
Based on mutated
aptamer-smartphone
colorimetric detection of
metronidazole in milk

Sicheng Zhang1†, Yadi Qin1†, Jie Yuan1,2†, Yu Wang1, Jun Yao1,3*
and Minwei Zhang4*
1School of Pharmacy, Xinjiang Medical University, Urumqi, China, 2School of Pharmacy, Xinjiang Second
Medical College, Karamay, China, 3Key Laboratory of Active Components and Drug Release Technology
of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi, China, 4College Life Science and
Technology, Xinjiang University, Urumqi, China

Excessive residue of metronidazole (MNZ) in food is harmful to the human body.
There is an urgent demand to develop a portable tool for MNZ detection on-site.
In this study, fifteen aptamers were prepared through targeted base mutation.
Apt1-3 with the highest enrichment was chosen for further study. Its affinity was
characterized by molecular docking simulation, AuNPs colorimetric assay,
graphene oxide (GO) fluorescence assay, and exonuclease assay. Kd was
determined by GO fluorescence assay (Kd: 92.60 ± 25.59 nM). Its specificity
was also characterized by an exonuclease assay. A novel aptasensor was
constructed by using the newly identified aptamer combined with the
smartphone dark box. The principle of color change is caused by the
aggregation state of AuNPs. Smartphones act as reading instruments. The
detection can be completed in just a few seconds without the aid of
instruments, achieving a detection limit of 0.15 nmol/mL and a range of
6.7–44.4 nmol/mL (R2 = 0.9810). Therefore, the constructed smartphone
colorimetric sensor based on mutant aptamers has important applications in
food detection.
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1 Introduction

Aptamers, which bind targets with high affinity and specificity, are short, single-
stranded DNA or RNA sequences isolated from random oligonucleotide libraries through
an in vitro approach called exponential enrichment (SELEX) (Ellington and Szostak, 1990;
Tuerk and Gold, 1990). The unique advantages of low cost, easy modification, high stability,
and long shelf life make them suitable for the construction of biosensors (Nimjee et al., 2005;
Dunn et al., 2017). SELEX is a high-throughput method for screening aptamers.
Unfortunately, the screened aptamers need to be modified to improve efficiency
(Khoshbin and Housaindokht, 2021). Thus, there is room for improvement in
sensitivity, specificity, and affinity in the aptamers acquired through the SELEX. In
addition, aptamer optimization is extremely important. So far, the base mutation
strategy is an effective method to enhance aptamer affinity. The base mutation changes
the hydrogen bond and van derWaals forces between themolecule and the target substance,
and it also affects the spatial structure of the aptamer (Ma et al., 2022; Manuel et al., 2022).
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However, the workload of a completely randomizedmutation design
would be cumbersome. It was shown that the aptamer stem-loop
low-energy A-T bases transformed into high-energy G-C bases that
could affect the affinity of the aptamer with the target, obtaining

high-affinity aptamers (Kimoto et al., 2016). And single-base A-G
and T-C mutations have the same effect (Sha et al., 2023).

Over the past three decades, the field of aptamer-based sensing has
evolved considerably. Apt-based biosensor detection technologies are

