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End-stage liver diseases have an increasing impact worldwide, exacerbated by
the shortage of transplantable organs. Recognized as one of the promising
solutions, tissue engineering aims at recreating functional tissues and organs
in vitro. The integration of bioprinting technologies with biological 3D models,
such as multi-cellular spheroids, has enabled the fabrication of tissue constructs
that better mimic complex structures and in vivo functionality of organs.
However, the lack of methods for large-scale production of homogeneous
spheroids has hindered the upscaling of tissue fabrication. In this work, we
introduce a fully automated platform, designed for high-throughput sorting of
3D spheroids based on label-free analysis of brightfield images. The compact
platform is compatible with standard biosafety cabinets and includes a custom-
made microscope and two fluidic systems that optimize single spheroid handling
to enhance sorting speed. We use machine learning to classify spheroids based
on their bioprinting compatibility. This approach enables complex morphological
analysis, including assessing spheroid viability, without relying on invasive
fluorescent labels. Furthermore, we demonstrate the efficacy of transfer
learning for biological applications, for which acquiring large datasets remains
challenging. Utilizing this platform, we efficiently sort mono-cellular and multi-
cellular liver spheroids, the latter being used in bioprinting applications, and
confirm that the sorting process preserves viability and functionality of the
spheroids. By ensuring spheroid homogeneity, our sorting platform paves the
way for standardized and scalable tissue fabrication, advancing regenerative
medicine applications.
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1 Introduction

End-stage liver failure is a life-threatening condition resulting in
the complete loss of liver function, which led to more than
1.4 million deaths worldwide in 2019 (Liu and Chen, 2022).
Currently, the only effective treatment is liver transplantation.
Although the global number of liver transplants has been
increasing in the last 3 decades (Terrault et al., 2023), the
number of patients on waiting lists has increased three times
faster (Kupiec-Weglinski, 2022) and is expected to keep growing
due to population growth, aging, and increasing impact of alcohol-
related liver disease (GBD, 2017 Cirrhosis Collaborators, 2020).
Redefining donor criteria will not sufficiently increase the pool of
liver donors, so that there is an urgent need to find alternative
solutions to donor organs.

Regenerative medicine and tissue engineering are seen as
promising solutions to revolutionize transplantation medicine
and provide innovative approaches for regenerating or replacing
severely diseased organs (Petrosyan et al., 2022). The primary
challenge of in vitro tissue engineering lies in accurately
reproducing the structural and cellular complexity of in vivo
organs while ensuring their full functionality. Bioprinting
technology addresses this challenge by enabling precise and
reproducible spatial control over the deposition of cells and
supporting material, thereby facilitating the reproduction of
structural organ features on a large scale (Ramadan and Zourob,
2021). Concurrently, the development of multi-cellular spheroids,
composed of multiple organ-specific cell types, enables to closely
mimic the physiology and functionality of native tissue. The ability
of bioprinting to fuse multi-cellular spheroids further holds promise
for fabricating larger, functional tissues (Banerjee et al., 2022).
Despite anticipating these advantages since 2009 (Mironov et al.,
2009), the fabrication of large-scale organs using bioprinting of
spheroids remains hindered by a persistent challenge: the lack of
production methods to obtain large quantities of homogeneous
spheroids (Banerjee et al., 2022).

Automation and parallelization of spheroid production
significantly improved spheroid reproducibility and production
speed. Various culturing platforms have been developed,
leveraging on microfluidic devices (Schuster et al., 2020), lab
automation systems (Brandenberg et al., 2020; Renner et al.,
2020), and standardized culture plates (Gri3D, Sun bioscience;
AkuraTM plates, InSphero; Sphericalplate 5D, Kugelmeiers). While
these platforms offer increased throughput at a cost-effective rate,
the produced tissue spheroid populations exhibit a persistent degree
of inhomogeneity, which limits their direct use for bioprinting
applications.

Sorting platforms offer a promising opportunity to enhance the
homogeneity of a spheroid population and improve transferability
compared to traditional production platforms. These platforms
enable automated imaging, analysis, and sorting of spheroids,
guided by user-defined sorting criteria. Most commercially
available systems use a pick-and-place approach to sort
individual spheroids based on morphological parameters such as
size and shape extracted from microscopic images (Cell Handler,
Yamaha; CellCelector, Sartorius; CellPicker. Shimadu). To enhance
sorting throughput, alternative systems use faster handling and
analysis methods, such as flow cytometers and laser-based

fluorescence readouts (COPAS FP, Union Biometrica). However,
these systems are primarily tailored for drug screening applications
and, consequently, do not meet the requirements for bioprinting
organ transplants, which necessitates high quantities of label-free
spheroids. Current systems are thus either too slow, due to non-
optimized platform movements for individual spheroid handling, or
depend on invasive analysis methods, such as fluorescent labels.

Moreover, bioprinting applications rely on highly specific and
diverse sorting criteria based on distinct morphological
characteristics and spheroid viability. These requirements pose
challenges for conventional sorting systems that are limited to
simple morphological parameters such as size as a sorting
criterion or assess spheroid viability using fluorescent labels. In
recent years, deep learning has proven to be a potent tool to enhance
image analysis, leveraging its capacity to precisely identify unique
patterns within large image datasets (Ching et al., 2018; Renner et al.,
2021). In particular, deep learning models have demonstrated their
efficacy in enhancing spheroid segmentation (Gritti et al., 2021),
detection (Lacalle et al., 2021), tracking (Matthews et al., 2021), and
characterization (Bian et al., 2021). Despite the adoption of deep
learning models for spheroid segmentation in sorting systems
(Grexa et al., 2021; Du et al., 2023), this approach remains
constrained to standard morphological features such as size and
shape and requires large datasets which are not always easy to
produce for complex biological tissues. However, the use of deep
learning for direct spheroid classification is a promising tool to
extract complex patterns from images, increasing reliability for
bioprinting applications.

Addressing these limitations, the European project OrganTrans
was aimed at developing a standardized process for fabricating
implantable liver constructs using bioprinting of tri-cellular liver
spheroids, made of three different cell types. The collaborative
project OrganTrans included seven studies for the establishment
of all fabrication steps, including the development of a multi-cellular
model for liver transplantation, an optimized bioink for spheroid
network formation, the automated sorting of spheroids and a
bioprinting process. The scope of this study was limited to
developing an automated spheroid sorting solution for over
12,500 tri-cellular liver spheroids to print a single 0.5 cm3 liver
construct. For this purpose, an automated, high-throughput sorting
system was essential to select homogeneous, high-quality spheroids
suitable for bioprinting.

