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Background: The success of using bone mineral density and/or FRAX to predict
femoral osteoporotic fracture risk is modest since they do not account for
mechanical determinants that affect bone fracture risk. Computed
Tomography (CT)-based geometric, densitometric, and finite element-derived
biomarkers have been developed and used as parameters for assessing fracture
risk. However, to quantify these biomarkers, segmentation of CT data is needed.
Doing this manually or semi-automatically is labor-intensive, preventing the
adoption of these biomarkers into clinical practice. In recent years, fully
automated methods for segmenting CT data have started to emerge.
Quantifying the accuracy, robustness, reproducibility, and repeatability of
these segmentation tools is of major importance for research and the
potential translation of CT-based biomarkers into clinical practice.

Methods: A comprehensive literature search was performed in PubMed up to the
end of July 2024. Only segmentation methods that were quantitatively validated
on human femurs and/or pelvises and on both clinical and non-clinical CT were
included. The accuracy, robustness, reproducibility, and repeatability of these
segmentation methods were investigated, reporting quantitatively the metrics
used to evaluate these aspects of segmentation. The studies included were
evaluated for the risk of, and sources of bias, that may affect the results reported.

Findings: A total of 54 studies fulfilled the inclusion criteria. The analysis of the
included papers showed that automatic segmentation methods led to accurate
results, however, there may exist a need to standardize reporting of accuracy
across studies. Few works investigated robustness to allow for detailed
conclusions on this aspect. Finally, it seems that the bone segmentation field
has only addressed the concept of reproducibility and repeatability to a very
limited extent, which entails that most of the studies are at high risk of bias.

Interpretation: Based on the studies analyzed, some recommendations for
future studies are made for advancing the development of a standardized

OPEN ACCESS

EDITED BY

Ron Noah Alkalay,
Harvard Medical School, United States

REVIEWED BY

Martino Pani,
University of Portsmouth, United Kingdom
Alessandra Aldieri,
Polytechnic University of Turin, Italy

*CORRESPONDENCE

Cristina Falcinelli,
cristina.falcinelli@unich.it

RECEIVED 10 June 2024
ACCEPTED 30 September 2024
PUBLISHED 23 October 2024

CITATION

Falcinelli C, Cheong VS, Ellingsen LM and
Helgason B (2024) Segmentation methods for
quantifying X-ray Computed Tomography
based biomarkers to assess hip fracture risk: a
systematic literature review.
Front. Bioeng. Biotechnol. 12:1446829.
doi: 10.3389/fbioe.2024.1446829

COPYRIGHT

© 2024 Falcinelli, Cheong, Ellingsen and
Helgason. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Systematic Review
PUBLISHED 23 October 2024
DOI 10.3389/fbioe.2024.1446829

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1446829/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1446829/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1446829/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1446829/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1446829/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1446829&domain=pdf&date_stamp=2024-10-23
mailto:cristina.falcinelli@unich.it
mailto:cristina.falcinelli@unich.it
https://doi.org/10.3389/fbioe.2024.1446829
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1446829


segmentation protocol. Moreover, standardized metrics are proposed to evaluate
accuracy, robustness, reproducibility, and repeatability of segmentation methods,
to ease comparison between different approaches.

KEYWORDS

segmentation, finite element modeling, hip fracture risk, computed tomography,
osteoporosis, CT-derived biomarkers

1 Introduction

Hip fractures account for significantly higher disability,
mortality and socio-economic costs compared to other skeletal
fractures. Approximately 20-25% of elderly patients die within 6-
months post-fracture and the majority of survivors do not return to
their pre-fracture state (Haleem et al., 2008). Therefore, effective
early screening of patients at risk of developing a fragility fracture is
important, as hip fracture incidence is expected to increase to
6.3 million in 2050, in the aging North American, European, and
other industrialized countries’ populations. Notably, it is projected
that more than 50% of hip fractures will occur in Asia by the year
2050 (Cong and Walker, 2014).

A major contributor to elevated fracture risk at the hip is
osteoporosis, affecting mostly the elderly population. The current
clinical standard for diagnosing osteoporosis is the use of areal bone
mineral density (aBMD) derived from dual-energy X-ray
absorptiometry (DXA) scans, with an aBMD of more than
2.5 standard deviations lower than the mean of the healthy
young adult female (T-score ≤ -2.5) as the threshold for a
positive diagnosis (Kanis et al., 2008). However, aBMD lacks
both sensitivity and specificity, as around 50% of incident
fractures occur in individuals who do not have osteoporosis at
the time when the scan is acquired and around 50% of
individuals diagnosed with osteoporosis will not sustain a hip
fracture during a study’s follow-up period (Schuit et al., 2004;
Stone et al., 2003; Wainwright et al., 2005). Another fracture risk
assessment tool, which is a part of the clinical guidelines in many
countries, is the FRAX-score, used with or without aBMD (https://
frax.shef.ac.uk/FRAX/). However, the performance of FRAX in
identifying cases at high risk of fracture compared to aBMD is
controversial and depends on the intervention threshold. In some
studies, FRAX was found to be sensitive in terms of identifying
subjects at risk of sustaining a major osteoporosis fracture, whereas
an opposite result was found for some studies (Jiang et al., 2017).

The current standards for assessing hip fracture risk do not
directly include information on material and structural
determinants, such as bone and soft tissue geometry, mechanical
properties, and loading, that are factors known to affect bone
fracture risk (Bouxsein, 2005; Keaveny et al., 2020). For these
reasons, there exists a need for developing more accurate image-
based biomarkers for quantifying hip fracture risk that take some or
all these factors into account. To this end, Computed Tomography
(CT)-based methods have been developed to derive geometric and
densitometric biomarkers, such as cortical thickness (Treece et al.,
2015), volumetric bone mineral density (vBMD) (Black et al., 2008),
bone mass (Treece et al., 2015), and bone volume (Cheng et al.,
2007). The predictive power of CT-based biomarkers has been
quantified in several studies (Table 1), demonstrating a

significant association with hip fracture risk. However, in most
studies, CT-derived measures alone or in combination with other
markers, did not classify fractures significantly better than DXA-
derived aBMD (Black et al., 2008; Chalhoub et al., 2016; Cheng et al.,
2007). In contrast, CT-based finite element (FE)-derived biomarkers
enable more accurate representation of heterogeneous distribution
of bone density and strength based on the bone geometry. CT-based
subject-specific FE models have been studied extensively and
demonstrated to accurately predict the mechanical response of
the proximal femur under loading (Bessho et al., 2007; Dall’Ara
et al., 2013; Dragomir-Daescu et al., 2011; Duchemin et al., 2008;
Grassi et al., 2012; Keyak, 2001; Keyak et al., 2005; Koivumäki et al.,
2012; Nishiyama et al., 2013; Schileo et al., 2020; 2014; 2007; Varga
et al., 2016; Yosibash et al., 2014) and the response of the whole hip
region under simulated impact (Fleps et al., 2019). There exists
ample evidence to suggest that most hip fractures, in vulnerable
populations at least, are the result of a fall from standing height or
lower (Hayes et al., 1996; Parkkari et al., 1999; Scott et al., 2010). As
such, FE-derived strength or load-to-strength ratio computed
through CT-based subject-specific FE models have been used as
parameters for assessing osteoporotic hip fracture risk (Table 2).
However, the improvement over DXA-based aBMD in predicting
hip fracture risk is not uniform and depends on the patient cohort
analyzed. When tested on pre-fracture cohorts, most studies found
that FE-derived predictors performed equivalently to DXA-derived
aBMD in classifying incidence hip fractures with the exception of
two studies. Fleps et al. (2022) found FE models to be a better
classifier than aBMD in the AGES Reykjavik study cohort.
Moreover, Yosibash et al. (2023) showed that 7/11 of subjects
that had DXA imaging who subsequently fractured had non-
osteoporotic aBMD score. When post-fracture CT images have
been used, CT-based FE strength estimates performed
significantly better than aBMD in classifying fracture cases
(Bhattacharya et al., 2019; Falcinelli et al., 2014; Qasim et al., 2016).

Although CT-derived biomarkers for assessing hip fracture risk
have shown good potential for improving the performance of aBMD
and T-score (Tables 1 and 2), the largest studies on CT-derived
biomarkers are a couple of orders of magnitudes smaller in terms of
the number of subjects, than the largest studies on FRAX and aBMD.
This is related to the fact that to quantify many of the CT-based
biomarkers, segmentation of the bones in the hip from the CT data is
needed. When the segmentation is done manually or semi-
automatically, which is known to be labor intensive and
expensive, this essentially prevents these biomarkers from being
adopted in clinical practice. In recent years, however, fully
automated methods for segmenting CT data have started to
emerge (Besler et al., 2021; Bjornsson et al., 2023; Yosibash et al.,
2020). Quantifying the accuracy, robustness, reproducibility, and
repeatability of these segmentation tools is of major importance for
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TABLE 1 Literature overview of CT-derived densitometric (plain text) and geometric biomarkers (italic) used to classify osteoporotic hip fractures.