FIGURE 1
(A) The original aptamer-Apt0 was mutated to Apt8, Apt11 and Apt1-3. (B,a) Aptamer AuNPs schematic. (B,b) Graphene oxide fluorescence method
schematic diagram. (B,c) Exonuclease schematic diagram. (C) Smartphone Dark box colorimetric device.
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characterized by ease of operation, high sensitivity, and automation and
have been widely used in the fields of food safety detection, cell
physiology, drug targeting, and disease diagnosis (Kwon et al., 2014;
Nguyen et al., 2018; Wang et al., 2019; Zhu et al., 2024). Aptamer
biosensors include fluorescent aptasensors, colorimetric aptasensors,
electrochemical sensors, and surface plasmon resonance aptasensors
(Bhalla et al., 2016; Mehlhorn et al., 2018; Guo et al., 2021; Chen et al.,
2024). Among these, the aptasensors constructed based on the
colorimetric method have the advantage of visualization (Geleta,
2022). However, the naked eye is not sensitive enough to color
changes, which limits the application of colorimetric sensors on
POCT platforms (Kim and Cho, 2022). To solve this problem, a
smartphone-based color-pickup device was designed. It is currently
being used in paper-based colorimetry (Jiang et al., 2023), gold
nanoparticle lateral flow assay (LFA) (Ruppert et al., 2019), disease
diagnosis, environmental monitoring, food safety (Zahra et al., 2022),
and other areas (Huang et al., 2021). This device is based on the
principle of converting experimental data into RGB parameters. The
RGB color model is an additive color model that superimposes red,
green, and blue light in various ways to form various colors. In the RGB
color model, any color in the tertiary color space can be specified by its
color coordinates (Fernandes et al., 2020; Laddha et al., 2022). Thus, it
was used to build colorimetric ranges (Ciaccheri et al., 2023). The RGB
Color Picker software on your smartphone takes a digital image of the
area to bemeasured, identifies subtle differences in the hue of the image,
and performs chromaticity value analysis by determining a linear or
non-linear relationship between the concentration of the sample and
the chromaticity value. Therefore, this sensor built on a smartphone’s
colorimetricmethodology has significant value on Point of Care Testing
(POCT) platforms (Zhang et al., 2020).

In this work, novel aptamers based on Apt0 were obtained by
using single-base alterations in A-G, T-C, and C-G, G-C (Wei et al.,
2020). Through secondary structure analysis and three-dimensional
molecular docking, the binding and structural properties before and
after the aptamer mutation were examined and characterized.
Additionally, the binding affinity of MNZ to the aptamers was
validated by exonuclease, GO fluorescence, and AuNPs colorimetry
techniques (Figure 1). Then, the smartphone-based colorimetric
aptasensor of MNZ was optimized using the aptamer with the
greatest affinity. To raise the assay’s detection sensitivity under
ideal detection circumstances. Using both original and mutant
aptamers, the aptasensor’s sensitivity, specificity, and accuracy
were evaluated. Lastly, the suggested colorimetric-sensitive
smartphone sensor was used one more time to find the MNZ
content in actual food samples. This work used the mutant
aptamer to construct a fast and sensitive smartphone test based
on the colorimetric approach to detect MNZ in milk. The assay has a
lot of potential applications in the field of food safety detection.

2 Experimental

2.1 Reagents and materials

DNA probes (see Supplementary Tables S1, S2 for detailed
sequences) were purchased from Shanghai Sangon Biotechnology
Co., Ltd. (China). HAuCl4·3H2O, graphene oxide, ornidazole,
tetracycline, norfloxacin, tobramycin sulfate, Tris-HCL (pH 6.8,

pH 7.0, pH 7.4, pH 8.0, pH 8.8) buffer, acetonitrile, sodium
carbonate, and NaCl were from Shanghai Macklin Biochemical
Co., Ltd. (China). Metronidazole was purchased from Shanghai
CATO Biochemical Co., Ltd. (China). Trisodium citrate dihydrate
was obtained from Tianjin Yongsheng Fine Chemical Company
(China). Dimethyl sulfoxide was purchased from Shanghai Biosharp
Biochemical Co., Ltd. (China). Exonuclease Ⅰ and Exonuclease Ⅲ
were fromWuhan ABclonal Biotechnology Co., Ltd. (China). SYBR
Gold was obtained from Shanghai Thermo Fisher Scientific Co., Ltd.
(China). Milk was obtained at the local market. All experimental
water was Wahaha aquatic products in Hangzhou.

2.2 Apparatus

The UV-vis spectrophotometer SHIMADZU UV-2700
(SHIMADZU Co., Ltd.) was used. The transmission electron
microscope JEM-2100 (JEOL Japan Electronics Co., Ltd.) was
used. A chilled centrifuge, KDC-2044 (Zhongke Instrument Co.,
Ltd.), was used. An ultrasonic nicator, KQ3200DE (Kunshan
Instrument Co., Ltd.), was used. Incubator shaker ZHWY2102C
(Analytical Instrument Manufacturing Co., Ltd.) was used. Atomic
Force Microscopy (AFM) Dimension ICON (Bruker AXS Co., Ltd.)
was used. The fluorescence intensity was measured on an INFINITE
200Rro. (Tecan Trading Co., Ltd.). The mass weighing was obtained
from the METTLER TOLEDO ABB5-S (Kaiwei Measurement
Technology Co., Ltd.). The vortex mixer MS3BS25 (IKA Co.,
Ltd.) was used to fully mix the solution.