Within the framework of OrganTrans, we developed a fully
automated sorting platform for high-throughput sorting of liver
spheroids. This sorting platform seamlessly integrates image
acquisition, image analysis, and transfer of individual spheroids
directly from the culture plate into a single, streamlined process. We
propose an alternative sorting workflow to that of standard pick-
and-place platforms, which provides enhanced sorting speed while
enabling precise handling of individual spheroids and acquisition of
high-quality images. The compact platform design ensures
compatibility with standard safety cabinets and culture plates,
allowing for adaptability to various sorting processes. Moreover,
we successfully trained a deep learning model for spheroid detection
and classification, enabling label-free characterization of spheroids
for bioprinting applications. Additionally, we show that transfer
learning proves effective in training deep learning models even when
only a small dataset of spheroid images is available. We demonstrate
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the high-throughput sorting process for two types of liver spheroids,
mono-cellular HepG2 spheroids and tri-cellular spheroids, the latter
being utilized in the OrganTrans project. The developed sorting
platform facilitates the selection of suitable spheroids when large
quantities of standardized 3D tissues are needed, ultimately enabling
their use in a clinical setting for regenerative medicine applications.

2 Materials and methods

2.1 Components of the
SpheroidSorter platform

The SpheroidSorter platform included two distinct fluidic
systems: a picking system for individual removal of low-quality
spheroids, and a harvesting system for bulk collection of high-
quality spheroids that remained in the plate after picking. The
picking system consisted of a low-pressure gear pump (mzr-4622,
HNP Mikrosysteme, Schwerin, Germany) connected via silicon
tubing (ID 1.0 mm, OD 2.0 mm, Carl Roth, Karlsruhe,
Germany) to a 1.5 mL Eppendorf tube (BGB Analytik, Adliswil,
Switzerland), in which low-quality spheroids were collected. To
prevent inadvertent entry of spheroids and cells into the pump, we
placed a sterile filter of 0.22 µm pore size (Guangzhou Jet Bio-
Filtration, Guangzhou, China) between the pump and the
Eppendorf tube. A metal tube cap (P-CAP series, Fluigent, Le
Kremlin-Bicêtre, France) ensured air-tight sealing of the
Eppendorf tube, and its connection via an Ethylene
tetrafluoroethylene (ETFE) tubing connector (P-663, Idex
Corporation, Lake Forest, United States) to a capillary tube
(250 μm ID, 360 μm OD, TSP Standard FS tubing, BGB
Analytik, Adliswil, Switzerland) that was used to pick up low-
quality spheroids. The picking end of the capillary tube was
inserted into a sterile needle (G19x1 1/4″, B.Braun, Melsungen,
Germany) to prevent it from breaking, and the assembly was
referred to as “picking needle.” The size of the capillary tube was
chosen to enable high-precision picking of 150 μm-diameter
spheroids. To enable precise vertical movement of the picking
needle, we used an automated linear stage (VT-80, Physik
Instrumente, Karlsruhe, Germany). A customized needle holder
was designed to ensure stable attachment of the picking needle to
the linear stage using two square magnets (Q-10-10-04-K, Webcraft,
Uster, Switzerland). The linear stage ensured precise vertical
movement of the needles for both picking and harvesting
processes. The harvesting system included two pumps: a
peristaltic pump (KPP_DA-S10, Kamoer Fluid Tech, Shanghai,
China) and a vacuum pump (Tops Industry & Technology,
Changsha, China). The peristaltic pump dispensed culture media
through a PTFE tubing (ID 2.0 mm, OD 4.0 mm, Maagtechnic,
Dübendorf, Switzerland) and a 0.5 mm large needle (23ga × 1.0″ Sky
Blue Blunt Tip Dispensing Fill Needles, CML Supply, Lexington,
United States) in the culture well during harvesting, which facilitated
the dislodging of spheroids. The vacuum pump simultaneously
harvested high-quality spheroids in bulk from the plate through
a needle of 1.6 mm inner diameter (501,137, Vieweg Dosier und
Mischtechnik, Kranzberg, Germany). A 3D-printed custom-made
needle holder was designed to enable the positioning of the media-
dispensing needle parallel to the spheroid-collecting needle. The

fluidic system for harvesting included silicon tubing (ID 2.0mm, OD
4.0 mm), polytetrafluoroethylene (PTFE) tubing (ID 2.0 mm, OD
3.0 mm, Carl Roth, Karlsruhe, Germany) and male Luer Lock
connectors (BGB Analytik, Boeckten, Switzerland). The spheroids
were collected into two 50 mL Falcon tubes (Greiner Bio-One,
Kremsmünster, Austria), each equipped with 3D-printed custom-
made lids. Waste was collected into a 250 mL glass bottle with a 3D-
printed custom-made cap, including an O-ring (Kubo, Illnau-
Effretikon, Switzerland) to ensure airtightness. The
SpheroidSorter was designed so that only the culture plate would
be moving horizontally using a motorized XY-stage (M-687.UN XY
Stage, Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe,
Germany) to prevent misalignment between the picking needle
and the optical setup during sorting. Finally, the main structure
of the SpheroidSorter platform was made using standard aluminum
construction profiles and connectors from Item Industrietechnik
(Solingen, Germany).

2.2 3D printing

The custom-made structural components of the SpheroidSorter
platform were fabricated using an Original Prusa i3 MK3S printer
(Prusa Research, Prague, Czech Republic), based on fused
deposition modelling (FDM) technology. We used Prusament
PLA (Polylactic Acid) filaments and a 0.15 mm layer height for
all prints to ensure precision and reliability. The two Falcon tube lids
and the glass bottle cap were fabricated with a Preform Form 3D
printer (Formlabs, Somerville, United States). This printer operates
on stereolithography (SLA) technology, which allowed us to
fabricate elaborate components while ensuring airtightness,
essential for our vacuum-based system. Specifically, the glass
bottle cap was printed using Rigid 4000 resin (Formlabs,
Somerville, United States), while the Falcon tube lids were crafted
with BioMed Clear resin (Formlabs, Somerville, United States) to
ensure biocompatibility. All our computer-aided design (CAD)
models were developed using Solidworks software.

2.3 Software

The entire sorting process was controlled by a proprietary
software platform designed to integrate and control multiple
hardware components via a centralized graphical user interface
(GUI). The software was written in C++ and enabled the
integration of all hardware components including a camera, a
motorized XY-stage, a motorized Z-stage, a gear pump, a
peristaltic pump, a vacuum pump, and a deep-learning module.
Our software was tailored for two types of culture plates: the
Sphericalplate 5D (SP5D) 24-well plate and 6-well plate
(Kugelmeiers Ltd., Erlenbach, Switzerland). Within the GUI,
various critical parameters could be adjusted, such as the flow
rates for picking and harvesting processes, and the needle height
for picking. Two additional workflows were implemented enabling
calibration and cleaning of the platform. The calibration process was
customized for each specific culture plate and consisted of two steps:
1. vertical alignment between picking needle and brightfield
microscope, and 2. vertical alignment between harvesting needle
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and culture plate. The first step was needed for precise removal of
individual spheroids through real-time imaging, whereas the second
step enabled optimization of the harvesting path with respect to well
size, increasing harvesting efficiency. The cleaning process was
developed for rinsing of the entire harvesting fluidic system after
sorting. Our software provided precise control over each sorting
step, allowing for independent or collective execution of the sorting
workflow over the entire plate or focusing on a specific well.