Reference Study Type of
imaging

Gender
(F or M)

Subjects (N)
Cases (Fx)

CT-based biomarker Performance

Cheng et al. (2007),a Age-matched case-
control study

Post fracture
imaging

F; N=111, Fx=45 FN, TR and Total vBMD-I,
vBMD-T, vBMD-C; integral

tissue volumes (FN, TR and total
femurs); cortical tissue volumes
(FN, TR and total femurs); CSAs
(min at FN, max at TR); strength
indices (NBSI, NCSI, TCSI); FN
axis length; cortical volume/total

volume; iCthi; BR

AUC=0.87 for FN vBMD-I
AUC=0.80 for FN vBMD-T
AUC=0.80 for FN vBMD-C
AUC=0.84 for FN aBMD
AUC=0.86 for TR vBMD-I
AUC=0.88 for TR vBMD-T
AUC=0.80 for TR vBMD-C
AUC=0.84 for TR aBMD

AUC=0.87 for Total vBMD-I
AUC=0.88 for Total vBMD-T
AUC=0.81 for Total vBMD-C
AUC=0.88 for Total aBMD

AUC=0.76 for integral tissue volume FN
AUC=0.78 for integral tissue volume TR
AUC=0.78 for integral tissue volume total

femur
AUC=0.82 for cortical tissue volume FN
AUC=0.82 for cortical tissue volume TR
AUC=0.81 for cortical tissue volume total

femur
AUC=0.79 for CSA min
AUC=0.79 for CSA max
AUC=0.76 for NBSI
AUC=0.84 for NCSI
AUC=0.89 for TCSI

AUC=0.79 for FN axis length
AUC=0.855 for cortical volume/total volume

AUC=0.864 for iCthi
AUC=0.856 for BR

Black et al. (2008) Prospective cross-
sectional MrOS

Pre fracture
imaging

M; N=3347, Fx=42 vBMD-I; vBMD-C; vBMD-T; %
CV; minimum CSA in FN

AUC=0.855 combining CT parameters
AUC=0.853 for aBMD from DXA

Ito et al. (2010) Two age-matched case-
control studies

Post fracture
imaging

F; N=40, Fx=20
F; N=32, Fx=16

Hip axis length; CSMI; BR;
NSA; CSA

Study 1: OR=2.15 pvalue=0.07 for hip axis
length

OR=1.52 pvalue=0.06 for CSMI
OR=2.56 pvalue=0.01 for BR

Study 2: OR=2.15 pvalue=0.11 for NSA
OR=1.47 pvalue=0.01 for cortical CSA

Johannesdottir et al.
(2011),a

Case-control study nested
within the prospective

study AGES

Pre fracture
imaging

F; N=275, Fx=88
M; N=166, Fx=55

Cth at the mid-FN in anatomical
quadrants; vBMD

F: HR=1.8 for SA Cth (any hip fracture)
HR=1.8 for SA Cth (FN fracture)

HR=2.1 for SA Cth (trochanteric fracture)
HR=1.9 for vBMD (any hip fracture)
HR=1.8 for vBMD (FN fracture)

HR=2.4 for vBMD (trochanteric fracture)
HR=1.8 for aBMD (any hip fracture)
HR=1.7 for aBMD (FN fracture)

HR=2.1 for aBMD (trochanteric fracture)

M: HR=3.6 for SA Cth (any hip fracture)
HR=3.5 for SA Cth (FN fracture)

HR=4.3 for SA Cth (trochanteric fracture)
HR=2.9 for vBMD (any hip fracture)
HR=2.9 for vBMD (FN fracture)

HR=3.2 for vBMD (trochanteric fracture)
HR=3.1 for aBMD (any hip fracture)
HR=2.7 for aBMD (FN fracture)

HR=4.4 for aBMD (trochanteric fracture)

Bousson et al.
(2011)

Prospective
EFFECT

Post fracture
imaging

F; N=107, Fx=47 vBMD-I FH; vBMD-T TR;
CortShaftThick; CortNeckThick

AUC=0.821 for vBMD-I FH +
CortShaftThick

AUC=0.819 for vBMD-I FH +
CortNeckThick

AUC=0.803 for vBMD-T TR +

(Continued on following page)
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TABLE 1 (Continued) Literature overview of CT-derived densitometric (plain text) and geometric biomarkers (italic) used to classify osteoporotic hip
fractures.

Reference Study Type of
imaging

Gender
(F or M)

Subjects (N)
Cases (Fx)

CT-based biomarker Performance

CortShaftThick
AUC=0.777 for aBMD from DXA

Yang et al. (2012) Prospective MrOS Pre fracture
imaging

M; N=250
Fx=40

vBMD-I, vBMD-C, vBMD-T,
CTh, CSA in different quadrants

of FN, IT and TR

AUC=0.675 for vBMD-C at the inferomedial
FN;

AUC=0.88 for vBMD-T at superolateral FN,
medial IT and medial TR;

AUC=0.896 for age + vBMD-T at the
superolateral FN and medial TR;

AUC=0.829 for TH aBMD;
AUC=0.863 TH aBMD + age;

AUC=0.901 age + vBMD-T at the
superolateral FN and medial TR + TH

aBMD

Bredbenner et al.
(2014)

Prospective MrOS Pre fracture
imaging

M; N=450
Fx=40

SSDM AUC=0.94 for SSDM
AUC= 0.94 for SSDM + age

AUC=0.93 for SSDM + age + aBMD
AUC=0.82 for TH aBMD
AUC=0.83 for aBMD + age

AUC=0.83 for aBMD + age + BMI

Treece et al. (2015) Prospective MrOS Pre fracture
imaging

M; N=407
Fx=99

FN, TH and trochanteric vBMD-
I, vBMD-C, vBMD-T;

CM and ECTD from CBM

All fractures: AUC=0.76 for vBMD +
age+site+height

AUC=0.79 for CBM+age+site+height
AUC=0.78 for aBMD+age+site+height

Femoral neck fractures: AUC=0.73 for
vBMD + age+site+height

AUC=0.82 for CBM+age+site+height
AUC=0.76 for aBMD+age+site+height

Trochanteric fractures: AUC=0.73 for
vBMD + age+site+height

AUC=0.78 for CBM+age+site+height
AUC=0.71 for aBMD+age+site+height

Chalhoub et al.
(2016)

Prospective MrOS Pre fracture
imaging

M; N=3302,
Fx=119 (hip
fractures)

FN vBMD-C, FN vBMD-T, TH
vBMD-C, TH vBMD-T

Hip fractures:
AUC=0.69 for FN vBMD-C
AUC=0.72 for FN vBMD-T

AUC=0.76 for FN aBMD from DXA

Borggrefe et al.
(2016)

Prospective MrOS Pre fracture
imaging

M; N=230, Fx=65 FN vBMD, TR vBMD, TH
vBMD, FN BR, TR BR, FN LTI,
TR LTI, FN Zmin, TR Zmin

HC=0.81 for TH vBDM
HC=0.78 for FN vBMD

HC=0.82 for TH vBMD+ FN BR, FN Zmin
HC=0.81 for TH aBMD

HC=0.82 for TH aBMD + FN BR

Museyko et al.
(2016)

Prospective
EFFECT

Post fracture
imaging

F; N=102, Fx=46 SL BR; SL CortArea; SL vBMD-T;
CTh; vBMD-I

All models were adjusted for age, height, and
weight:

AUC=0.82 for SL vBMD-T SA + SL
CortArea SP

AUC=0.83 for SL vBMD-T SA + SL
CortArea SP + SL BR

AUC=0.83 for SL vBMD-T SA + SL
CortArea SP + FN CTh All

AUC=0.83 for SL vBMD-T SA + SL
CortArea SP +FH vBMD-I IA

AUC=0.83 for SL vBMD-T SA + SL
CortArea SP + FN CTh SP

AUC=0.86 for TH vBMD-I + SL vBMD-T
SA SL CortArea SP

AUC=0.86 for TH vBMD-I + SL vBMD-T
SA SL CortArea SP + SL BR

AUC=0.86 for TH vBMD-I + SL vBMD-T
SA SL CortArea SP + FN CTh All

AUC=0.77 for TH vBMD-I
AUC=0.83 for TR vBMD-T + FN CTh All

(Continued on following page)
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research and potential down-stream translation of CT-based
biomarkers into clinical practice. Here, we define.

• accuracy, as the ability of the method to predict ground truth
segmentation;

• robustness, as the ability of the method to produce accurate
results across varied cohorts (e.g. healthy vs. pathological) and
across scanners;

• reproducibility, as the ability of the method to produce
consistent results using the same CT dataset, thus
pertaining to e.g. inter- and intra- operator variability;

• repeatability, as the ability of the method to produce the same
results for the same subject and same scanner, in two separate
imaging sessions.

It is important to highlight that besides fracture risk assessment,
CT-based biomarkers may be valuable in quantifying the effects of
treatments in a more detailed way than DXA-based approaches. For
example, some clinical research studies have already demonstrated
the ability of CT-based FE-derived biomarkers in monitoring
treatment responses in individual patients and detecting changes
that were missed by DXA (Keaveny et al., 2020). As such, fully
automating the segmentation of CT images, to make the process fast
and clinically applicable for image-based and FE-based biomarkers,
is crucial for guiding personalized treatments.

The aim of this work was to systematically review the literature
on clinical CT image segmentation methods for the bones in the
human hip, to establish the current level of evidence to support the
use of these methods for quantifying image-based bone biomarkers
in large clinical cohorts. To this end we focused on the general
conclusions that can be drawn from the literature on accuracy,
robustness, reproducibility, and repeatability, and finally the
availability of these segmentation methods for use in research
and clinical practice.