2.3 Characterization and theoretical
validation of aptamer affinity

2.3.1 MOE-docking simulation of aptamers bound
to MNZ

The three-dimensional structure of the small molecule MNZ
was obtained from the PubChem database (https://pubchem.ncbi.
nlm.nih.gov). The chemicals that were downloaded were optimized
and converted to mol2 format using Chem3D. Atomic charges and
designated atom kinds were imported together with small molecule
compounds into the Auto Dock Tools program. Every flexible key
point has rotatable defaults. Ultimately, the optimal conformation
was maintained as the docking ligand in the pdbqt format. Aptamer
structures were predicted using the nucleic acid structure modeling
service RNAComposer (https://rnacomposer.cs.put.poznan.pl/),
which substitutes base T with U (Jeddi and Saiz, 2017). The
molecular dynamics software Amber20 was used to repair the U
of the aptamers’ structures to T. The force field used was
Amber14SB, and it used minimal energy. In the end, it was kept
as a docking aptamer. Using AutoDock4.2, the binding free energy
of MNZ with aptamers was determined. The Lamarckian genetic
technique was used to compute molecular docking. The final
docking structure was assessed using binding free energy. Pymol
2.1 was used to process the docking findings.

2.3.2 Molecular dynamics simulation
The Amber 2020 was used to perform molecular dynamics

simulations of the aptamer-MNZ complexes. For the aptamers,
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the AMBER14SB force field characteristics were utilized, and for
MNZ, the standard general force field parameters were employed.
With atoms in the aptamer at least 1.0 nm away from the water
box’s border, the TIP3P dominating water model was selected.
Ions of either sodium or chloride were used to balance the system
charge. The process of simulating molecular dynamics involved
four stages: energy minimization, production kinetics
simulation, equilibration, and heating. Using the MMPBSA
approach, the free energy of binding between aptamer and
MNZ was calculated.

2.4 Characterization and validation
experiments of aptamer affinity

2.4.1 Characterization of aptamer affinity based on
colorimetric method validation

The following was the colorimetric analysis process: 300 μL of
AuNPs and 200 μL of aptamer (0.06 μM) were combined and
incubated at 25°C for 5 min. Following this, 200 µL of MNZ
solution at several concentrations was added to the mixture, which
was then reacted at 25°C for 25 min. Finally, 200 µL of 40 mM NaCl

FIGURE 2
(A) The binding mode of Apt0, Apt8, Apt11, and Apt1-3 with MNZ. (B) The binding mode of Apt0 and Apt1-3 with MNZ after MD. (C) The RMSF and
RMSD of Apt0 and Apt3 after 200 ns of molecular dynamics.
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was added to mix evenly. The color of the solution was examined at
various concentrations, and the spectrogram was quantified in the
400–800 nm ultraviolet spectrum region to determine a detectable
linear range and LOD (LOD = 3σ/S, where σ is the standard deviation
of the assay value for 11 blank samples and S is the linear slope).

2.4.2 Characterization of aptamer affinity based on
GO-based fluorescence method validation

The Kd values were determined with GO fluorescence (Chen et al.,
2014). To measure the Kd values of aptamers binding to MNZ. The
aptamer with FAM modified at the 5′end was denatured at 95 °C for
10 min, followed immediately by an ice bath for 10 min. Then, the
0–250 nM aptamer (100 μL) was shakenwith 100 μL (1.5 μM)MNZ for
2 h. In the end, GO with a (GO/aptamer) mass ratio of 200/1 (200 μL,
2 mg/mL) was added, waiting 30 min to observe the fluorescence
intensity. The fluorescence intensity was recorded (excitation and
emission wavelengths were 485 nm and 520 nm). The affinity (Kd
value) of the aptamer to MNZ can be effectively calculated. According
to the equation ΔF = Bmax*ssDNA/(Kd + ssDNA) fitting by software
Oring 2022 (ΔF = F - F0; F stands for the experimental group’s
fluorescence intensity, F0 for the negative control group’s

fluorescence intensity, ssDNA for the additional aptamer’s
concentration, and Bmax for the maximum fluorescence intensity).