2.4 Cell culture

The human hepatocellular carcinoma (HepG2, HB-8065™,
ATCC) cells were maintained in HepG2 medium containing low
glucose Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% (v/v) fetal bovine serum (FBS, S0615,
Bioswisstec) and 1% (v/v) penicillin-streptomycin (P4333, Sigma-
Aldrich, Zug, Switzerland). Cells were passaged at 80% confluency
following routine protocols. Briefly, the cells were trypsinised,
centrifuged and counted using trypan blue solution 4% (w/v)
(Sigma-Aldrich, Zug, Switzerland) and split into 25 cm2 culture
flasks (Guangzhou Jet Bio-Filtration, Guangzhou, China).

2.5 Spheroid culture

HepG2 spheroids were formed and cultured in HepG2 medium
in SP5D 24-well plates by seeding 200 cells per micro-well
(i.e., 150,000 cells per well, with each well containing 750 micro-
wells). The medium was changed every 2-3 days. After 5 days in
culture, the HepG2 spheroids were harvested for experimentation.

The tri-cellular liver spheroids were provided by Dr. Bart Spee,
Utrecht University, the Netherlands. Tri-cellular spheroids were
composed of human umbilical cord endothelial cells (HUVECs),
mesenchymal stem cells (MSCs) and hepatic cells. Tri-cellular
spheroids were cultured in SP5D 24-well plates in tri-cellular
spheroid media (based on Advanced DMEM/F12, EGM-2
containing B27) and harvested on day 5 for experimentation.

2.6 Image acquisition

All training images for the neural network were acquired using
the optical setup of the SpheroidSorter with no subsequent post-
processing. The optical setup consisted of a custom-made brightfield
microscope with a uEye IDS camera (UI-3080CP-M-GL Rev.2, IDS
Imaging, Obersulm, Germany), connected to a 50 mm long
C-mount extension tube (Thorlabs, Newton, United States), an
Optotune lens (EL-10-30-C(i)-VIS-LD, Optotune, Dietikon,
Switzerland), a Female M22 × 0.75 to Male C-Mount Adapter
(34-770, EO Edmund Optics, Barrington, United States), and a
25 mm, f/4 Ci Series Fixed Focal Length Lens (85-358, EO Edmund
Optics, Barrington, United States). Two orthogonally placedManual
1” (25 mm) Linear Translation Stages (Thorlabs, Newton,
United States) enabled manual alignment of the microscope with
the picking needle. Optical rails (50 mm) from Thorlabs were used
to hold the custom-made microscope in place. A diffuse ring light
FLKR-Si100 (Falcon Illumination, Untereisesheim, Germany) was

positioned above the XY-stage for homogeneous lighting conditions.
A 3-D printed custom-made part attached the ring light and the
linear stage to the platform structure.

2.7 Network structure of the YOLOv5

The YOLOv5 architecture consists of three main parts: (i) the
backbone for feature extraction from the input image, (ii) the neck
that fuses features from different levels of the backbone to generate
feature maps for the detection of objects of different size, and (iii) the
head, which generates the final output, consisting of a multi-
dimensional array that includes object class, class confidence, box
coordinates, and corresponding width and height (Ultralytics, 2024).
For this study we used the default YOLOv5 release v6.0 structure
(Liu et al., 2022) and the small model size YOLOv5s. The
YOLOv5 backbone first introduces the structure called CSP-
Darknet53 (Wang et al., 2019). This Cross Stage Partial (CSP)
network is designed to extract deep features from the input data
which reduces computation compared to YOLOv3. The release
v6.0 further optimized the neck of the YOLOv5 model by
integrating the Spatial Pyramid Pooling Fusion (SPPF) module
and the Path Aggregation Network (PANet) structure. The SPPF
module is a pooling layer that enhances the receptive field of the
model by applying max-pooling layers of sizes 1 × 1, 5 × 5, 9 × 9, and
13 × 13 and eliminates the fixed-size constraint of the network. The
PANet structure improves object detection and class recognition by
preserving spatial information and employs a feature pyramid
network with multiple top-down and bottom-up layers (Liu
et al., 2018). The head of the model consists of fully connected
networks of sizes 19 × 19, 38 × 38, and 76 × 76 (Redmon et al., 2018),
which integrate and interact with feature maps of different scales.
These networks have been improved in the YOLOv5 v6.0 to enhance
the detection of objects of varying sizes and the efficiency of multi-
scale feature handling.

2.8 Dataset generation

We created two datasets for the training of the detection and
classification network of the SpheroidSorter platform. All images
(2,054 × 2,456 pixels, 24 bits depth) were generated by scanning
SP5D culture plates, containing either HepG2 or tri-cellular
spheroids, using the imaging system of the SpheroidSorter platform.

The first dataset consisted of 516 images of tri-cellular spheroids
imaged after 5 days of culture. Spheroids were labeled and classified
by experts, assigning a “high-quality” or “low-quality” label based on
spheroid size, shape, and morphological regularity/homogeneity.
The tri-cellular dataset consisted of 4,176 spheroids labeled as “high-
quality” and 194 deemed “low-quality.”

The second dataset consisted of 1,395 images of
HepG2 spheroids imaged after 5 days of culture. A portion of
these spheroids was treated with 2.5% (v/v) DMSO during
culture to obtain an artificially induced low-quality dataset. This
deliberate intervention facilitated the creation of a more balanced
dataset, crucial for improved classification accuracy. To facilitate the
labeling of this large HepG2 dataset, we trained a YOLOv5 network
using manually labeled images with bounding boxes around
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spheroids for precise localization. This localization model was
integrated into our labeling tool, enabling automatic spheroid
detection. For spheroids exposed to DMSO, a “low-quality” label
was automatically assigned, whereas non-DMSO exposed spheroids
were assigned a “high-quality” label. This labeling strategy enabled
the fast generation of a large HepG2 dataset without the need of
bioprinting experts. The obtained HepG2 dataset consisted of
12,599 “high-quality” spheroids and 6,530 “low-quality” spheroids.