2 Methods

2.1 Literature search

We conducted an electronic literature search on PubMed to
identify relevant articles published until the end of July 2024. The
following keywords were used as search terms: “image
segmentation”, “femur segmentation”, “pelvis segmentation”,
“automatic segmentation”, “convolutional neural network”,
“fracture risk”, “computed-tomography”, “thresholding”,
“statistical shape model”, “graph-cut”, “multi-atlas”, “deep-
learning”, “bone strength”. The search terms were combined as
follows: (((image segmentation) OR (femur segmentation) OR
(pelvis segmentation)) AND ((automatic segmentation) OR
(convolutional neural network) OR (thresholding) OR (statistical
shape model) OR (graph-cut) OR (multi-atlas) OR (deep-learning))
AND ((computed-tomography) OR (fracture risk) OR (bone
strength))). This resulted in 5234 articles. Using inclusion and
exclusion criteria, authors CF and BH independently screened
the studies based on title and subsequently, they compared their
lists. Any disagreement between the two lists was resolved through
discussion without in depth analysis of the content of the papers to
reach a consensus leading to a total of 113 papers that were identified
as being relevant for further review. These papers were subsequently
screened based on their abstract by authors CF and BH
independently, which further reduced the number of relevant
articles to 43. During this second screening, any disagreement
regarding the inclusion of papers was solved through a
discussion. Finally, the full text of the 43 articles was evaluated to
verify whether they met the inclusion criteria. This evaluation was
performed independently by three different authors (CF, BH, VSC).
In case of a disagreement, consensus on which articles to include was
reached through discussion. If necessary, a fourth author (LME) was
consulted to make the final decision. One paper among the 43 was

TABLE 1 (Continued) Literature overview of CT-derived densitometric (plain text) and geometric biomarkers (italic) used to classify osteoporotic hip
fractures.

Reference Study Type of
imaging

Gender
(F or M)

Subjects (N)
Cases (Fx)

CT-based biomarker Performance

AUC=0.88 for TR vBMD-T + FN CTh All +
SL vBMD-T SA + SL CortArea SP

AUC=0.88 for TR vBMD-T + FN CTh All +
SL vBMD-T SA + SL CortArea SP + SL BR

Comparison with aBMD NR

Khoo et al. (2020),a Case-control study Post fracture
imaging

F; N=546, Fx=285 FN Delta, FN Sigma AUC=0.87 for age, weight, height, FN
aBMD, FN Delta, and FN Sigma

AUC=0.84 for age, weight, height, and FN
aBMD

Wang et al. (2022) Cross-sectional case-
control study

Post fracture
imaging

F; N=562, Fx=236 TH CTh; IT CTh; FH V;
THRCTM; FN CSA

All models were adjusted for age, height and
weight:

AUC=0.805 for TH CTh + FH Vol +
THRCTM + FN CSA

AUC=0.728 for THCortThick + FH Vol+FN
CSA

AUC=0.735 for IT CTh + FH Vol + FN CSA
AUC=0.735 for IT CTh + FH Vol
AUC= 0.703 for IT CTh + FN CSA

aDXA was not used in this study, CT was also used to measure a DXA-equivalent hip aBMD
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TABLE 2 CT-based FE model-derived biomarkers used to classify hip fractures

Reference Study Type of
imaging

Gender
(F or M)

Subjects (N)
Fractured
cases (Fx)

Types of CT-based
biomarkers

Performance

Orwoll et al. (2009) Prospective MrOS Pre fracture
imaging

M; N=250
Fx=40

FE-strength, load-to-strength ratio AUC=0.83 for FE strength
AUC=0.79 for load-to-strength ratio

AUC=0.85 for aBMD
AUC=0.87 for FE strength +age +

BMI + clinical center
AUC=0.88 for load-to-strength ratio

+ age + BMI+ clinical center
AUC=0.88 for aBMD +age + BMI

+ clinical center

Amin et al. (2011) Case-control study Pre fracture
imaging

F; N=314, Fx=55
M; N=266, Fx=28

FE-strength, load-to-strength ratio F: AUC=0.84 for FE strength
AUC=0.84 for load-to-strength ratio

AUC=0.85 for TH vBMD
AUC=0.84 for TH aBMD

M: AUC=0.78 for FE strength
AUC=0.77 for load-to-strength ratio

AUC=0.78 for TH vBMD
AUC=0.78 for TH aBMD

Kopperdahl et al.
(2014),a

Prospective
AGES

Pre fracture
imaging

F; N=608, Fx=108
M; N=440, Fx=63

FE strength, load-to-strength ratio AUC=0.78 for FE strength (female)
AUC=0.84 for FE strength (male)
AUC=0.80 for FE strength+age

(female)
AUC=0.86 for FE strength+age (male)

Nishiyama et al.
(2014)

Case-control study Post fracture
imaging

F; N=70, Fx=35 FE strength, vBMD Pooled fractures: AUC=0.87 for
vBMD

AUC=0.89 for FE strength
AUC=0.94 for vBMD+FE strength

Neck Fractures: AUC=0.86 for
vBMD

AUC=0.94 for FE strength
AUC=0.94 for vBMD+FE strength

Trochanteric fractures:
AUC=0.83 for vBMD

AUC=0.79 for FE strength
AUC=0.86 for vBMD+FE strength

Falcinelli et al.
(2014)

Case-control study Post fracture
imaging

F; N=55, Fx=22 FE strength AUC=0.87 for FE strength in stance
AUC=0.88 for FE strength in fall

AUC=0.73 for FN aBMD
AUC=0.79 for TH aBMD

AUC=0.75 for trochanteric aBMD

Qasim et al. (2016) Retrospective study Post fracture
imaging

F; N=100, Fx=50 FE strength AUC=0.75 for FE strength in stance
AUC=0.79 for FE strength in fall

AUC=0.75 for FN aBMD
AUC=0.74 for TH aBMD

AUC=0.79 for FE strength in stance
+ aBMD

AUC=0.80 for FE strength in fall +
aBMD

Adams et al. (2018) Retrospective case-cohort
study preexisting

FOCUS

Pre fracture
imaging

F; N=850
M; N=465

FE strength F: AUC=0.73 for FE strength
AUC=0.72 for vBMD
AUC=0.72 for aBMD

M: AUC=0.75 for FE strength
AUC=0.71 for vBMD
AUC=0.73 for aBMD

Bhattacharya et al.
(2019)

Retrospective study Post fracture
imaging

F; N=98, Fx=49 ARF0,
FE strength

AUC=0.85 for ARF0
AUC=0.82 for FE strength

AUC=0.75 for aBMD

(Continued on following page)
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excluded based on the recommendation from the Chief Editor of
the publishing journal. Searching through the reference lists of
these papers, additional publications of interest were found,
resulting in a total of 54 papers being included in this
review (Figure 1).

2.2 Inclusion and exclusion criteria

Studies that reported development of segmentation methods,
validated on human femurs and/or pelvises were included in the
review. Studies on other bones were excluded, as well as studies on

TABLE 2 (Continued) CT-based FE model-derived biomarkers used to classify hip fractures

Reference Study Type of
imaging

Gender
(F or M)

Subjects (N)
Fractured
cases (Fx)

Types of CT-based
biomarkers

Performance

Enns-Bray et al.
(2019),a

Prospective
AGES

Pre fracture
imaging

F; N=254, Fx=95 FE strain+fall probability AUC=0.73 for FE strain+fall
AUC=0.70 for aBMD

Michalski et al.
(2021)

Prospective study Pre fracture
imaging

F; N=187, Fx=66
M; N=303, Fx=57

TH vBMD-I,
FE strength

Pooled: AUC=0.661 for TH vBMD-I
AUC=0.675 for FE strength

AUC=0.675 for FE strength+TH
vBMD-I

F: AUC=0.664 for TH vBMD-I
AUC=0.679 for FE strength

AUC=0.693 for FE strength+TH
vBMD-I

M: AUC=0.65 for TH vBMD-I
AUC=0.618 for FE strength

AUC=0.644 for FE strength+TH
vBMD-I

Performance of DXA-based
aBMD NR

Fleps et al. (2022),a Prospective
AGES

Pre fracture
imaging

F; N=362, Fx=142
M; N=239, Fx=59

FE strength F: AUC=0.74 for FE strength
AUC=0.69 for aBMD

M: AUC=0.78 for FE strength
AUC=0.72 for aBMD

Cao et al. (2022),a Prospective
AGES

Pre fracture
imaging

F; N=211, Fx=68
M; N=134, Fx=42

FE ultimate strength, FE yield
strength, FE energy to failure, PC1

Whole: AUC= 0.699 for aBMD +
covariatesb

AUC=0.738 for PC1 + aBMD +
covariatesb

AUC= 0.724 for FE parameters
combined, aBMD + covariatesb

AUC=0.754 for PC1 + aBMD
+covariatesb

AUC=0.651 for FRAX

F: AUC= 0.608 for aBMD +
covariatesb

AUC=0.623 for PC1 + aBMD +
covariatesb

AUC= 0.669 for FE parameters
combined, aBMD + covariatesb

AUC=0.71 for PC1 + aBMD
+covariatesb

AUC=0.623 for FRAX

M: AUC= 0.727 for aBMD +
covariatesb

AUC=0.745 for PC1 + aBMD +
covariatesb

AUC= 0.724 for FE parameters
combined, aBMD + covariatesb

AUC=0.825 for PC1 + aBMD
+covariatesb

AUC=0.705 for FRAX

aDXA was not used in this study, CT was also used to measure a DXA-equivalent hip aBMD
bCovariates: age, sex, height, weight, health status, and bone medication status
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fractured bones. Segmentation methods validated on both clinical
and non-clinical CT data were included. Studies that used micro-CT
images or data from other imaging modalities than clinical CT, were
excluded. Only studies that reported a quantitative comparison
between the study segmentation method and manual
segmentation were included. Studies that did not report
validation outcomes and/or resolution of images were excluded.