2.4.3 Characterization of aptamer affinity based on
exonuclease digestion method validation

Exonuclease digestion was used to further verify the affinity
of aptamers (Alkhamis et al., 2023; Canoura et al., 2023). 100 μL
aptamer and 100 μL MNZ (0.25 μM) were incubated at 25°C for
30 min, and 100 μL (15 U/mL) exonuclease was incubated at
25°C for 60 min. In the end, 300 µL mixed solution was injected
into 100 μL (0.2 X SYBR Gold) and reacted at 25°C for 25 min.
The fluorescence intensity was recorded (490 nm was the
excitation wavelength and 540 nm was the emission
wavelength).

2.5 Smartphone colorimetric analysis

A 3D dark box with an attached tape inside which was printed
entirely in black polylactic acid (PLA) was designed to use CAD
drawing combined with 3D printing technology. The box was lined

FIGURE 3
(A) AuNPs colorimetric schematic. (B) Transmission electronmicroscopy (TEM) of AuNPs in different states of 100 nm. (C) Spectrograms of AuNPs in
different states (a: newly prepared AuNPs; b: 0.06 μMaptamer and 40mMNaCl were added; c: added 0.06 μMaptamer, 40 μMMNZ, and 40mMNaCl; d:
added 40 mM NaCl). (D) AuNPs size distribution map.
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with a black absorbent material. There, a smartphone dark box
colorimetric device was established. For MNZ solution preparation,
refer to Section 2.4.1. Colorimetric aptasensor. Firstly, the prepared

MNZ solution was placed on the sample plate. Then, the sample
plate was placed in the dark box. Finally, the smartphone was used
for color. The G/R values were used to characterize the content of

FIGURE 4
(A) GO-based fluorescence method to detect the affinity of aptamer schematic diagram. (B,a,b) The AFM images of GO. (B,c) Effect of GO addition
concentration on △F. (C) Apt0, Apt8, Apt11, and Apt1-3 Kd value fitting curve.
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MNZ and to establish a detectable linear range with a limit
of detection.

2.6 Selectivity assay

To test the proprietary nature of the MNZ sensing system, the
system was tested using four MNZ analogs, tobramycin sulfate (TS),
ornidazole (ONZ), norfloxacin (NFX) and tetracycline (Tet). These
analogs were added to the established smartphone colorimetric
sensor. Selective analysis based on the △R of G/R (△R = G/R
with analogs - G/R with blank).

2.7 Application in milk

2 mL milk was prepared. Then 11.5 mL acetonitrile
and trichloroacetic acid aqueous solution (9:1, v: v) were
added to remove protein, and Na2CO3 aqueous solution
(500 μL, 1.0 mol/L) was added to precipitate Ca2 +. Then shake
for 10 min, ultrasound for 15 min, and stand for 20 min.
Finally, The mixture was then centrifuged at 12,000 rpm for
15 min. The supernatant was transferred to an extraction
column (HLB). The filtrate was collected and drynessed at 40°C
under a stream of nitrogen. The residue was collected and
dissolved for use.

FIGURE 5
(A) Schematic diagram for detecting the affinity of aptamers based on the exonuclease fluorescent method. (B,a) Optimization of exonuclease
incorporation. (B,b) Apt0, Apt8, Apt11 and Apt1-3 fluorescence intensity fitting.
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3 Results and discussion

3.1 Characterization and theoretical
validation of aptamer affinity

3.1.1 Analysis of MOE-Docking results
Base mutations can alter the force of interaction between the

aptamer and the target, thereby increasing the affinity of the aptamer
(Ma et al., 2022; Manuel et al., 2022). Therefore, although the affinity

and specificity of the original Apt0 were basically satisfactory, there
is still potential to enhance its affinity by mutating specific bases.