2.9 Network training

For robust and accurate object detection and classification, we
used the open-source YOLOv5 network. We integrated transfer
learning in our training pipeline to improve classification accuracy
of tri-cellular spheroids challenged by the small size of the dataset.
Initially, we pre-trained the YOLOv5 network on a large
HepG2 dataset, adhering to default parameters of YOLOv5,
which also included data augmentation methods, as outlined in
the literature (Jocher et al., 2022). The HepG2 dataset was
partitioned into three sets: 70% for training (13,381 labels of
which 66% were high-quality spheroids), 15% for testing
(2,603 labels of which 64% were high-quality spheroids) and 15%
for validation (3,145 labels of which 66% were high-quality
spheroids). Subsequently, we fine-tuned the pre-trained model
with a smaller tri-cellular dataset. During this second training
phase, we strategically froze the initial ten layers of the network
and adopted a weighted image selection approach. Notably, we
tailored our data augmentation strategy by removing Blur,
MedianBlur, ToGray and ImageCompression methods, while
adjusting the p-value for Clahe, RandomBrightnessContrast,
RandomGamma, ColorJitter and RGB Shift to 0.2. The tri-
cellular dataset was partitioned into three sets: 80% for training
(3,470 labels of which 95% were high-quality spheroids), 10% for
testing (459 labels of which 97% were high-quality spheroids) and
10% for validation (441 labels of which 95% were high-
quality spheroids).

2.10 Viability assays

Fluorescent Staining: To test the viability of spheroids
throughout the sorting procedure, live cells in HepG2 spheroids
were stained with green Fluorescein Diacetate (FdA, F7378, Sigma-
Aldrich, Zug, Switzerland) and dead cells with Propidium Iodide
(PI, P4170, Sigma-Aldrich, Zug, Switzerland). After manual and
automated harvesting, HepG2 spheroids were transferred to 24-well
plates in HepG2 medium and kept in an incubator (37°C, 5% CO2).
For the staining process, spheroids were washed with phosphate
buffered saline (PBS), pH 7.4 (ThermoFisher Scientific, Waltham,
United States), mixed with 500 µL of staining solution (144 μM of
FdA and 35.9 μM of PI in PBS) and incubated for 15 min (37°C, 5%
CO2) in the dark. After incubation, spheroids were washed with PBS
three times. A Spark Cyto plate reader (Tecan, Männedorf,
Switzerland) was used to acquire brightfield images and detect
fluorescence using FITC and Cy3 filters for FdA and PI respectively.

Tri-cellular spheroids were stained with LIVE/DEAD™
viability/Cytotoxicity Kit for mammalian cells (Invitrogen,

Carlsbad, United States) to stain living cells with green
fluorescent Calcein-AM (Ca/AM), and dead cells with red
fluorescent ethidium homodimer-1 (EtBr). After manual and
automated harvest, tri-cellular spheroids were embedded in 50 µL
droplets of Matrigel Growth Factor Reduced (GFR) Basement
Membrane (356,231, Corning, NY, United States) in 24-well
plates with 1 mL of tri-cellular media. For the staining process,
we removed any excess media from each well and added 400 µL of
staining solution (4 µM of ETBr and 2 µM of Ca/AM in PBS). After
20 min of incubation at 37°C, the staining solution was removed and
the resulting fluorescence signal was detected using EVOS™ Digital
Color Fluorescence Microscope (Invitrogen, Carlsbad,
United States).

ATP Assay: Adenosine triphosphate (ATP) levels were assessed
using the CellTiter-Glo Luminescent Cell Viability Assay (Promega,
Dübendorf, Switzerland) following the manufacturer’s protocol.
After sorting, spheroids were seeded in an ultra-low attachment
24-well plates, and luminescence measurements were normalized
based on the spheroid count in each well. The luminescence signal
was detected with a luminescence plate reader (Tri-Star2, LB 942,
Berthold Industries, Bad Wildbad, Germany).

LDH Assay: Lactate dehydrogenase (LDH) release was
quantified using the CytoTox 96® Non-Radioactive Cytotoxicity
Assay Technical Bulletin (Promega, Dübendorf, Switzerland). We
harvested 50 μL cell-free supernatant from a single well of ultra-low
attachment 24-well plates, in which spheroids had been seeded post-
sorting and mixed with 50 µL of CytoTox 96® Reagent in another
well of a 96-well plate. The plate was incubated at room temperature
for 30min while being protected from light. We stopped the reaction
by adding 50 µL of stop solution. We measured the absorbance at a
wavelength of 490 nm using a standard plate reader (CLARIOstar
Plus, BMG Labtech, Ortenberg, Germany).

2.11 Image analysis

Microscopy images were analyzed with ImageJ. Area and
circularity were calculated by using ImageJ integrated tools after
manual spheroid segmentation.

2.12 Statistical analysis

Statistical analysis was performed using GraphPad Prism.
Differences between experimental groups were assessed using a
two-tailed unpaired t-test with Welch’s correction (*, p < 0.05;
**, p < 0.005; ***, p < 0.0005). All results are shown as mean
values ±standard error of mean (SEM).

3 Results

3.1 Workflow of the SpheroidSorter platform

We developed a fully automated spheroid sorter that integrated
the entire sorting process of image acquisition, image analysis, and
physical sorting in a single platform. We devised the workflow of the
“SpheroidSorter” platform as three consecutive work steps,
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schematically described in Figure 1. In the first step, automated
spheroid imaging and simultaneous image analysis were
performed over the entire spheroid culture plate, containing
8,000 spheroids (SP5D 24-well plate). Spheroids were imaged
using an inverted bright-field microscope
with ×4 magnification. We designed the inverted microscope to
have an extended field of view of 1.8 × 2.2 mm, enabling
simultaneous imaging of twelve spheroids, significantly reducing
imaging time of the entire culture plate. In parallel, image analysis
was performed by a deep learning algorithm, which detected,
analyzed, and classified spheroids as “low-quality” (purple box,
Figure 1) and “high-quality” (green box) tissues. The algorithm
was trained with images of spheroids labeled by experts according
to required characteristics for bioprinting applications. In step two,
low-quality spheroids from the culture plate were selectively
removed with a 0.3 mm-diameter capillary picking needle, as
shown in Figure 1. We chose a needle diameter of 0.3 mm to
match spheroid size and allow for accurate and efficient picking of
individual low-quality spheroids without disturbing high-quality
spheroids in close vicinity. In step three, all remaining high-quality
spheroids were collected in bulk with a harvesting needle of
1.6 mm diameter.

The workflow of the SpheroidSorter platform was controlled
using Visard (CSEM, 2024) a proprietary software platform
developed by CSEM and designed to control multiple hardware
components from a centralized graphical user interface (GUI). The
centralized GUI enabled independent control of each step of the
SpheroidSorter workflow and live visualization of image
analysis results.

Simultaneous imaging of multiple spheroids, parallelization of
image analysis, and bulk harvesting resulted in a substantial
reduction in overall sorting time, directly correlated to the
number of low-quality spheroids in the culture plate.
Additionally, the integration of all three spheroid sorting steps
into a single platform eliminated the need for manual handling
throughout the entire process. The comprehensive integration

rendered the system particularly well-suited for high-throughput
screenings.

