chen et al., 2023b; Zheng et al., 2024). The
Teflon-coated concentric spinneret consists of a common metal-based
concentric spinneret and a set of Teflon tubings (Figure 2a1). The

Teflon tubing can be moved vertically to adjust the nozzle surfaces of
the inner and outer capillaries, which allows further adjustments of the
behaviors of the shell and core working fluids (Figure 2a2).

The complete homemade electrospraying system is shown in
Figure 2B and comprises two pumps, a collector, a spinneret, and a
power supply (Alfatama et al., 2024). Under optimized experimental
conditions, the typical process for generating the core-shell particles
S3 is as shown in Figure 2B; the inset image on the bottom left shows
the deposition of the electrosprayed particles over the letters “ZNU”
formed by covering the surface of the collector with a sheet of paper
for approximately 10 min. During the process, the area around the
spinneret that is connected to the two working fluids is considered
important, along with the alligator clip connected to the power
supply (Figure 2C). All the electrospraying processes are initiated at
this point of convergence upon the reasonable formation of a stable
Taylor cone (Ji et al., 2023; Xu et al., 2023).

To prepare the homogeneous 5-FU/CA composite particles S2,
only the core metal capillary was used to guide the working fluid
toward the nozzle of the spinneret. After applying a high voltage of
18 kV, the atomization can be discerned, as shown in Figure 2D. The

FIGURE 3
Scanning electron microscopy (SEM) images of the prepared particles and their diameter distributions: images of the (A) blank CA particles S1, (B)
homogeneous 5-FU/CA particles S2, and (C) core-shell particles S3. (D) Surface morphology of the casting film via fission, (E) image of the cross-section
of the casting film, and (F) image of a complete independent particle. (G–I) Diameter distributions of the electrosprayed particles S1, S2, and S3,
respectively.
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atomization process consisted of three successive steps, i.e., Taylor cone
(Figure 2E) formation, a straight fluid jet (often condensed to a point at
the tip of the Taylor cone), and Coulombic explosion region formation.
When coaxial electrospraying was performed, the Teflon tubing was
moved downward to allow outward projection of only 0.2 mm of the
core metal capillary. This arrangement was favorable for fine
encapsulation of the core fluid by the shell fluid. The atomization is
recorded in Figure 2F. The working process here is apparently similar
to the single-fluid process comprising the Taylor cone, joint point, and
successive Coulombic explosion sections. However, the different
compounds of the Taylor cone can be discerned by further
enlarging the observations, as shown in Figure 2G.

3.2 Morphologies and inner structures of
electrosprayed particles and hybrid films

The morphologies and inner structures of the electrosprayed
particles and hybrid films are shown in Figure 3. As anticipated, the
CA particles S1 electrosprayed from the blank polymeric solution had a
somewhat concave morphology, as shown in Figure 3A. Meanwhile,
there are many satellites around the electrosprayed particles. In contrast,
the 5-FU/CA particles S2 had a spherical morphology, as indicated in
Figure 3B. Similarly, the core-shell particles S3 from the coaxial
electrospraying process had round shapes, as exhibited in Figure 3C
and in the inset image on the top right at a magnification of ×50,000. In
general, the hybrid films were brittle, and cracks were observed after
being manually broken by external forces, as shown in Figure 3D. The
SEM morphologies of the hybrid films are shown in Figures 3E, F at
various magnifications. From Figure 3F, it is clear that the surrounding
regions are rougher than the central sections of the particles, indicating
that each particle had a double-compartment core-shell structure.

Electrosprayed particles often have a broader diameter
distribution than electrospun nanofibers; the particle sizes and
morphologies are influenced by a series of solution properties
and operational parameters. In this study, pure CA particles S1
(Figure 3G), 5-FU/CA composite particles S2 (Figure 3H), and core-
shell particles S3 (Figure 3I) had average diameters of 1.07 ±

0.21 μm, 0.87 ± 0.14 μm, and 0.78 ± 0.11 μm, respectively. It is
interesting to note that the composite particles S2 and the core-shell
particles S3 had smaller diameters and more uniform size
distributions than the blank CA particles S1, even though high
drug loading was performed within S2 and S3.

TEM images were obtained to evaluate the inner structures of
the composite particles S2 and core-shell particles S3. As seen in
Figure 4A, the 5-FU/CA particles S2 had homogeneous
structures. Under a bright field, the gray levels of the TEM
images are a result of thickness, density, and elements. The
gradually decreasing gray levels in Figure 4A are attributed to
the thicknesses of the particles, with the darkest level at the center
and the lightest levels near the boundaries. Overall, the elements
and densities were similar throughout the particles. In contrast,
the core-shell particles S3 had stepwise gray level changes, as
indicated by the dashed circular line in Figure 4B. The reasons for
these stepwise changes include different elements (the shell had
no 5-FU), different thicknesses, and different densities.