To reduce the cost of detection and improve affinity and
performance, seven aptamers were obtained using A-G and T-C
base mutations. To make a preliminary assessment of the affinity of
the mutant aptamers, molecular docking was used to analyze the
binding energies of the seven aptamers. The results showed that
(Supplementary Table S3), the binding energy of the aptamers to
MNZ was not greatly altered and was even lower than the original
aptamer. Thus, eight new aptamers were obtained using C-G and
G-C base mutations. The results showed that Apt8 and Apt11 had a
good binding effect with MNZ, and the binding energies
were −4.02 and −3.48 kcal/mol, respectively. Further, A new idea
emerged: combining the superior Apt8 and Apt11 mutations to
obtain a new aptamer, would its affinity be further enhanced?
Therefore, a new Apt1-3 was obtained by combining Apt8 and
Apt11. The results showed that Apt1-3 had a better binding effect
with MNZ than Apt8 and Apt11, and the binding energy

FIGURE 6
(A) Smartphone colorimetric device diagram and chart. (B) Apt1-3 Smartphone colorimetric linear range. (C) Apt1-3 proprietary validation chart.

TABLE 1 Recovery of Apt1-3 in milk.

Sample Added(nmol/mL) Recovery(%)

milk(Apt1-3)

10 (96.4 ± 3.1)

20 (92.5 ± 2.3)

30 (100.4 ± 2.0)
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was −4.32 kcal/mol (Supplementary Table S3). The result was as
expected. Next, the bindingmechanisms of these four aptamers were
further explored. The base residues that MNZ bound to the aptamer
can be seen. The residues of MNZ interacting with Apt1-3 were C-8,
A-10, T-9, T-5, G-12, C-11, etc. Among them, MNZ can interact
with C-11 and A-10 through hydrogen bonds. There was a strong
hydrogen bond interaction; the average hydrogen bond distance was
2.0 Å, and the length was less than 3.5 Å. It has a strong binding
ability and plays an important role in stabilizing MNZ in the pocket
of the Apt1-3 site. In addition, the five-membered nitrogen
heterocyclic ring of MNZ formed a pi-pi conjugate interaction
with the base part of the T-9 residue, which also made an
important contribution to the stability of MNZ. Combined with
Figure 2A, it can be found that MNZ matched well with the Apt1-3
site, which was conducive to the formation of a stable complex
between MNZ and Apt1-3 (the secondary structures of the mutant
aptamers are shown in Figure 1A; Supplementary Figure S1).

3.1.2 Analysis of molecular dynamics results
To explore the changes in the affinity of the aptamers. The

kinetic simulation was used to compare the original aptamer with
the aptamer with the highest binding energy, which revealed all of
them had changes in conformation for binding to MNZ, but all of
them (Figure 2B) were able to form stable complexes withMNZ. The
binding free energy was used for analyzing changes in aptamer
binding modes by measuring the thermodynamic properties of the
aptamer. Negative values of binding free energy (ΔGbinding energy)
highlighted the stability of the system, while positive values showed
instability. Electrostatic interactions had a high performance in
stabilizing MNZ, followed by van der Waals interactions. The
free energy of binding of MNZ to Apt1-3 aptamer
was −28.52 ± −0.35 kJ/mol, where electrostatic occupied a major
role (−22.32 ± −2.78 kcal/mol), which indicated that MNZ was able
to remain stably in the aptamer site pocket with strong electrostatic
interactions with the surrounding residues. In addition, MNZ
formed effective van der Waals interactions with the surrounding
residues (−17.25 ± −0.38 kcal/mol) due to a better fit to Apt1-3. The
free energy of binding of MNZ to the Apt0 aptamer

was −22.91 ± −0.76 kJ/mol, which was a weaker affinity than
that of MNZ and Apt1-3, mainly because the electrostatic and
van der Waals interactions between MNZ and Apt0 were weaker
than those between MNZ and Apt1-3 (Figure 2C). In summary,
MNZ and Apt1-3 had a strong affinity, and these affinities can lead
to the formation of stable complexes between MNZ and aptamer,
thus exerting active effects.