3.2 Design of the SpheroidSorter platform

We designed the SpheroidSorter as a fully integrated and
compact platform, that fits within standard laminar flow cabinets.
As illustrated in Figure 2A, the compact platform design included an
inverted microscope, a fluidic system for spheroid picking and a
second fluidic system for spheroid harvesting. All three systems were
arranged around a motorized XY-stage with 0.1 µm sensor
resolution and ±0.3 µm bidirectional repeatability, enabling
precise and repeatable positioning of the culture plate. The
culture plate constituted as the only moving element in the XY
plane. By minimizing movements of the picking needle, we
successfully maintained vertical alignment between the needle
and the microscope. Stable alignment between the two
components ensured high precision during individual picking of
low-quality spheroids supported by real-time imaging.

The picking system was positioned at the back of the platform
and included a gear pump for high precision liquid handling with
2 μL minimal volume, and a 1.5 mL Eppendorf tube, in which low-
quality spheroids were collected. During the picking process, the
picking needle was fixed on a needle holder, connected to a
motorized vertical Z-stage that enabled raising and lowering of
the needle with 0.5 µm minimum incremental motion. The same
needle holder was used during picking and harvesting phases in
our workflow.

The harvesting needle consisted of a two-needle setup,
schematically shown in Figure 2B. A small needle of 0.5 mm
diameter was used to dispense culture media at a high flow rate
into the microwells. Dispensing culture media during the harvesting
facilitated the dislodgement of remaining high-quality spheroids
from the microwells, increasing harvest efficiency and preventing
drying of the well during harvest. Simultaneously, a larger needle of

FIGURE 1
Schematic of a 3-steps workflow of the SpheroidSorter. The workflow of the SpheroidSorter is divided into three steps: 1. Spheroid imaging and
image analysis. An inverted bright-fieldmicroscopewith ×4magnification images spheroids in the culture plate. In parallel, each spheroid is detected and
analyzed by a deep learning algorithm and classified with a “low-quality” label (purple) or “high-quality” label (green). 2. Individual picking of low-quality
spheroids. Spheroids labelled as low-quality are individually removed by a picking needle of 0.3 mm diameter. 3. Harvesting of high-quality
spheroids. High-quality spheroids are harvested in bulk by a harvesting needle of 1.6 mm diameter.
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1.6 mm diameter was used to harvest high-quality spheroids by
aspirating the dislodged spheroids. We chose a 1.6 mm needle
diameter to enable the simultaneous collection of multiple
spheroids, and to minimize shear stress on spheroids.

The fluidic system for spheroid harvesting was equipped with a
vacuum pump to induce negative pressure and enable collection of
high-quality spheroids into two 50 mL Falcon tubes. To remove
excess media from the two Falcon tubes without losing spheroids, we
developed a customized 3D-printed lid for Falcon tubes. The
customized lid, schematically shown in Figure 2C, was designed
to facilitate both spheroid sedimentation and air-liquid separation
by using centrifugal forces. We designed the customized Falcon lid
to have a cylindrical chamber with a conical base, the “air-media
separation chamber,”which created a first rotational flow. Harvested

spheroids were aspirated through the inlet into the “air-media
separation chamber,” where air was effectively separated from the
harvested media. An air outlet located at the top of the air-media
separation chamber enabled air to exit the Falcon tube using
negative pressure from the vacuum pump. Subsequently,
spheroids were aspirated into the “spheroid sedimentation
chamber,” an ellipsoidal chamber where a second rotational flow
promoted spheroid sedimentation at the bottom of the Falcon tube.
By promoting spheroid sedimentation, we effectively reduced the
risk of losing spheroids during the removal of excess media through
the media outlet. The volume of removed media can be regulated by
adjusting the length of the media outlet tube, allowing for the
adjustment of the final spheroid concentration in the Falcon
tube. Additionally, we connected two Falcon tubes in series to

FIGURE 2
SpheroidSorter platform. (A) Schematic of the SpheroidSorter platform. The platform is organized around a moving XY-stage, containing the SP5D
culture plate with spheroids. It includes an inverted microscope, a fluidic system for spheroid picking and a fluidic system for spheroid harvesting. (B)
Harvesting needle. The harvesting needle consists of a pair of needles: a needle of 0.5 mm diameter for media dispensing and a needle of 1.6 mm
diameter for spheroid harvesting. (C) Custom-made lid for Falcon tubes. High-quality spheroids are collected in a 3D-printed customized lid,
promoting spheroid sedimentation and air-liquid separation. First, an “air-media separation chamber” eases air separation from media entering through
the air-media inlet. The “spheroid sedimentation chamber” facilitates spheroid sedimentation at the bottomof the Falcon tube, hence preventing removal
of high-quality spheroids when excess media is removed through the media outlet tube.
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further reduce the risk of losing spheroids through the media outlet,
thereby increasing harvesting efficiency.

Overall, we optimized the design of the platform to increase
sorting accuracy and harvesting efficiency while keeping
spheroids viable and providing a user-friendly platform for
spheroid sorting.

3.3 Hardware performance

We evaluated the picking and harvesting efficiency of the
SpheroidSorter platform using HepG2 spheroids, a well-
characterized mono-cellular aggregate of hepatic cells. Chosen
for their resemblance in size and organ type to the tri-cellular
liver spheroids used in OrganTrans’ bioprinting application,
HepG2 spheroids served as a representative benchmark. To
assess the picking efficiency, we randomly selected
50 spheroids from three wells of two SP5D 24-well plates,
each containing HepG2 spheroids cultured for 5 days. Picking
needle calibration was performed once for each plate before
picking. The system successfully picked the targeted spheroid
with 91% efficiency, as shown in Table 1, taking 5 s per spheroid.
We identified a few errors, including simultaneous picking of two
spheroids (observed in 62% of cases) and failure to pick
any spheroid.

To assess the harvesting efficiency, three entire culture plates
were automatically harvested using the SpheroidSorter. Across all
three plates, an average of 92% of spheroids were successfully
harvested within 20 min (Table 1). Of the unharvested spheroids,
only 35% remained in the culture plate, while the remaining was
found in the waste bottle.

To evaluate the SpheroidSorter’s performance against
bioprinting requirements, including sorting speed and efficiency,
partners established a minimum throughput of 1,500 spheroids
sorted per hour. Notably, the SpheroidSorter platform efficiently
sorted a culture plate of 8,000 spheroids, with 2% low-quality
spheroids, in less than 2 h with a picking and harvesting
efficiency exceeding 90%. Spheroid imaging and analysis
accounted for 30 min (Table 1) of the complete sorting process.
Overall, the platform enabled accurate and precise sorting of large
quantities of spheroids, thereby rendering access to homogeneous
spheroid populations.