The microformation mechanisms of the blank CA particles
S1 and composite 5-FU/CA particles are compared in Figure 5. In
general, the solidification processes of electrospinning and
electrospraying are very different; the former is mainly a fluid
drawing process, whereas the latter is a continuous fission process.
From the Taylor cone to the collector, the working fluid experiences
numerous fission reactions; each fission reaction inevitably results in a
downsizing of the fluid droplets, a decrease in the solvent amount and
related increases in the polymer concentrations within the droplets, a
weakening of the surface charges and splitting forces, and proximity to
the collector. The fission reactions continue until the repelling forces
cannot split the droplets/solid particles/semisolid particles further.

Thus, we divide the entire Coulombic process into four
subprocesses, as indicated in Figure 5. These four steps are: i)
quick splitting; ii) slow splitting; iii) semisolid shell formation; and
iv) particle solidification. The most common characteristics of each
step are as follows. The quick splitting occurs after Taylor core
formation when the strongest repelling forces atomize the fluid
with the lowest solute concentration. Next, the slow splitting
continues with the fluid droplets that have smaller repelling forces

FIGURE 4
Transmission electronmicroscopy (TEM) images of the (A) homogeneous 5-FU/CA particle S2 from single-fluid blend electrospraying and (B) core-
shell particle S3 from coaxial electrospraying.
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but high solute concentrations. Here, the surface and inner sections
still have homogeneous components and compositions. When the
droplets further approach the collector, a semisolid surface forms on
the split droplet, whose surface and inner sections have heterogeneous
components and compositions. Finally, the solidified particles from
the semisolid surface droplets may still contain some solvents in their
inner sections; owing to the presence of these residual solvents, the
solidified particles may experience a barometric pressure and are
flattened to concave morphologies. This is the mechanism of
formation of the blank CA particles S1.

However, the addition of a large amount of 5-FU to the CA fluid can
exert a remarkable influence on the entire electrospraying process. First,
these small molecules may retard the formation of semisolid substances
and compact membranes on the surfaces of the split droplets, thereby
facilitating the fast removal of the solvent molecules from the inner

sections of droplets. Second, when the collected particles experience a
barometric pressure owing to the evaporation of the residual solvent
molecules, the loaded molecules act as supports between the
macromolecular chains to prevent deformation. This is the
mechanism of formation of the spherical 5-FU/CA composite
particles S2. As for the core-shell particles S3, the diluted shell CA
solution may further facilitate the removal of the inner residual solvent
molecules, thereby further guaranteeing a spherical morphology.

3.3 Physical states of the components and
their compatibility

For drug delivery, particularly for drugs with poor water
solubilities, the amorphous state is more favorable than the

FIGURE 5
Suggested mechanisms for the microformation of concave particles S1 from electrospraying of pure CA solution and the formation of relatively
spherical particles S2 from electrospraying of CA and 5-FU blend solution. The four steps of the mechanism are: i) quick splitting, ii) slow splitting, iii)
semisolid shell formation, and iv) particle solidification.

FIGURE 6
X-ray diffraction (XRD) patterns of the four starting components (Reglan, 5-FU, PVP, and CA) and their homogeneous composite S2, heterogeneous
composite S3, and hybrid casting film S4.
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crystalline state for predictable, controlled release (Pattnaik et al.,
2023; Sun et al., 2024). The XRD patterns of the four starting
components (Reglan, 5-FU, PVP, and CA) and their
homogeneous composite S2, heterogeneous composite S3, and
hybrid casting films S4 are shown in Figure 6. As indicated by
the abundant sharp Bragg peaks in the patterns, both the raw 5-FU
and Reglan powders are crystalline components, whereas the
polymeric matrices CA and PVP are amorphous substances.
When the working fluids are processed through single-fluid
electrospraying, coaxial electrospraying, and solvent casting, all
the converted solid products, i.e., monoaxial particles S2, core-
shell particles S3, and hybrid films S4, are obtained in the desired
amorphous state. The reasons for this are mainly attributed to the
drug distribution on the molecular scale within the polymeric
matrices, which resulted from the homogeneous working fluids,
the extremely fast drying effect of electrospraying, and the fine
compatibility between the drug and polymer molecules.

Good compatibility between a drug and its carrier is important for
realizing not only the desired controlled release profile of the drug but
also chemical and physical stability for storage and shipping. New types
of polymers are continuously being tested for potential biomedical
applications (Guo et al., 2021; Köse et al., 2022; Liao et al., 2023), and
their compatibility with the loaded drugs is being disclosed (Ejeta et al.,
2022; Jurić et al., 2023; Langer and Peppas, 2024; Song et al., 2024).
FTIR spectrometry is one of the popular methods used to assess the
compatibilities of components. In this study, the ATR-FTIR spectra of
the four starting components, i.e., Reglan, 5-FU, PVP, and CA (left),
and theirmolecular formulas (right), are shown in Figure 7. Comparing
the spectra of the drugs with those of the loaded products, it is obvious
that there are many observable sharp peaks for the raw drug powders;
however, all of these were remarkably reduced or even attenuated in the

spectra of the final products. This phenomenon suggests that the drug
molecules interact with the polymeric molecules through secondary
physical interactions, such as hydrogen bonding, hydrophobic
interactions, or electrostatic interactions. Although these interactions
cannot be directly detected using instruments, they can be deduced
through their molecular formulas.