3.2 Characterization and validation
experiments of aptamer affinity

3.2.1 Colorimetric method validation
The colorimetric method has been shown to measure aptamer

affinity and is based on the fact that MNZ is bound specifically to the
aptamer. It caused the AuNPs to aggregate at highNaCl concentrations.
The solution would be from red to blue (Du et al., 2021) (Figure 3A).
AuNPs were synthesized based on previous studies (Qin et al., 2022). In
short, a 100 mL boiling solution of HAuCl4 (1 mM) was quickly
injected with 10 mL of sodium citrate solution (38.8 mM) while being
vigorously stirred. After 10 minutes of boiling and stirring, the heat was
turned off, and the mixture was stirred for another 10 min. After
reaching room temperature, the resultant wine-red solution was kept in
dark glass bottles at 4°C for later use. AuNPs were subjected to
transmission electron microscopy (TEM) scanning. From Figures 3B,
C, its UV absorption peak is at 520 nm. According to Haiss et al. (Haiss
et al., 2007; Zhao et al., 2008), it can be deduced that the molar
concentration of AuNPs was approximately 3.52 × 10−9 mol/L. And,
from Figure 3D, AuNPs had an average diameter of 13 nm. Overall, the
above results indicate that the synthesis of AuNPs was successful.

The performance of the established MNZ test was significantly
impacted by NaCl concentration, aptamer concentration, the
incubation time of AuNPs and aptamer, the reaction time of
aptamer and MNZ, the pH of Tris-HCL buffer solution, and
temperature throughout incubation. However, AuNPs will aggregate
with the increase in NaCl concentration, and the color will change from
red to blue. Therefore, optimization of the concentration of NaCl was
preferred for the reliability of the assay. Different concentrations of

TABLE 2 Comparison table of metronidazole assay methods.

Methods Linear range LOD Applications (Mean)
Recovery

Ref

Electrochemical sensors 0.4–500 μM 0.25 μM Honey, egg 97.79%–104.42%
96.77%–103.34%

Li et al. (2023)

Carbon dots-based sensor 0–10 μg/mL 0.257 μg/mL Honey, metronidazole
tablets

98.0%–105.1%
95.7%–106.5%

Zhao et al.
(2018)

Surface enhanced Raman spectroscopy 0–50 μg/mL 10.0 μg/mL environmental Samples - Han et al. (2014)

High performance liquid chromatography
(HPLC)

1.0–100.0 mg/L 1.0 mg/L Calf Serum 93% Holt et al. (1990)

Gas chromatograph 0.2–2.0 μg/kg 0.2 μkg/kg,
0.1 μkg/kg

Chicken porcine liver 72%,
89%

Ho et al. (2005)

LC-mass spectrometry (LC-MS/MS) 10–136.2 ng/L, 1.0–12.0 ng/
g,
1.0–1.5 ng/g

3.4 ng/L,
0.4 ng/g,
0.3 ng/g

Water
Sediment samples
Tissue samples

88.0%–106.0%
95.2%–113.0%
98.0%–103.6%

Wagil et al.
(2015)