3.4 Automated classification of liver
spheroids using deep learning

3.4.1 Training of the Yolov5 network
Sorting over 1,500 spheroids per hour for bioprinting

applications requires rapid and automated analysis of large
volumes of image data and multiple parameters analysis. We
selected the YOLOv5 network (Jocher et al., 2022), a machine
learning model that performs both object detection and
classification on input images. This convolutional neural network
outputs object class, class probabilities, and bounding boxes around
detected objects. YOLOv5 is a one-stage object detection network
with a light structure optimized for computation efficiency, which
makes it an ideal tool for real-time analysis (Redmon et al., 2015).
Moreover, studies have shown the superior accuracy of
YOLOv5 compared to other fast object detection models, such as
Faster-RCNN, SDD and Detectron-2, especially when using data
augmentation technics (Wang et al., 2022; Kalbhor et al., 2023).
Overall, its ease of training and implementation, made it an optimal
solution for our automated sorting system.

Considering the limited availability of tri-cellular liver spheroids
used for bioprinting, we incorporated transfer learning into our
training pipeline, as described in Figure 3A. This approach facilitates
learning tasks when only a small dataset is available. Transfer
learning can be divided in two steps: first, a model is pre-trained
on a large dataset for a similar classification task, then the obtained
pre-trained model is fine tuned for the final classification task by
training it a second time on the smaller dataset of interest. For our
application, we decided to pre-train our model on a large dataset of
HepG2 spheroids images. HepG2 spheroids were chosen for their
ease of production in high-throughput and for their resemblance in
shape and size to tri-cellular spheroids. Subsequently, we fine-tuned
the resulting model by training it on a smaller dataset of tri-cellular
spheroids, manually labeled by experts. To account for the small and
unbalanced tri-culture dataset, we optimized the training by
applying data augmentation methods, such as RGB shift and
random Gamma selection, and selectively froze the initial ten
layers during training (see Materials and methods section).

3.4.2 Dataset generation
We created two custom datasets for the classification of spheroids

according to bioprinting compatibility. Experts added square bounding
boxes around spheroids and annotated them as “high-quality”, if
spheroids were suitable for the extrusion-based bioprinting process,
or “low-quality” otherwise (Figure 3B). Figure 3B shows examples of
“high-quality” and “low-quality” tri-cellular spheroids based on size,
shape, viability, compactness, and aggregation. The tri-cellular dataset
consisted of 516 images with 4,370 tri-cellular spheroids, 95% of which
were manually annotated as “high-quality” by experts. The smaller size
of this dataset was due to the limited availability of tri-culture spheroids
used for bioprinting. To compensate for the small tri-culture training
dataset, we created an HepG2 dataset consisting of 1,395 images
featuring 19,129 HepG2 spheroids, 65.9% of which were annotated
as “high-quality” and the remaining as “low-quality” (seeMaterial and
methods section).

TABLE 1 Time and efficiency of each process step of the SpheroidSorter
platform. Process time and efficiency were evaluated using mono-cellular
HepG2 spheroids cultured in SP5D 24-well plate (~8,000 spheroids/plate).
Time for spheroid imaging and harvesting was assessed for the complete
culture plate. Picking time and efficiency were evaluated from the picking
of n = 50 spheroids from 3 wells of 3 culture plates. Harvesting efficiency
was evaluated by assessing the number of successfully recovered spheroids
after the sorting process, n = 3 culture plates. Mean ± SEM.

Process step Step time Step efficiency

Picking of low-quality spheroids 5 s/spheroid 91% ± 6%

Harvesting of high-quality spheroids 20 min 92% ± 5%

Spheroid imaging and image analysis 30 min NA
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3.4.3 Classification results
To assess the performance of our newly developed model, we

used a test set of 52 new images with 459 spheroids. The confusion

matrix of pre-trained and non-pre-trained models for the same test
set are illustrated in Figure 3C, where model predictions for each
class are compared to the ground truth established by expert

FIGURE 3
Training and classification of a deep learning model. (A) Schematic view of the designed training pipeline. A YOLOv5 model is pre-trained using a
large image dataset of mono-cellular HepG2 spheroids. Subsequently, the pre-trained model is trained again on a smaller image dataset of tri-cellular
spheroids, outputting the final model used for tri-cellular spheroid classification. (B) Schematic representation of the used manual labeling method.
Images of high-quality (green box) and low-quality (purple box) spheroids based on size, shape, viability, compactness or aggregation are
highlighted. (C) Confusion matrix for the two models obtained with different training pipelines: the YOLOv5 model was solely trained on the tri-culture
dataset (non-pre-trained model) and the YOLOv5 model was trained using transfer learning (pre-trained model). (D) Precision-Recall curve for the high-
quality (green) and low-quality (purple) classes evaluated for a model pre-trained with our training pipeline (solid line) and for a non-pre-trained model
where only the tri-cellular dataset was used (dashed line). (E) Images of spheroidsmisclassified as high-quality (green box) and low-quality (purple box) by
the pre-trained model.
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labeling. The background column represents spheroids labeled by
the experts but not detected by the model. The confusion matrices
reveal that both models were able to correctly identify high-quality
spheroids with 95% of accuracy, while the accuracy of low-quality
spheroids increased from 69% to 75% when using transfer learning
in the training pipeline. Knowing the elevated class imbalance in our
dataset, we further assessed the performance of our pre-trained
model by looking at precision and recall metrics. While precision is
used to assess how reliable predictions for the class of interest
(positive class) are, recall characterizes the performance of a
model to correctly retrieve all relevant elements (Refer to
Supplementary Figure S2 for metrics formulas). Figure 3D shows
the plot of precision and recall when each of the two classes, high-
quality (green lines) and low-quality (purple lines) spheroids, is
considered the class of interest (positive class). Continuous lines
indicate the results for the model trained with transfer learning while
dashed lines correspond to the results obtained when the
YOLOv5 network is solely trained on the tri-cellular dataset.
Optimal pairs of precision and recall for each model and class
are indicated with a star-shaped marker. Both models featured
precision and recall scores above 95% for high-quality spheroids
(green lines). Our pre-trained model demonstrated a precision and
recall of 71% and 75% respectively in identifying low-quality
spheroids (purple solid line), in contrast to the non-pre-trained
model, which yielded scores of 55% and 69% for the same respective
metrics. When considering the SpheroidSorter workflow, it is
important to prevent low-quality spheroids from being left in the
culture plate, which implies reducing the number of false negatives
when low-quality spheroids are considered as the positive class.
Therefore, we successfully increased the recall score for low-quality
spheroids for the pre-trained model as shown in Figure 3D. These
results suggest the efficacy of transfer learning in improving
classification performance, particularly for the less-represented
class of low-quality spheroids.