3.4 Asynchronous dual-drug delivery
performance

The LE (%) values for 5-FU in the electrosprayed particles
S2 and S3 were 99.26% ± 2.14% and 100.3% ± 1.77%,
respectively. The electrospraying processes, regardless of the
single-fluid blend process for creating homogeneous S2 or the
coaxial process for producing core-shell S3, are essentially
physical drying processes that are completed very rapidly. Thus,
the drug 5-FU, without sublimation or volatilization properties, can
be completely encapsulated in the solid particles.

The in vitro drug release profiles of Reglan and 5-FU from their
host polymeric matrices are shown in Figure 8. The antiemetic drug
Reglan is released rapidly when the hybrid films are placed in the
dissolution media, as indicated in Figure 8A. Meanwhile, the detected
total release content of Reglan reached 99.47% ± 3.57% of the
theoretical content calculated from the film casting suspensions.
The pulsatile release of Reglan is highly desirable for patients
because it allows for rapid initiation of antiemetic actions. As for 5-
FU release from the corresponding products, i.e., 5-FU/CA composite
particles S2, core-shell medicated particles S3, and particles released
from the hybrid films S4, the profiles are compared in Figure 8B. The 5-
FU release profiles over the initial 4 h are shown in Figure 8C.

FIGURE 7
ATR-FTIR spectra of the four starting components (Reglan, 5-FU, PVP, and CA on the left) and their molecular formulas (right).

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Mao et al. 10.3389/fbioe.2024.1398730

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1398730


As anticipated, 5-FUwas released from themedicatedmaterials in
a sustained manner over a longer period of time. However, the
sustained release details were significantly different in terms of the
initial manner of release and sustained drug release rates. The
composite particles S2 released 33.4% ± 4.3% of the loaded 5-FU
in the first hour, showing a typical initial burst-release effect. After 6 h,
approximately 70.6% ± 4.5% of the loaded 5-FU was freed into the
dissolution media. In sharp contrast, the core-shell particles S3 and
the particles from the hybrid films S4 released no detectable 5-FU
during the first half hour, and only 2.7% ± 0.9% and 3.4% ± 1.1% of
the 5-FU were released over the first 2 h, respectively. The blank CA
shell layer played an important role in retarding the initial 5-FU
release. The release amounts over the first 6 h for S3 and S4 were
30.2% ± 3.9% and 29.8% ± 3.9%, respectively. Later, 5-FU showed
sustained release in an almost linear manner up to 30 h. These release
profiles of the 5-FU/CA core-shell particles thus ensure the desired
asynchronous dual-drug delivery from the hybrid films S4.

The regression equations of the drug 5-FU released from the
medicated products are shown in Figure 9 based on the in vitro
dissolution test data. For the three medicated products,
i.e., homogeneous 5-FU/CA particles S2, core-shell 5-FU/CA
particles S3, and core-shell particles released from the hybrid films

S4, the release equations are LogQ2 = 1.536 + 0.323 Logt (R = 0.9593),
LogQ3 = 0.282 + 1.240 Logt (R = 0.9607), and LogQ4 = 0.429 +
1.120 Logt (R = 0.9717), respectively. Based on the critical value of the
Peppas equation (Peppas, 1985), the value of the sample S2 (0.323) is
less than 0.45, indicating that 5-FU was released from the CA-based
particulate composites in a typical Fickian mechanism. Furthermore,
the values of the electrosprayed core-shell particles S3 and the particles
freed from the hybrid films S4 were n = 1.24 and 1.12, respectively. A
value exceeding 0.9 suggests an erosionmechanismbased on the Peppas
criterion. However, since CA is an insoluble polymer, it is determined
that 5-FU was released by a two-step penetration process; the first step
involved the penetration of water molecules into the interior of the CA
matrix. Later, the second penetration step involved 5-FU molecules
passing through the inner channels formed by the water molecules into
the bulk dissolution media. This contradiction is unexpected and is
attributed to the blank CA coating on the 5-FU/CA composite in the
core-shell structures. The Peppas equation is useful for evaluating drug-
loaded materials in which the drug molecules are distributed
homogeneously throughout the polymeric matrices, but it fails to
predict nanomaterials with complicated chamber structures, as has
been demonstrated in other investigations (Zhou et al., 2023; Zhao et al.,
2024; Zhou et al., 2024a; Wang et al., 2022).