2.3 Comparing studies

All the papers included in this review were gathered into four
tables, two for studies on the femur and two for studies on the pelvis.
In terms of accuracy, four main metrics were extracted from the
studies, i.e., DSC, JAC, HD, and its 95th percentile variant (HD95).
All four metrics aim to quantify different aspects of the difference

between ground truth and the segmented structures. The DSC
measures the spatial overlap between the ground truth mask and
the predicted mask and is given by the following equation
(Dice, 1945):

DSC � 2 GT ∩ MS| |
GT| | + MS| | �

2TP
2TP + FP + FNG

where GT is the ground truth mask and MS the predicted mask
(DSC=0, no overlap and DSC=1, full overlap). The JAC index
represents a measure of similarity between two objects and is
defined by the following equation:

JAC � GT ∩ MS| |
GT ∪ MS| | �

TP

TP + FP + FNG

where GT is the ground truth and MS the predicted mask (JAC=0,
the segmentations have no common member, JAC=1, the

FIGURE 1
PRISMA flow chart of the systematic literature review
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segmentations are identical). The HD and its 95% percentile variant
represent the distance between the ground truth and the resulting
segmentation. The Hausdorff distance is the maximum of all
shortest distances for all points from one object’s boundary to
the other. Assuming that A and B are two non-empty subsets,
HD can be defined as follows:

HD � max d A, B( ), d B, A( ){ }
with d(A, B) � maxa∈A minb∈B ‖a − b‖2 and
d(B,A) � maxb∈B mina∈A ‖a − b‖2. The 95th percentile variant
of HD removes a small subset of outliers in d(A, B) and d(B,A)
making the metric less sensitive to irregularities. In general,
distance-based metrics, such as the HD, assess the accuracy of
object boundaries and thus quantify outliers when segmentation
masks are split into multiple objects, where they are supposed to be
connected/closed together, which DSC and JAC are not able to
quantify. Forest plots, generated in Matlab R2022a (MathWorks,
MA, USA), were also used to summarize results across studies in
terms of DSC.

DSC, JAC, and HD with HD95 have been chosen because they
represent the state-of-the-art metrics when quantifying the accuracy
of medical image segmentation methods, evaluated on ground truth
data. However, not all studies have used these accuracy metrics.
Thus, for those works, the accuracy measures used by the authors’
have been reported. In addition to the accuracy, based on the
definitions reported in Section 1, robustness, reproducibility and
repeatability outcomes of different studies were
qualitatively compared.

2.4 Risk of bias

The risk of bias was evaluated in the following manner. First,
for the four main topics investigated in this review (i.e., accuracy,
robustness, reproducibility, and repeatability) authors CF and BH
identified parameters that may affect the results reported in the
studies. The type of CT dataset (i.e., if the dataset was obtained by
scanning a homogeneous population or non-homogeneous
population), and number of CT scanners used in the studies,
were judged to be parameters that could bias the evaluation of
the accuracy and robustness of the segmentation method. In terms
of reproducibility, the risk of bias was evaluated to be associated
with lack of quantification of inter- and intra-operator variability.
Here, of importance are the number of operators involved in
evaluating the inter-operator variability and the number of
times each operator analyzed a CT dataset for the intra-
operator variability. In terms of repeatability, the risk of bias
was evaluated to be associated with absence of re-scanning of
the same patient using the same scanner. An important aspect of
the re-scanning procedure is the time between two imaging
sessions, as changes in bone mass are time dependent due to
e.g. use of pharmacological agents or simply due to aging.
Subsequently, each study included in the review was
independently evaluated by the two authors (CF and BH) based
on the presence of these potential sources of bias. If a study
reported a given parameter, it was labeled with a ‘Yes’,
otherwise with a ‘No’. Articles that reported 0 or 1 parameters

were classified as high risk of bias, whereas studies that reported
2 or 3 parameters were considered a source of medium risk of bias.
If the articles reported all 4 parameters, they were assessed as
providing low risk of bias.

3 Results

3.1 Search outcome

Supplementary Tables S1, S2 report the studies that validated
segmentation methods on human femurs, whereas Tables 3, 4
include the studies validated on human pelvises. The studies are
grouped in the tables based on the type of segmentation method
under evaluation, i.e.: 1) threshold-based; 2) statistical shape method
(SSM)-based; 3) atlas-based; 4) graph-cut based; and 5)
convolutional neural network-based (CNN) methods (see
Appendix A). In Supplementary Table S1 and Table 3 for each
study the following information has been included: reference to the
study, number of datasets segmented and type of material, scanning
parameters and image resolution, metrics used for the assessment of
accuracy, robustness, reproducibility, repeatability and remarks. The
remarks column includes information that may be useful to the
reader, such as the processing speed (when available), whether the
method is fully automatic or semi-automatic, and whether the
method is available under an open-source or a commercial
license. In Supplementary Table S2; Table 4, the quantitative
results for reported accuracy, robustness, reproducibility and
repeatability have been reported for each study.

3.2 Accuracy

By comparing the state-of-the-art accuracy metrics used in
medical image segmentation (i.e., DSC, JAC and HD/HD95), it
can be observed that no studies evaluated the accuracy using all these
metrics. In addition, in some studies, these metrics have not been
used but other metrics quantified instead. More specifically, some
studies used different distance-based metrics from HD, such as the
average surface distance, the root mean-square average symmetric
distance, the average distance error, and adopted volumetric-based
metrics (e.g. volumetric overlap global error, volume difference).
Furthermore, although HD95 represents a metric widely used in the
field of image segmentation for its ability to handle outliers (Chen
et al., 2021; Fick et al., 2021; Li et al., 2022; Van Den Oever et al.,
2022), its use is not common for femur/pelvis segmentation. Only
three studies reported this metric (Bjornsson et al., 2023; Kuiper
et al., 2022; Zhai et al., 2023). Figures 2, 3 show the level of accuracy
reached by the segmentation methods for the femur (Figure 2) and
the pelvis (Figure 3) in terms of DSC. Only the studies that have used
these metrics have been included when generating these figures.

3.3 Robustness

Only a few of the studies attempted to quantify robustness. In
the study performed by Kang et al. (2003) on human femurs, the
robustness of the segmentation method was assessed with respect to
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TABLE 3 Segmentation methods developed for the pelvis from the studies included in the review. The table shows the following information: reference of
study; number of datasets N and type of material segmented; type of CT scanner, scanning parameters, and image resolution; segmentation method;
metrics used to evaluate accuracy, robustness, reproducibility and repeatability; and remarks. NR: not reported

Study
N datasets

segmented, type of
material

CT-scanner, scanning
parameters and

resolution

Metrics used for
accuracy, robustness,
reproducibility and

repeatability

Remarks

Threshold-based

Zoroofi et al.
(2003)

60 in-vivo CT datasets (120 hip
joints)

Among the 120 hip joints, THR
had been performed on nine

cases. Hence 111 hip joints were
used for further evaluations

Hip joints classified in 4 groups:
1) acetabulum and the femoral
head are well separated from each
other; 2) acetabulum and femoral
head are close to each other; 3)
acetabulum and femoral head are
close to each other but the shape
of the femoral head is different
from that of a perfect ellipse, due
to pathology and malformation of
the pelvis and the femur; 4)

acetabulum and femoral head are
attached due to the severity of a

bone disease

Device and scanning parameters NR
0.68x0.68x3 mm3 0 segmentation
algorithm performs a resampling to

0.68x0.68x0.75 mm3

Accuracy: ASD (mm), average DSC
(%)

Robustness: NR
Reproducibility: NR
Repeatability: NR

Automatic method
Manual segmentation as the ground

truth
The developed method is not

publicly available
Average time: 7 min per hip; 9.5 s per

slice

Anstey et al.
(2011)

A formaldehyde-fixed cadaveric
hemi-pelvis with all soft tissues

intact

16-slice CT scanner (Lightspeed+
XCR, General Electric, Milwaukee,

USA)
Slice thickness of 0.625 mm

Accuracy: RMSE (mm), Average
Deviation (unsigned, mm), Average

Deviation (signed, mm), Max
Deviation (unsigned, mm)

Robustness: NR
Reproducibility: NR
Repeatability: NR

Semi-automatic method
This study aimed to assess whether a
plastic model of the hip joint can be
accurately made from a pelvic CT
scan. A cadaver hemi-pelvis was CT
imaged and segmented from which a
3D plastic model of the proximal

femur and hemi-pelvis were
fabricated using rapid prototyping.
Both the plastic model and the

cadaver were then imaged using a
high-resolution laser scanner. A
three-way shape analysis was

performed to compare the goodness-
of-fit between the cadaver, image

segmentation, and the plastic model.
From laser scanning the STL were

constructed (ground truth)
The developed method is not

publicly available

Zhou et al. (2013) 35 in-vivo CT datasets (70 hip
joints) with a status ranging from
healthy to severe osteoarthritis

GE Toshiba CTmachine, field of view
of 320 mm2

0.73x0.73x1.5 mm3

Accuracy: JAC (%), RMSD (mm)
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
The Authors developed a 3D

adaptive thresholding method and
compared the segmentation results
with other common segmentation
methods, such as global threshold
method, level-set based method,

FCM (fuzzy C-mens-based method)
based method and Straka’s method

(Straka et al., 2003)
Manual segmentation as the ground

truth
The developed method is not

publicly available
Computation time: 12 min for each

dataset, 8 s for a slice

Cheng et al.
(2013)

110 in-vivo hips from patients
that exhibited a wide range of

bone pathology and
morphometric variation

GE Toshiba CT machine
0.68x0.68x1.5 mm3

Accuracy: DSC (%), ASD (mm)
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
Automatic approach for

simultaneous segmentation of the
femoral head and proximal

acetabulum from 3D CT data.