To gain deeper insights into the disparity in classification
accuracy between low-quality and high-quality spheroids, we
assessed the inter-rater agreement score among four different
labelers, using a subset of 611 tri-cellular spheroids. The resulting
63% agreement score highlights the complexity of characterizing
spheroid quality for bioprinting solely based on brightfield images.
We further analyzed misclassified spheroids by our pre-trained
network. As illustrated by examples in Figure 3E, the model
exhibited a tendency to misclassify low-quality spheroids,
particularly in cases where compactness and neighboring cells
posed challenges in distinguishing between the two classes.

Overall, we successfully trained a neural network to detect and
classify tri-cellular spheroids for bioprinting, using transfer learning
to enhance classification accuracy when the availability of the
spheroid model of interest was limited.

3.5 Characterization of the platform using
HepG2 spheroids

The viability of spheroids after an automated sorting process is a
crucial criterion of success. We used HepG2 spheroids to
characterize our system and to obtain initial insights into the
impact of using the SpheroidSorter platform with 3D tissues.

HepG2 spheroids were subjected to a manual (control) as well as
automated sorting process with the SpheroidSorter platform, and
the sorting impact was assessed by morphological analysis and
fluorescent live/dead staining on day 1, 4, and 7 after harvest.
Fluorescent live/dead staining showed that the spatial localization
and proportion of dead cells, stained with Propidium Iodide (PI,
red), and live cells, stained with Fluorescein Diacetate (FDA, green),
were comparable between manual and automated sorting
(Figure 4A). For all three time points, dead cells were mostly
observed at the center of the spheroids, indicating the
development of a necrotic core, a well-known characteristic of
aged spheroids (Štampar et al., 2020). Morphological analysis of
brightfield images showed spherical and compact tissues for both
conditions. We further characterized the impact of the
SpheroidSorter platform by monitoring the circularity and area
of harvested spheroids (Figure 4B). We observed similar
circularity values for both manual and automated conditions at
all three time points. In parallel, the mean spheroid area increased at
a similar rate for both conditions, starting with 36.4 ± 2.8 E + 3 μm2

(control) and 38 ± 4.4 E + 3 μm2 (SpheroidSorter) on day 1 and
reaching 118 ± 11.2 E + 3 μm2 (control) and 130 ± 8.9 E + 3 μm2

(SpheroidSorter) on day 7. These results suggest that spheroids
retained viability and proliferation capacity after automated
harvesting and, thus, that our harvesting process did not impact
viability of HepG2 spheroids over 7 days compared to standard
manual harvest.

3.6 Viability assessment of tri-cellular
spheroids for bioprinting applications

To assess the use of the SpheroidSorter platform for bioprinting
and, specifically, in the context of the OrganTrans project, we
evaluated the impact of our platform on tri-cellular spheroids.
These spheroids consisted of hepatic cells, mesenchymal cells and
human umbilical cord endothelial cells (HUVECs), to increase
hepatocyte functionality in in vitro models (Harrison et al., 2021;
Jin et al., 2022). Within the OrganTrans bioprinting process, tri-
cellular spheroids were cultured during 5 days in SP5D 24-well
plates, before being sorted andmixed with a hydrogel, creating a bio-
ink ready for immediate bioprinting. After printing, the liver
construct was kept in a maturation reactor for 24 h.

We assessed the impact of the SpheroidSorter on tri-cellular
spheroids by evaluating spheroid viability after manual and
automated harvest over 3 days. To replicate the bio-ink physical
characteristics more faithfully, we embedded spheroids in Matrigel
for the fluorescent live/dead staining assay. We further assessed cell
damage by measuring LDH release into the media and metabolic
activity through intracellular ATP levels. Brightfield images of the
spheroids embedded in Matrigel showed comparable growth and
sprout formation for both the manual control and the
SpheroidSorter condition, as shown in Figure 5A. Concurrently,
fluorescent live/dead staining confirmed the absence of a necrotic
core for both conditions after 3 days of culturing in hydrogel.
Moreover, both conditions exhibited a similar increase in ATP
levels per spheroid as shown in Figure 5B, starting with
luminescence values at 9,476 ± 634 (control) and 9,836 ± 872
(SpheroidSorter) on day 1 and reaching 14,450 ± 1,073 (control)
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and 13,514 ± 1,046 (SpheroidSorter) on day 3. These results
suggested that the SpheroidSorter platform did not impact
spheroid growth after harvest. Additionally, Figure 5C shows that
LDH levels were statistically similar between the two conditions at
day 1 and 3, with percentages of cytotoxicity at 19.3% ± 2.2% and
21.8% ± 1.2% respectively for the control and at 14.4% ± 3.7% and
20.0% ± 0.9% for the SpheroidSorter condition, demonstrating that
the automated handling of spheroids with our platform did not
increase cytotoxicity.

In summary, these results suggest that the SpheroidSorter has no
significant impact on spheroid viability and growth rates of
tricellular liver spheroids 3 days after harvesting.

4 Discussion

Access to large quantities of homogeneous tissue models, such as
spheroids, is essential for bioprinting complex organ structures
intended for transplantation. However, persistent variability in
large-scale production processes remains a primary challenge for

effectively utilizing spheroids with bioprinting technology. In this
study, we built a fully automated spheroid sorting platform that
enabled high-throughput sorting of large quantities of spheroids
while relying on deep learning-based image analysis to evaluate
spheroid compatibility with bioprinting. This all-in-one system
included imaging, analysis, and sorting of spheroids, thereby
enhancing homogeneity within the spheroid population, which is
critical for the viability of bioprinted organs.

Commercially available systems tackle the need for automated
analysis and sorting of spheroids by scaling up standard single-cell
isolation methods. These approaches rely on a pick-and-place
strategy, analyzing and picking spheroids one by one. While
these systems enable individual spheroid handling from standard
culture plates, they fall short in providing compatibility with high-
throughput processes due their slow handling procedure. In our
SpheroidSorter platform, we have strategically limited the pick-and-
place operation to low-quality spheroids, thereby minimizing
platform movements. By using an efficient three-step workflow,
we simultaneously imaged and analyzed all spheroids in the culture
plate, allowing us to optimize the path for spheroid picking, which

FIGURE 4
Viability assessment of HepG2 spheroids after manual harvest (Control) and automated harvest with the SpheroidSorter. (A) Fluorescent and bright-
field images of HepG2 spheroids, showing spatial organization and proportion of dead cells (Propidium iodide, red) and live cells (Fluorescein Diacetate,
green) in spheroids at day 1, 4, and 7 after harvest. Scale bar: 100 µm. (B) Area and (C) circularity of spheroids harvested with the SpheroidSorter platform
were compared to those harvested manually (Control) at day 1, 4, and 7 after harvest. Mean ± SEM, n = 10–20 spheroids per condition.
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substantially increased the sorting speed. As a result, our average
picking time was 5 s per spheroid, and the harvesting system could
collect up to 8,000 high-quality spheroids in 20 min.