Smartphone colourimetry 6.7–44.4 nmol/mL 0.15 nmol/
mL

Milk 92.5%–100.4% This assay
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200 μL of NaCl were added to 700 μL of AuNPs, and as the
concentration of NaCl increased (Supplementary Figures S2A, B),
the solution changed from red to blue, and the ratio of A650/
A520 also increased. When the concentration of NaCl increased to
40 mM, the ratio was almost unchanged. The addition of NaCl at this
point caused the AuNPs to aggregate almost completely, so the optimal
concentration of NaCl was 40 mM. Then, to determine the optimal
concentration of aptamer to protect AuNPs from high NaCl
concentrations, 200 μL of aptamer of different concentrations was
added to the AuNPs system. As the aptamer concentration increased,
the solution changed from blue to red, and the ratio decreased. When
the aptamer concentration increased to 0.06 μM, the ratio was almost
unchanged (Supplementary Figures S2C, D). The amount of aptamer
added at this point can completely adsorb and protect the surface of the
AuNPs from high NaCl concentrations, so the optimal concentration
was 0.06 μM. However, the protective effect was also influenced by the
incubation time; with the increased incubation time of aptamer and
AuNPs, the ratio decreased. When the incubation time increased to
5 min, the ratio tended to be stable, the aptamer was well absorbed on
the surface of the AuNPs, and the incubation time was 5 min
(Supplementary Figure S2E). Similarly, the reaction of MNZ with
aptamer was also affected by time. As the reaction time of aptamer
and MNZ increased, the ratio increased. When the time increased to
25 min, the ratio tended to be stable; MNZ had completely combined
with the aptamer, so the incubation time was 25 min (Supplementary
Figure S2F). The temperature and pHof the buffer will affect the system.
For the temperature, with the increase in temperature in the system, the
△RA650/A520 increased and then decreased. When the temperature was
25 °C, the △RA650/A520 was the highest. And the system was more
sensitive. Therefore, 25 °C was selected as the optimal temperature
(Supplementary Figure S2G). For the pH of the Tris-HCL buffer
solution, with the increase of the pH of the Tris-HCL buffer
solution of the aptamer in the system, the △RA650/A520 in the
system increased first and then decreased. When pH was 7.0, the
△R A650/A520 was the largest and most sensitive. Thus, the pH of the
buffer solution was 7.0, which was the optimal pH (Supplementary
Figure S2H) (△RA650/A520 = A650/520 with MNZ-A650/520 blank).

After the optimization of the experimental parameters to identify
the high-affinity aptamer, the quantification performance of the MNZ
colorimetric aptasensor was validated using a series of MNZ solutions
with different concentrations, respectively. Among them, Apt8, Apt11,
and Apt1-3 aptamers had a better performance. The UV-vis absorption
spectrum of the MNZ colorimetric aptasensor against different MNZ
concentrations was recorded in Supplementary Figure S3, S4 (other
mutant aptamers of molecular docking binding energies and
colorimetric results were analyzed in Supplementary Table S3). The
aptasensor results showed that the detection line of Apt0was 0.67 nmol/
mL, Apt8 was 0.50 nmol/mL, Apt11 was 0.60 nmol/mL, and Apt1-3
was 0.12 nmol/mL. The aptasensors of Apt1-3 were nearly six times
more sensitive compared to the aptasensors of Apt0. Consistent with
the molecular docking results.

3.3 GO-based fluorescencemeasurement of
dissociation constants

To further validate the affinity, the GO fluorescence method
was used to determine the dissociation constants (Xing et al.,

2012). The 2D surface structure of GO and the excellent energy
transfer (FRET) mechanism combine with aptamers to produce
the effect of fluorescence quenching. The aptamer was not
adsorbed by GO when the target was present (Figure 4A)
(Zhang et al., 2017; Meng et al., 2022). To determine if the
GO was a single layer. The characterization of the GO used
from the AFM image (Figures 4B, a) showed that the thickness of
the GO sheet was 2.55 nm (Figures 4B, b), which was within the
expected range for monolayer GO. Meanwhile, the amount of GO
added was optimized to make sure that the added GO could
completely adsorb the aptamer that was not bound to the target.
It can be seen from the figure (Figures 4B, c) that gradual
fluorescence quenched with the addition of GO. When the
mass ratio of the aptamer to GO is 1/50, the aptamer can be
completely adsorbed by GO. Kd values of Apt0, Apt8, Apt11, and
Apt1-3 were measured under optimized conditions. As the
concentration of the aptamer increased, the fluorescence was
enhanced, and the results are shown in Figure 4C. The content of
the aptamer was directly proportional to the fluorescence
intensity. Apt1-3 has a lower Kd value of 92.60 ± 25.58 nM,
which means it has the highest affinity for MNZ.