(Continued on following page)
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TABLE 3 (Continued) Segmentation methods developed for the pelvis from the studies included in the review. The table shows the following information:
reference of study; number of datasets N and type of material segmented; type of CT scanner, scanning parameters, and image resolution; segmentation
method; metrics used to evaluate accuracy, robustness, reproducibility and repeatability; and remarks. NR: not reported

Study
N datasets

segmented, type of
material

CT-scanner, scanning
parameters and

resolution

Metrics used for
accuracy, robustness,
reproducibility and

repeatability

Remarks

Based on several anatomical and
imaging criteria,they classified the

hips into four groups
(G1,G2,G3,G4).

Manual segmentation as the ground
truth

Comparison with (Zoroofi et al.,
2003; Yokota et al., 2013) in terms of

accuracy and execution time
The developed method is not

publicly available
Computation time:

- average time per slice: 9.5 s for
(Zoroofi et al., 2003), 13.6 s for

(Yokota et al., 2013), 8 s for proposed
method

- total time: 12.9 h for (Zoroofi et al.,
2003), 18.5 h for (Yokota et al., 2013),

10.9 h for proposed method

SSM-based

Lamecker et al.
(2004)

23 in-vivo CT datasets Device and scanning parameters NR
1.4x1.4x5 mm3

Accuracy: dmean (mm), dRMS (mm),
HD (mm), dr (%)
Robustness: NR

Reproducibility: NR
Repeatability: NR

Semi–automatic method
Manual segmentation as the ground

truth
The developed method is not

publicly available

Seim et al. (2008) 50 in-vivo CT datasets Device and scanning parameters NR
0.9x0.9x5mm3

Accuracy: AD (mm), ADRMS (mm),
MD (mm)

Robustness: NR
Reproducibility: NR
Repeatability: NR

Automatic method
Manual segmentation as the ground

truth
The developed method is not

publicly available
Computation time: less than

5 minutes

Kainmueller et al.
(2009)

50 in-vivo CT datasets of pelvis
and 30 in-vivo CT datasets of

femur

Device and scanning parameters NR
Pelvis CT datasets: 0.9x0.9x5 mm3

Femur CT datasets: 0.5x0.5 mm2,
slice distances of 0.5 to 1.5 mm

Accuracy: ASD (mm), DSC (%)
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
The accuracy is evaluated on pelvis CT

datasets
Manual segmentation as the ground

truth
The developed method is not publicly

available
Computation time: 4 : 20 to 6 : 00 min

Audenaert et al.
(2019)

250 in-vivo CT scans Device and scanning parameters NR
Pixel size between 0.575 mm to

0.975 mm

Accuracy: ADE (mm), MDE (mm)
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
The segmented structures included the
6 lower vertebrae, sacrum, pelvis, femur,
patella, fibula, tibia, talus, calcaneum,
navicular, cuboid and three cuneiform

bones.
Accuracy was tested on 10 samples
Manual segmentation as the ground

truth
The developed method is not publicly

available
Computation time: automatic

segmentationof a full data set requiredon
average 2 hours per case

Fitting of the articulated SSM failed on
three cases scannedwith their legs crossed

Atlas-based

Chu et al. (2015a) 30 in-vivo hip CT datasets (60 hip
joints)

Device and scanning parameters NR
Intra-slice resolutions of these 30 CT

data ranged from 0.576 mm to

Accuracy: ASD (mm), DSC (%)
Robustness: NR

Automatic method
The Authors conducted a 15-fold

cross validation study to evaluate the

(Continued on following page)
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TABLE 3 (Continued) Segmentation methods developed for the pelvis from the studies included in the review. The table shows the following information:
reference of study; number of datasets N and type of material segmented; type of CT scanner, scanning parameters, and image resolution; segmentation
method; metrics used to evaluate accuracy, robustness, reproducibility and repeatability; and remarks. NR: not reported

Study
N datasets

segmented, type of
material

CT-scanner, scanning
parameters and

resolution

Metrics used for
accuracy, robustness,
reproducibility and

repeatability

Remarks

0.744 mm while the inter-slice
resolutions were 1.6 mm for all CT

data

Reproducibility: NR
Repeatability: NR

performance of their approach. The
30 CT data was randomly partitioned
into 15 equal size subsets. Of the

15 subsets, each time a single subset
(2 CT data) was used as the test data
while the remaining 14 subsets were
used as training data. This process
was repeated 15 folds, with each one
of the 15 subsets used exactly once as

the test data.
Manual segmentation as the ground

truth
The developed method is not

publicly available
Computation time: 3.1 min for
segmentation of a hip joint

Chu et al. (2015b) 30 in-vivo hip CT datasets Device and scanning parameters NR
Intra-slice resolutions ranged from
0.576 mm to 0.744 mm while the

inter-slice resolutions were
characterized by a constant value of

1.6 mm

Accuracy: ASD (mm), DSC (%)
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
FACTS (Fully Automatic CT
Segmentation): combining fast

random forest (RF) regression based
landmark detection, multi-atlas-

based segmentation, with articulated
statistical shape model (aSSM) based

fitting
Same data of (Chu et al., 2015a) but

different method. The method
proposed in this work requires

greater computation time and is less
accurate with respect to (Chu et al.,

2015a)
Manual segmentation as the ground

truth
The developed method is not

publicly available
Computation time: 7.9 min per hip

Hanaoka et al.
(2017)

50 in-vivo whole-torso CT
datasets. All subjects had no bone
diseases other than osteopenia.

Device and scanning parameters NR
Voxel size: 0.977×0.977×1.250 mm

Accuracy: DSC (%), HD (mm), ADE
(mm)

Robustness: NR
Reproducibility: NR
Repeatability: NR

Automatic method
Manual segmentation as the ground

truth
The developed method is not

publicly available
Computation time: 15 min for one
segmentation task using 5 atlases,
110 min when 39 atlases were used

Convolutional neural network

Wang et al.
(2019)

90 in-vivo abdominal CT from
two studies (50 from the CT

colonography study, 40 from the
lymph node study)

For 50 datasets from CT
colonography: at least a 16 slice CT
scanner, 0.5–1.0 mm collimation,
pitch of 0.98– 1.5, matrix 512×512,
field-of-view to fit, 50 effective mAs,
120 kVp, standard reconstruction
algorithm, slice thicknesses of
1–1.25 mm with a 0.8 mm
reconstruction interval.

NR for lymph node study

Accuracy: DSC
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
Manual segmentation as the ground

truth
The developed method is not

publicly available
For testing, the U-net prediction

takes 20-30 seconds to process a 3D
volume, and the shape model

estimation takes 2-3 minutes for each
pass

Noguchi et al.
(2020)

32 in-vivo CT datasets i.e.
16 patients (for training and

validation). Among the
16 patients, 9 patients had known

sites of bone metastases.
20 in-vivo CT datasets (for testing
robustness on other data sources)

For the 32 CT datasets: Aquilion 64,
Aquilion

ONE, Aquilion PRIME; Canon
Medical Systems, Otawara, Japan;

slice thickness was 0.5, 1.0, or 5.0 mm,
and axial in-plane image resolution

was 0.41–0.68 mm
For the 20 CT datasets: Device and

Accuracy: DSC, JAC
Robustness: it has been proved by
considering three different datasets
and testing three types of data

augmentation techniques
(conventional method, Mixup and

RICAP) (DSC, JAC)

Automatic method
To compare the proposed model
with those of previous studies, the
network was trained and validated
on a publicly available labelled
dataset (27 CT datasets). Of the
27 examinations, 15 were used for
training, 3 for validation, and 9 for

(Continued on following page)
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TABLE 3 (Continued) Segmentation methods developed for the pelvis from the studies included in the review. The table shows the following information:
reference of study; number of datasets N and type of material segmented; type of CT scanner, scanning parameters, and image resolution; segmentation
method; metrics used to evaluate accuracy, robustness, reproducibility and repeatability; and remarks. NR: not reported

Study
N datasets

segmented, type of
material

CT-scanner, scanning
parameters and

resolution

Metrics used for
accuracy, robustness,
reproducibility and

repeatability

Remarks

27 in-vivo CT public datasets
(20 patients)

scanning parameters NR; slice
thickness was 1 or 1.25 mm, and axial

in-plane image resolution was
0.63–0.97 mm

For the 27 CT public datasets: helical
CT scanner (Philips, Amsterdam,
The Netherlands); slice thickness of
5 mm and axial in-plane image

resolution of 0.78 mm

Reproducibility: NR
Repeatability: NR

testing.
Manual segmentation as the ground

truth
The developed method is not

publicly available
The training time was ~2 h per fold

for the 32 CT datasets.
Training time was approximately

40 min per split for the 27 CT public
datasets

González
Sánchez et al.