FIGURE 8
In vitro drug release profiles of Reglan and 5-FU from their host polymeric matrices: (A) Reglan release from the PVPmatrix of the hybrid film; (B) 5-
FU release profiles from S2, S3, and S4 over the entire experimental duration; (C) 5-FU release profiles from S2, S3, and S4 during the initial 4 h.
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FIGURE 9
Regression equations for the release of 5-FU from the medicated products: (A) homogeneous 5-FU-CA particles S2; (B) core-shell 5-FU-CA
particles S3; (C) core-shell particles released from the hybrid film S4.

FIGURE 10
Digital images of the casting films placed in the dissolution vessels: (A) surface and (B) cross-sectional views; (C)mechanism of asynchronous dual-
drug delivery; (D) SEM image of the core-shell particles after exhaustion of the loaded 5-FU.
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3.5 Mechanism of asynchronous dual-drug
delivery based on hybrid films

This study demonstrates a proof-of-concept strategy for
creating synergistic anticancer DDSs based on a combination
of the traditional film casting technique and advanced coaxial
electrospraying. Knowledge of the working mechanism is
generally useful for developing a series of functionally
medicated nanomaterials. A diagram and two digital
photographs of the casting films are shown in Figure 10. The
hybrid film is semitransparent owing to the presence of
numerous electrosprayed core-shell particles, as indicated by
the red letters “ZNU” in Figure 10A. The film had a thickness of
approximately 2.0 mm with a smooth cross-section, reflecting its
fragility, which could be improved simply by employing PVP
with a higher molecular weight (such as PVP K90) but sacrificing
a little of the fast dissolution property.

The asynchronous dual-drug release profiles are shown in
detail in Figure 10C. First, the fast dissolution of the soluble PVP
film matrix releases the therapeutic ingredient Reglan to achieve
the desired antiemetic application in a pulsatile manner. Then, the
loaded electrosprayed core-shell particles are simultaneously
released into the dissolution media; because of the insoluble
CA shell coating on the core drug/polymer medicated
composites, there is no initial drug release. Later, the
penetration of water molecules into the core-shell particles
causes a slight swelling of the particles. In turn, this creates
passages for material transportation between the solid particles
and the dissolution media for sustained release of the encapsulated
5-FUmolecules. Because of the high amount of drug loading in the
core section, the CA particles are flattened after 5-FU depletion.
This can be deduced from the SEM images of the residue particles
(Figure 10D), which were fetched from the dissolution vessels and
dried naturally.

4 Conclusion

In a pioneering effort, the traditional film casting method was
combined with coaxial electrospraying to develop a novel
bioengineering strategy for hybrid films. The prepared hybrid
films were designed to incorporate two active ingredients, Reglan
and 5-FU, with Reglan being homogeneously distributed
throughout the polymeric film matrix of PVP K30 while 5-FU
was loaded into core-shell particles with a blank CA coating. The
coaxial electrospraying process for generating the core-shell particles
was optimized and carefully recorded. The SEM and TEM images
demonstrated that the casting films were solid and that the loaded
particles had distinct core-shell structures. XRD and ATR-FTIR
assessments suggested that the two drugs presented in the films were
in an amorphous state owing to the favorable secondary interactions
between Reglan and PVP and between 5-FU and CA. In vitro
dissolution tests were used to verify that the desired
asynchronous dual-drug delivery could be realized for the
potential treatment of colon cancer through the oral
administration of the drugs. Both the microformation mechanism
of the electrosprayed particles and the asynchronous dual-drug
delivery mechanism of the hybrid films are proposed herein.

Effective, safe, and convenient cancer therapy remains one of
the greatest concerns in many medical and clinical fields today
(Chen et al., 2022; Murugesan and Raman, 2022; Tang et al., 2022;
Assi et al., 2023; Wang et al., 2023d; Man et al, 2023; Meng et al.,
2022). Numerous active ingredients have been demonstrated for
their usefulness through laboratory experiments (Yang et al.,
2024a; Duan et al., 2024; Zhang et al., 2024d); meanwhile, new
types of pharmaceutical excipients (particularly those based on
polymers) are being developed continuously (Lu et al., 2022; Shen
et al., 2022; Ali et al., 2023; Yang et al., 2024b; Zhang et al., 2024e;
Javadi and Mohsenzadeh, 2024; Riaz et al., 2024), and novel
biosourced drug carriers such as exosomes are being considered
for DDSs (Agrawal et al., 2024; Guo et al., 2024). Combining the
advantages of advanced techniques with those of traditional
methods to create novel medical materials from these active
ingredients and excipients is an evergreen interdisciplinary
challenge for researchers. The protocols reported herein provide
a pioneering example for this frontier topic in bioengineering and
nanomedicine.
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