3.4 Quantifying aptamer binding affinity
using exonucleases

To verify the affinity of the aptamer even further. Exonuclease
digestion can be used to assess aptamer affinity (Alkhamis et al.,
2023; Canoura et al., 2023). Exonucleases can digest aptamers, and
the digested single-stranded DNA cannot be stained. In the presence
of the target, it can prevent the digestion of aptamers. SYBR Gold
can dye single-stranded DNA and show strong fluorescence. The
affinity of the aptamer can be evaluated by this fluorescence
alteration (Figure 5A). In this experiment, exonuclease Ⅰ and
exonuclease Ⅲ were in equal proportion optimized (Figures 5B,
a). Different concentrations of exonuclease (100 μL) were added to
the 100 nM aptamer. The fluorescence intensity decreased
significantly. When the concentration of exonuclease was
increased to 15 U/mL, the fluorescence intensity hardly changed.
It demonstrated that the aptamer was completely digested. When
MNZ (0.25 μM) was added, as the concentration of aptamer
increased, the fluorescence intensity was enhanced, and the
results showed that Apt1-3 has a higher affinity for MNZ
(Figures 5B, b).

3.5 Smartphone colorimetric

To improve the convenience of the testing method, an RGB
model-based smartphone device was established. It read the color
change of the detection system and worked by analyzing the RGB
value through smartphone software. Besides, to avoid the effects of
environmental factors, 3D printing technology was used to design
a dark box with tape inside, which was completely printed with
black polylactic acid. The dark box was lined with black absorbing
material, which can block the internal random reflection from
visible light to infrared light (250–2000 nm), and the hemisphere
reflectivity was less than 1%. It can effectively prevent the
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interference of stray light and internal reflection in the color
selection process. The design drawing of the 3D dark box and
its physical display are shown in Figure 6A and Supplementary
Figure S5. It was perfectly combined with the smartphone
colorimetric software F Color Picker (version 1.2.2). Different
concentrations of MNZ were added to the sample plate for
color-taking and counting. The experimental results showed
that the G/R value was linearly related to the concentration of
MNZ in the range 6.7–44.4 nmol/mL (R2 = 0.9810), and the limit of
detection (LOD) was 0.15 nmol/mL (Figure 6B). The final
concentration obtained from the proposed smartphone platform
was in good agreement with the UV result.

3.5.1 Selective and real sample testing of
smartphone

To investigate the specificity of the established installation,
200 μL (20 μM) of tobramycin sulfate (TS), ornidazole (ONZ),
norfloxacin (NFX), and tetracycline (Tet) were added to the
smartphone sensor system separately. After spass software
calculation and analysis (p < 0.05) (Figure 6C), it was suggested
that the proposed smartphone colorimetry assay presented excellent
selectivity to distinguish MNZ from its analogues.

To confirm the feasibility of the smartphone sensor in real
samples, 10 μM, 20 μM, and 30 μMMNZ were spiked into the milk
sample. The spiked recoveries can be calculated according to the
equation: spiked recovery = (spiked sample measured value - sample
measured value)/spiked volume*100%. The results are presented in
Table 1. The recoveries of Apt1-3 were in the range of 92.5%–
100.4%, which demonstrated that the developed assay showed
satisfactory performance for the detection of MNZ in real
samples. Compared with the existing detection methods (see
Table 2), the designed detector performed well. It is noteworthy
that the actual concentration output can be accomplished in seconds
without tedious steps. The method offers potential applications for
POCT platforms.

4 Conclusion

In this study, 15 aptamers were obtained by base-directed mutation
using computer simulation, the colorimetric method, the GO
fluorescence method, and the nucleic acid exonuclease method to
find the Apt1-3 aptamer with high affinity. In addition, we present
a portable, low-cost biosensor based on the combination of a
smartphone and a 3D box for the detection of MNZ in milk. The
determination of MNZ was achieved by analyzing the RGB values
through the software F color picker (version 1.2.2) on the smartphone.
This portable device has no restriction on the place of use. All the
experimental results showed that this portable biosensor has a good
ability to detect MNZ with an LOD of 0.15 nmol/mL. It demonstrates
the great potential for drug residue detection. In conclusion,
smartphone colorimetry will be applied in the biomedical field with
its unique advantages and bring great benefits to mankind.
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