Alternative approaches for achieving high-throughput spheroid
sorting involve fluorescence-activated cell sorting (FACS)-based
systems, which were reported to achieve rates up to 50 spheroids
per second (SpheroOne, Cellenion; COPAS FP, Union Biometrica).
However, in contrast to the SpheroidSorter, the employed analysis
method of the FACS systems is not compatible with bioprinting
requirements because those systems rely on invasive fluorescent
labels. To our knowledge, the COPAS VISION 250 (Copas Vision,
Union Biometrica) is the only system that features brightfield
imaging in a flow cytometry-based spheroid sorter, however it
still relies on simple metrics, such as spheroid size and shape as
sorting criteria. Our three-step workflow circumvents the need for
fast analysis methods, such as laser-based FACS systems, and
seamlessly integrates high-throughput sorting with label-free
analysis of multiple parameters from brightfield images.

Another prerequisite for bioprinting applications is the use of
distinct morphological parameters and viability levels as sorting

parameters. This prerequisite poses a challenge for label-free
analysis methods, as the gold standard for viability assessment
relies on fluorescence. In recent years, machine learning has
proven to be a powerful tool for spheroid analysis, particularly
when used on brightfield images. So far, deep learning-based
methods in sorting platforms have been mostly used for
improving spheroid segmentation in brightfield images before
manual feature selection (Grexa et al., 2021). While the
segmentation of spheroids has proven to be a valuable tool to
monitor spheroid growth and behavior (Chen et al., 2021), this
approach faces challenges by blurred spheroid boundaries and when
spheroid surroundings, such as floating single cells, influence
spheroid classification. However, studies have demonstrated that
allowing deep learning algorithms to identify crucial features in
brightfield images can overcome manual selection of morphological
parameters, enabling the classification of spheroids based on their
viability (Zhang et al., 2019) and internal structures (Abdul et al.,
2020; Trossbach et al., 2023), while circumventing missegmentation
issues and segmentation biases. While promising, this method
requires large training datasets of at least 15,000 images, limiting

FIGURE 5
Viability assessment of tri-cellular spheroids after manual harvest (Control) and automated harvest with the SpheroidSorter. (A) Fluorescent and
bright-field images of tri-cellular spheroids, showing spatial organization and proportion of dead cells (Ethidium homodimer-1, red) and live cells
(Calcein-AM, green) in spheroids at day 1 and 3 after harvest. Scale bar: 100 µm. (B) ATP and (C) LDH measurements for tri-cellular spheroids harvested
with the SpheroidSorter platform were compared to those harvested manually (Control) at day 1 and 3 after harvest for two independent
experiments. Mean ± SEM, n = 50 spheroids per measure for ATP assay and n = 300 spheroids per measure for LDH assay.
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suitability for tissue models with limited available data. In our
platform, we effectively employed deep learning to directly
classify spheroids for bioprinting based on complex criteria and
demonstrated that we can fine-tune our model using less than
5,000 tri-cellular liver spheroids by using transfer learning.
Nonetheless, additional research studies should investigate the
transferability potential of our model to other spheroid types and
evaluate the necessity of biological models having morphological
similarity.

While our model yielded remarkable results in sorting tri-
cellular liver spheroids with a limited training dataset, there
remains room for improvement in classification accuracy. A
weakness of our training pipeline is the labeling strategy carried
out by experts, assessing bioprinting compatibility based on
brightfield images, despite the gold standard for viability
characterization being fluorescence imaging. Despite the expert
experience, this task remains challenging as indicated by the low
inter-rater agreement score. To overcome this limitation, studies
(Benning et al., 2020; Srisongkam et al., 2023) have integrated
fluorescence-based viability measurements into the labeling
pipeline. The fluorescence measurements provided a foundation
for labeling brightfield images, enhancing the robustness of image
classification. The trained model was then used to classify label-free
spheroids based solely on brightfield images. This approach holds
promise for enhancing our system, featuring high precision and
accuracy in spheroid viability classification. Additionally, accuracy
could be improved by using specific classification models, which are
better adapted to our use case. Several studies have shown how
improvements of the YOLOv5 structure and specific data
augmentation methods have enhanced detection performances
for small objects and have improved accuracy for unbalanced
datasets (Wang et al., 2022; Liu et al., 2022). Moreover, among
the several new versions of the YOLO series, YOLOv7 seems to
surpass previous object detection models in speed and accuracy
while also displaying faster training on small datasets without the
need for pre-trained weights (Wang et al., 2022). According to other
studies, spheroid classification could also benefit from combining
multiple CNN-models with different performances and weighting
the final decision with multiple individual network results (Park
et al., 2023). Alternatively, using unsupervised learning for spheroid
classification could provide different insights into spheroid
characteristics by unveiling new patterns while reducing time-
consuming labeling tasks.

The transferability potential of our sorting system to other
spheroid types is mainly limited by the classification network. In
this study we showed that transfer learning facilitates the
classification of tri-culture liver spheroids using
HepG2 spheroids that present similar morphology in the same
culture plate. However, a more substantial dataset would be
required to adapt the classification model for the analysis of
spheroids produced in different culture plates. Another sensitive
point for the transferability of our system is the shear stress that
spheroids are exposed to during the harvesting process, especially
in the custom-Falcon tube lid. Studies should first assess the impact
of the SpheroidSorter platform on new spheroid types, similarly to
what we conducted on tri-cellular spheroids. Overall, the design of
our automated system makes it versatile to be used with different
types of spheroids and culture plates. Fluidic tubing can be easily

changed to match bigger spheroid size, and the plate holder is
compatible with different standard plates. Moreover, despite the
movement of the plate during sorting, the compatibility of our
system with real-time imaging could compensate for spheroid
displacement and thus make sorting from plates where tissue
position is not fixed possible.

In summary, our developed platform offers an innovative
solution for efficiently sorting large quantities of spheroids. Our
meticulously designed three-step workflow, with an optimized
use of a pick-and-place strategy, significantly reduced sorting
time, which facilitates high-throughput sorting while maintaining
high-accuracy picking. By employing deep learning-based analysis, we
introduce a label-free method to evaluate spheroid compatibility for
bioprinting, including viability assessment. Additionally, our findings
demonstrate that transfer learning enabled deep learning-based image
analysis even with small datasets of spheroids by using knowledge
from models previously trained on similar tasks. This integration of
deep learning analysis into high-throughput sorting processes holds
great potential for significantly improving the sorting of tissuemodels.
We foresee that the SpheroidSorter platform will give access to large
populations of homogeneous spheroids, suitable for a variety of tissue
engineering applications.
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