(2020)

30 in-vivo dual energy CT Siemens SOMATOM, low energy
(mostly 80 kV), high energy (mostly
150 kV), mixed images (around

120 kV)
Isotropic voxel size ranged

0.67x0.67x1 mm3 to
0.977x0.977x1.0 mm3

Accuracy: DSC
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
Manual segmentation as the ground

truth
The developed method is publicly

available
Computation time: 5 s

Hiasa et al. (2020) 20 in-vivo CT volumes scanned
(Osaka University Hospital THA

dataset)

Device and scanning parameters NR
Field of view 360 × 360 mm2, matrix

size 512 × 512
Slice intervals: 2.0 mm for the region
including the pelvis and proximal

femur, 6.0 mm for the femoral shaft
region, and 1.0 mm for the distal

femur region

Accuracy: DSC (%), AD (mm)
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
The Osaka University Hospital THA
dataset was used for training and
cross-validation for the accuracy

evaluation and prediction of the DSC
coefficient

Manual segmentation as the ground
truth

The developed method is not
publicly available

Average training time: 11 hours
Average computation time for the
inference on one CT volume with

about 500 2D slices was
approximately 2 minutes excluding
file loading, and the post-processing

took about 3 minutes

Jeuthe et al.
(2021)

8 in-vivo CT datasets for
development and 30 in-vivo CT

datasets for testing

8 datasets at 120 kV, different
scanners, voxel size ranged from

0.7x0.7x1.0 mm3 to 0.9x0.9x3.0 mm3

30 datasets from Siemens
SOMATOM Force scanner, 80 kV,
150 kV, voxel size ranged from

0.63x0.63x1.0 mm3 to
0.98x0.98x1.0 mm3

Accuracy: DSC
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
MK2014v2, JS2016 and

JS2018 algorithms
Manual segmentation as the ground

truth
The developed method is not

publicly available

Liu et al. (2021) 1184 in-vivo 3D volumes (entire
dataset) from 7 CT sub-datasets
(ABDOMEN 35, COLONOG

731, MSD_T10 155, KITS19 44,
CERVIX 41, CLLINIC 103,

CLINIC-metal 75)

Device and scanning parameters NR
Mean spacing entire CT dataset:

0.78x0.78x1.46 (mm)

Accuracy: DSC, HD (mm)
Robustness: Six deep networks have
been trained, one network per single
sub-dataset and tested on each sub-

dataset: DSC, HD (mm)
Reproducibility: NR
Repeatability: NR

Automatic method
Manual segmentation as the ground

truth
The developed method is publicly

available

Xu et al. (2022) 35 in-vivo CT scans from the
Cancer Imaging Archive

Device and scanning parameters NR
(0.78±0.11) × (0.77±0.1) ×

(0.96±0.17) mm3

Accuracy: DSC (%), GapDSC (%),
HD (#voxels)
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
Use of 2D image slices from different
views helped to produce accurate

multi-segmentation despite the small
dataset.

Post-processing step corrects for
misclassification near midline (e.g. left

or right pubis)
Pretraining (inferior segmentation) =2

Fine tuning (uses accurate
segmentation) =2

Initial predict then manual correct,
then repeat fine tuning process=2

(Continued on following page)
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TABLE 3 (Continued) Segmentation methods developed for the pelvis from the studies included in the review. The table shows the following information:
reference of study; number of datasets N and type of material segmented; type of CT scanner, scanning parameters, and image resolution; segmentation
method; metrics used to evaluate accuracy, robustness, reproducibility and repeatability; and remarks. NR: not reported

Study
N datasets

segmented, type of
material

CT-scanner, scanning
parameters and

resolution

Metrics used for
accuracy, robustness,
reproducibility and

repeatability

Remarks

Evaluation cases=21
Manual segmentation as the ground

truth
The developed method is not publicly

available

Wu et al. (2022) 815 in-vivo CT datasets from
5 sub-datasets: normal hip

dataset, osteoarthritis (OA) hip-
joint dataset, dysplasic hip

(DDH) dataset, femoral neck
fracture (FNF) hip joint dataset,
osteonecrosis of femoral head
(ONFH) hip joint dataset

Scanning parameter NR
Phillip CT Brilliance ICT with 1.00-

mm slice thickness and
512×512 image resolution

Accuracy: DSC, HD (mm)
Robustness: evaluated using diseased

hip datasets (DSC, HD (mm))
Reproducibility: NR
Repeatability: NR

Automatic method
Manual segmentation as the ground

truth
Computation time: 23.7±1.0 s on a
Nvidia GeForce GTX TITAN X GPU

The developed method is not
publicly available

Zhai et al. (2023) 81 in-vivo CT images
(31 preoperative images of

diseased hips, and 50 healthy hip
images). Hip disorders of the

31 cases included osteonecrosis of
femoral head, osteoarthritis,

developmental dysplasia of the
hip, femoral neck fracture, and

bone tumors.

31 CT scans acquired with the Somatom
Definition Flash scanner (Siemens

Medical Solutions, Erlangen, Germany),
120 kVp, 336 mA, 1 mm slice thickness,
512 × 512 matrix size, 0.62–0.98 mm

pixel spacing
50 CT scans acquired with multidetector
row CT scanners, 120 kVp, 1–1.25 mm
slice thickness, 512 × 512 matrix size,

0.60–0.98 mm pixel spacing

Accuracy: DSC, HD95 (mm)
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
Manual segmentation as the ground

truth
Computation time: 10 s

The developed method is not
publicly available

Other methods

Guo et al. (2018) 50 in-vivo hip CT datasets Hip joints were acquired on a Philips
Brilliance 64 CT scanner
0.68x0.68x0.67 mm3

Accuracy: evaluated on 10 hip joints
for the three different segmentation
methods (ASD (mm), DSC (%), TPR

(%))
Robustness: NR

Reproducibility: NR
Repeatability: NR

Automatic method
Bone segmentation framework based
on a consideration of the surface

normal direction
A comparison with two recently
published methods (Yokota’s and

Chandra’s methods) (Chandra et al.,
2014; Yokota et al., 2013) was

performed. Yokota’s and Chandra’s
methods need training data, so
fivefold cross-validations were
performed for Yokota’s and

Chandra’s methods. In the fivefold
cross-validation, 50 hip joints were
randomly divided into five groups
with the same size (each group has
10 hip joints), then four groups

(40 hip joints) were used for training
and the remaining one (10 hip joints)

for testing. This operation was
repeated five times, each time three
methods used the same group as
testing data, and the average is the

final result.
A comparison to Yao’s method (Yao

et al., 2005) was performed.
Proposed method and Yao’s
algorithm are an unsupervised
approach, they do not need any
training data; thus, fivefold cross-
validations were not used for this

comparison.
Manual segmentation as the ground

truth
The developed method is not

publicly available
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the image noise. Gaussian noise was artificially added to the CT data
of the European Spine Phantom (ESP) that was used to calibrate the
CT data. The authors showed that an increase in noise caused an
increase in the segmented periosteal volume. Moreover, they showed
that the segmented endosteal volume was initially constant at low
noise but then increased with increasing noise. They also showed
that the effect of noise increase was more pronounced when the
cortical thickness was smaller. The authors also added noise to a CT
dataset of femurs and showed that only in the noisiest image a sub-
optimal segmentation was obtained, and user interaction became
necessary. To test the robustness of the segmentation method,
Fritscher et al. (2007) added image artifacts that imitated screws
inside the femur and a black blob. They concluded that the
segmentation of this dataset resulted in closely similar
segmentation results for the same dataset without artifacts,
demonstrating the robustness of the method. However, they did
not report a quantitative evaluation of robustness. Carballido-
Gamio et al. (2015) demonstrated the robustness of their atlas-
based method using 80 scans of older women from two different
clinical sites and two highly anisotropic spatial resolutions and
reported a mean DSC of 0.976, a mean SYM of 0.203 mm, and a
mean modified HD of 0.253 mm (HD=3.928 mm). Almeida et al.
(2016) reported the robustness of their developed SSM-based
method in terms of the percentage of successfully completed
segmentations. They obtained a success rate of 98% from
148 datasets; only 3 (i.e. 2% of datasets) failed to converge,
despite the significant variability in gender and age-related bone
loss. Väänänen et al. (2019) tested their automatic segmentation
method on in-vivo and ex-vivo CT datasets, which were acquired
using different CT scanners and with different scanning parameters,
thus corroborating the robustness of the method against changes in
imaging parameters. They reported the robustness results in terms
of DSC obtaining values of 0.93±0.02 and 0.98±0.01 for the in-vivo
and ex-vivo CT datasets, respectively. In the study performed by
Noguchi et al. (2020), the robustness of their CNN-based automatic
segmentation was demonstrated by considering three different
datasets, i.e. in-house dataset (32 CT datasets), secondary dataset
(20 CT datasets) and public dataset (27 CT datasets), and testing
three types of data augmentation techniques (conventional method,
Mixup and RICAP). For the in-house dataset they reported a DSC of
0.983±0.005 and a JAC index of 0.968±0.009 without using data
augmentation, with none of the three data augmentation techniques
improving the results. On the secondary dataset, their method
achieved a DSC of 0.943±0.007 and a JAC index of 0.898±0.010.
In this case, conventional augmentation and RICAP improved the
prediction accuracy (small improvements with the DSC increase of
0.002–0.004). In contrast, Mixup worsened the results. On the public
dataset, using a combination of conventional augmentation and
RICAP, a DSC of 0.947±0.013 and a JAC index of 0.899±0.023 were
obtained. The robustness of the method developed by Liu et al.
(2021) was assessed by using a large dataset of pelvic CT images
pooled from multiple sources with which the authors performed a
series of experiments. First, they tested the segmentation approach
using all CT images together from all sources. Subsequently, they
trained six deep networks, one network per single sub-dataset, and
then tested them on each sub-dataset. Zhao et al. (2021) did not
report any robustness quantification of their deep learning-based
approach but they stated that the robustness of the method had been

guaranteed by performing the data augmentation since the sample
size was insufficient to train a precise 3D segmentation model. Data
augmentation used to improve the robustness of the method has
been also used by Deng et al. (2022). However, according to the
authors’ opinion, using only data augmentation was not enough to
guarantee the robustness of the method. It was crucial to perform
additional tests, such as evaluating the method on a different dataset
or cohort. Wu et al. (2022) validated their segmentation method
using different CT datasets that included normal and pathological
hip joints. They obtained DSC values of 0.9899±0.0014 and
0.9355±0.0557 on normal and diseased hip CT datasets,
respectively. Bjornsson et al. (2023) evaluated the robustness of
their method by involving two different samples of the AGES data
set (a first sample characterized by 48 gold standard manually
delineated proximal femur segmentations from 24 CT images
and a second sample characterized by 1207 manually delineated
segmentations, generated with a semi-automated delineation
protocol). They quantified the robustness in terms of the DSC
and HD95 reporting a mean DSC of 0.990±0.008 and a mean
value of HD95 of 0.999±0.331 mm. Kuiper et al. (2022) proposed
a deep-learning-based approach for automatic segmentation of
bones. They used 50 CT datasets for both training and initial
evaluation of the networks. Then, to evaluate the robustness of
the method, they selected 10 CT datasets taken from a different
image database with respect to the database from which the 50 CT
datasets have been selected, in which the CT images have been
acquired with different acquisition parameters and characterized by
different subject demographics. The robustness was quantified in
terms of mean absolute surface distance (MASD) and HD. For
femurs, they reported values of 0.58±0.07mm and 5.03±3.20 mm for
MASD and HD, respectively.

3.4 Reproducibility

Four studies investigated reproducibility. Testi et al. (2001)
evaluated the reproducibility using an in-vivo femur CT dataset
and by extracting from the dataset 19 images uniformly distributed
along the scanning plan. For every slice, both the endosteal and
periosteal surfaces were extracted using both the border-tracing
method developed by the authors and a threshold-based method.
The geometry extraction was executed three times for both methods.
The distance between the contours was reported in terms of HD.
Three sets of contours for both extraction procedures were obtained.
The comparison among the contours were reported in terms of
RMSE of the HD for all slices. They showed that the border-tracing
algorithm improved the reproducibility by about 40% with respect
to the threshold-based method with a mean RMSE that decreased
from 2.29 mm to 1.41 mm. Furthermore, Testi et al. (2001)
performed a reproducibility study by using 6 CT data sets of
patients in need of a custom-made prosthesis (CMP), considering
only the first five proximal slices from every dataset. All images had
been traced three times by both border-tracing and threshold-based
methods. The inner and outer contours were compared to each
other in terms of HD. The border-tracing method improved the HD
from 5 to 1.5 mm with respect to the threshold-based procedure.
Kang et al. (2003) performed an inter- and intra-operator study
analyzing the datasets of 9 patients and evaluating the CVRMS of the
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TABLE 4 Segmentation methods developed for the pelvis from the studies included in the review. The table shows the quantitative results obtained from
each study for evaluating accuracy, robustness, reproducibility and repeatability. NR: not reported.

Study
Accuracy Robustness Reproducibility Repeatability

Threshold-based

Zoroofi et al. (2003) ASD 0.91 mm, average DSC (%) 93.89 NR NR NR

Anstey et al. (2011) RMSE (mm): cadaver to segmentation 0.61, model
to segmentation 0.49, cadaver to model 0.48.
Average Deviation (unsigned, mm): cadaver to
segmentation 0.58, model to segmentation 0.47,

cadaver to model 0.42
Average Deviation (signed, mm): cadaver to

segmentation -0.49, model to segmentation -0.46,
cadaver to model -0.32

Max Deviation (unsigned, mm): cadaver to
segmentation 1.62, model to segmentation 0.94,

cadaver to model 1.58 mm

NR NR NR

Zhou et al. (2013) JAC: 79.8% (range 74.4–83.0%) by global
threshold method, 85.6% (range 81.2–89.2%) by
FCM method, 89.1% (range 86.0–91.6%) by

Straka’s method (Straka et al., 2003), 95.2% (range
93.4–96.9%) by level set method, and 96.4% (range

95.1–97.6%) by the proposed method
RMSD (mm): 0.75 (range 0.59–0.88) by global

threshold method, 0.64 (range 0.49–0.85) by FCM
method, 0.56 (range 0.43–0.71) by Straka’s method
(Straka et al., 2003), 0.45 (range 0.32–0.68) by level
set method, and 0.38 mm (range 0.25–0.53) by the

proposed method

NR NR NR

Cheng et al. (2013) DSC (%):
G1: 94.53 using method in (Zoroofi et al., 2003),
92.85 using method in (Yokota et al., 2013),

95.09 proposed method;
G2: 93.25 using method in (Zoroofi et al., 2003),
92.53 using method in (Yokota et al., 2013),

93.78 proposed method;
G3: 89.92 using method in (Zoroofi et al., 2003),
89.04 using method in (Yokota et al., 2013),

91.01 proposed method;
G4: 80.57 using method in (Zoroofi et al., 2003),
87.86 using method in (Yokota et al., 2013),

81.83 proposed method
Average DSC (%): 90.36 using method in (Zoroofi
et al., 2003), 90.14 using method in (Yokota et al.,

2013), 91.55 proposed method
Standard deviation DSC (%): 5.31 using method in

(Zoroofi et al., 2003), 1.95 using method in
(Yokota et al., 2013), 4.82 proposed method

ASD (mm):
G1: 0.70 using method in (Zoroofi et al., 2003),
0.86 using method in (Yokota et al., 2013),

0.65 proposed method;
G2: 1.12 using method in (Zoroofi et al., 2003),
1.33 using method in (Yokota et al., 2013),

1.07 proposed method;
G3: 1.34 using method in (Zoroofi et al., 2003),
1.71 using method in (Yokota et al., 2013),

1.25 proposed method;
G4: 2.49 using method in (Zoroofi et al., 2003),
1.80 using method in (Yokota et al., 2013),

2.26 proposed method
Average ASD (mm): 1.31 using method in (Zoroofi
et al., 2003), 1.49 using method in (Yokota et al.,

2013), 1.22 proposed method
Standard deviation ASD (mm): 1.12 using method
in (Zoroofi et al., 2003), 1.04 using method in
(Yokota et al., 2013), 0.98 proposed method

NR NR NR

(Continued on following page)
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TABLE 4 (Continued) Segmentation methods developed for the pelvis from the studies included in the review. The table shows the quantitative results
obtained from each study for evaluating accuracy, robustness, reproducibility and repeatability. NR: not reported.

Study
Accuracy Robustness Reproducibility Repeatability

SSM-based

Lamecker et al.
(2004)

dmean (mm): 0.6±0.2
dRMS (mm): 0.8±0.3

HD (mm): 4.7±1.6 dr (%): 1.3±1.6

NR NR NR

Seim et al. (2008) For the complete pelvis:
AD of 0.7±0.3 mm, ADRMS of 1.9±0.6 mm, MD of

16.5±5 mm.
Right hip bone: AD 0.4±0.1 mm, ADRMS

1.1±0.3 mm, MD 9.2±2 mm.
Left hip bone: AD 0.6±0.2 mm, ADRMS

1.5±0.3 mm, MD 10.8±2.4 mm.

NR NR NR

Kainmueller et al.
(2009)

ASD (mm): 0.30 for right hip bone, 0.60 for left hip
bone.

DSC (%): 94.90 for right hip bone and 92.01 for left
hip bone

NR NR NR

Audenaert et al.
(2019)

ADE (mm): pelvis 0.75±0.17
femur 0.65±0.10

MDE (mm): pelvis 7.84±2.26
femur 4.79±2.39

NR NR NR

Atlas-based

Chu et al. (2015a) ASD (mm): 0.30 for pelvis and femur
DSC (%): 97.80 for pelvis and femur

NR NR NR

Chu et al. (2015b) ASD (mm): 0.37 for pelvis and femur
DSC (%): 96.80 for pelvis and both femurs

NR NR NR

Hanaoka et al.
(2017)

DSC (%): 90±2 (using 5 atlases)
HD (mm): 5.30±2.14 (using 5 atlases)
ADE (mm): 0.59±0.14 (using 5 atlases)

NR NR NR

Convolutional neural network

Wang et al. (2019) DSC: left femur 0.958±0.031; right femur
0.962±0.018; left hip 0.958±0.013; right hip

0.957±0.011; sacrum 0.924±0.027

NR NR NR

Noguchi et al. (2020) 32 CT datasets: best DSC: 0.983±0.005
best JAC: 0.968±0.009

20 CT datasets: best DSC: 0.943±0.007
best JAC: 0.898±0.010

27 CT datasets: best DSC: 0.947±0.013
best JAC: 0.899±0.023

32 CT datasets:
- DSC 0.981 ± 0.004, JAC 0.962 ± 0.008 using

conventional method
- DSC 0.981 ± 0.005, JAC 0.963 ± 0.009 using

Mixup method
- DSC 0.983 ± 0.005, JAC 0.967 ± 0.010 using

RICAP method
20 CT datasets:

- DSC 0.947 ± 0.010, JAC 0.904 ± 0.015 using
conventional method

- DSC 0.906 ± 0.045, JAC 0.846 ± 0.058 using
Mixup method

- DSC 0.946 ± 0.008, JAC 0.902 ± 0.012 using
RICAP method
27 CT datasets:

- DSC 0.942 ± 0.014, JAC 0.892 ± 0.025 using
conventional method

- DSC 0.892 ± 0.037, JAC 0.809 ± 0.058 using
Mixup method

- DSC 0.943 ± 0.014, JAC 0.893 ± 0.024 using
RICAP method

NR NR

González Sánchez
et al. (2020)

DSC: 0.976 NR NR NR

Hiasa et al. (2020) DSC (%): 98.1±0.43
AD (mm): 0.145±0.040

NR NR NR

Jeuthe et al. (2021) DSC: 0.914 (mean value) with a min of 0.714 NR NR NR

(Continued on following page)
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TABLE 4 (Continued) Segmentation methods developed for the pelvis from the studies included in the review. The table shows the quantitative results
obtained from each study for evaluating accuracy, robustness, reproducibility and repeatability. NR: not reported.

Study
Accuracy Robustness Reproducibility Repeatability

Liu et al. (2021) 3D U-Net cascade with the deep network model
trained on entire dataset:

- left hip DSC=0.989 and HD=4.24 mm
- right hip DSC=0.991 and HD=3.03 mm

Six deep networks have been trained, one network
per single sub-dataset and tested on each sub-

dataset:
- best average DSC=0.989

- best average HD=1.93 mm

NR NR

Xu et al. (2022) DSC=98.63±0.56
GapDSC=96.47±1.60

HD (#voxels) =3.67±1.13

NR NR NR

Wu et al. (2022) Normal hip dataset:
- mean DSC=0.9899

- mean HD=5.26 ± 0.6 mm

Diseased hip datasets:
DSC=0.9355±0.0557
HD=4.19±1.04 mm

NR NR

Zhai et al. (2023) Left hip:
- DSC=0.9737±0.0075, HD95=2.03±0.14 (mm)

Right hip:
- DSC=0.9713±0.0170, HD95=2.07±0.26 (mm)

NR NR NR

Other methods

Guo et al. (2018) Accuracy on 10 hip joints for the three different
segmentation methods

ASD (mm):
- pelvis: Yokota’s 0.55±0.15, Chandra’s 0.51±0.12,

proposed method 0.42±0.08
- left femoral head: Yokota’s 0.51±0.12, Chandra’s

0.46±0.10, proposed method 0.38±0.07
- right femoral head: Yokota’s 0.52±0.11,

Chandra’s 0.47±0.12, proposed method 0.39±0.08
DSC (%):

- pelvis: Yokota’s 95.82±1.55, Chandra’s
96.47±1.42, proposed method 97.34±0.56
- left femoral head: Yokota’s 96.73±1.17,
Chandra’s 97.34±1.26, proposed method

98.06±0.58
- right femoral head: Yokota’s 96.26±1.12,
Chandra’s 96.91±1.08, proposed method

97.73±0.47
TPR (%):

- pelvis: Yokota’s 93.35±2.43, Chandra’s
93.98±3.02, proposed method 95.86±1.48
- left femoral head: Yokota’s 93.46±3.30,
Chandra’s 94.80±2.92, proposed method

96.34±1.27
- right femoral head: Yokota’s 93.92±2.86,
Chandra’s 95.37±4.12, proposed method

96.83±1.22
Comparison of Yao’s method with proposed

methos on 50 hip joints
ASD (mm):

- pelvis: proposed method 0.42±0.09, Yao’s
0.46±0.12

- left femoral head: proposed method 0.38±0.05,
Yao’s 0.42±0.06

- right femoral head: proposed method 0.39±0.08,
Yao’s 0.41±0.09

DSC (%):
- pelvis: proposed method 97.32±0.52, Yao’s

95.71±0.71
- left femoral head: proposed method 98.03±0.53,

Yao’s 96.61±0.72
- right femoral head: proposed method 97.72±0.33,

Yao’s 96.68±0.62
TPR (%):

- pelvis: proposed method 96.12±1.67, Yao’s
94.65±1.94

- left femoral head: proposed method 96.77±1.82,
Yao’s 95.05±2.24

- right femoral head: proposed method 96.68±1.53,
Yao’s 94.95±2.33

NR NR NR
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bone volume and cortical thickness within a sphere centered at the
femoral neck. For the inter-operator variability, three operators
analyzed each data set once, blinded to the results of the other
operators. For the intra-operator variability, one operator analyzed
each dataset three times. For inter- and intra-operator variability,
the CVRMS was always lower than 1% for trabecular and total bone
volumes (0.27% ± 0.15% and 0.73% ± 0.43%, respectively, for inter-
operator variability; 0.29% ± 0.17% and 0.64% ± 0.37%, respectively,
for intra-operator variability) and below 2% for cortical thickness
(1.71% ± 1.10% for inter-operator variability; 1.54% ± 1.10% for
intra-operator variability). No significant differences were detected
for inter- and intra-operator analyses. Pauchard et al. (2016)
performed an inter-operator reproducibility study on 12 femurs
involving three operators. Average mean surface-to-surface
distance, DSC and HD were calculated between graph cut
segmentations and manual segmentations from three operators in

pair-wise manner. Pair-wise comparison of segmentation methods
between operators indicated that HD measurements were
consistently smaller between manual segmentations (maximum
value 3.09 mm for manual segmentations vs. 3.49 mm for graph-
cut segmentations). In contrast, mean surface-to-surface differences
were consistently smaller, and DSC was higher between graph cut
segmentations (maximum value of mean surface-to-surface distance
0.378 mm for manual segmentations vs. 0.006 mm for graph-cut
segmentations; maximum value of DSC coefficient 0.980 for manual
segmentations vs. 0.995 for graph-cut segmentations). Besler et al.
(2021) evaluated the inter-operator reproducibility (three operators)
measuring the SDRMS (absolute units) and CVRMS (%) for volume,
integral density, and failure load in both cadaveric and in-vivo CT
images, showing that their proposed segmentation algorithm
considerably improved inter-operator reproducibility for all three
outcomes (SDRMS (CVRMS) equal to 9.58 mL (5.41%), 2.02 mg/cc

FIGURE 2
Forest plot that presents the level of DSC achieved by the automatic and semiautomatic segmentation methods developed for the femur. For each
study, the number (N) of samples has been reported
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(0.65%), and 70.10 N (5.17%) for volume, density, and failure load,
respectively, using in-vivo CT datasets, and equal to 7.26 mL
(4.10%), 1.86 mg/cc (0.92%), and 34.10 N (6.43%) in cadaveric
CT datasets).

3.5 Repeatability

We found only two studies that investigated the repeatability of
the segmentation method, in terms of its ability to produce the
same results on the same subject and the same scanner, from two
separate imaging sessions (Carballido-Gamio et al., 2015; Zhang
et al., 2024). In that study (Carballido-Gamio et al., 2015),
repeatability was evaluated using repeated scans after
repositioning, on 22 subjects obtained on CT imaging systems
from twomanufacturers. Reproducibility was assessed with CVRMS

for ten compartmental vBMD parameters, seven compartmental
tissue volume parameters, FE-derived bone strength under two
loading conditions, three compartmental surface-based cortical
bone thickness parameters, and three compartmental surface-
based cortical vBMD parameters. Repeatability was also
assessed in a local manner for three surface-based cortical bone
thicknesses and three surface-based cortical vBMD parameters. In
the study by Zhang et al. (Zhang et al., 2024) repeatability was
assessed using 5 subjects, by repeating CT scans after repositioning
and quantifying regional vBMD measures. The study showed a
nominal value of around -0.01% for the mean difference between
vBMD estimates from baseline and repeated scans. Moreover, the
authors reported an intraclass correlation coefficient (ICC)
between vBMD values measured from baseline scans and those
obtained from repeated scans equal to 0.996, and a root-mean-
square coefficient of variation of 0.72%.

3.6 Additional remarks

We made several additional observations based on
Supplementary Tables S1, S2 and Tables 3, 4. First, only a few of
the studies reviewed provided information about total operator time
required to process each image (see Supplementary Tables S1 and
Table 3). However, this information is essential for translation into
clinical practice. Second, the segmentation methods have in some of
the studies been evaluated on a downstream FEmodelling workflow,
to assess the ability of these methods in predicting femoral strength
and strains. Väänänen et al. (2019) showed a good agreement
between FE predicted strains derived from their automatic
segmentation method using the Stradwin segmentation tool, and
the corresponding ex-vivo measurements (R2=0.89, maximum
error=27%, normalized RMSE=6%). A graph-cut segmentation
(Pauchard et al., 2016) and CNN segmentation (Bjornsson et al.,
2023) resulted in high correlation between FE predicted femoral
strength compared to FE predicted strength derived from manual
segmentation (R2=0.98 in (Pauchard et al., 2016); R2=0.988,
RMSE=212.2 N, max difference=25.3% for left femurs and
R2=0.986, RMSE=177 N, max difference=30.1% for right femurs
in Bjornsson et al. (2023)). These results demonstrate the potential
of these methods in producing reliable segmentations that can be
used in an FE workflow for fracture risk assessment. The potential of
automatic segmentation methods for FE-based femur fracture risk
assessment was also demonstrated by Kim et al. (2018) that showed
that their automatic segmentation method based on the
complementary characteristics between the thresholding method
and watershed algorithmwas able to obtain a fracture risk prediction
close to that obtained by the manual segmentation with an average
relative error of 4.99%. Finally, the studies included in this review
used different CT scanners, CT scanning parameters and

FIGURE 3
Forest plot that presents the level of DSC achieved by the automatic segmentationmethods developed for the pelvis. For each study, the number (N)
of samples has been reported
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TABLE 5 Risk of bias assessment summary. The studies are reported in the same order as in Supplementary Tables S1, S2; Tables 3, 4.

Study Parameters to evaluate the risk of bias Risk of
bias

Heterogeneous CT
dataset

Uses more
than one CT

scanner

Inter- and/or intra-operator
variability study

Re-scanning the
same patient using

the same CT scanner

Femur

Kim et al. (2018) No No No No High

Fritscher et al. (2007) No No No No High

Zhang et al. (2014) No No No No High

Almeida et al. (2016) Yes Yes No No Medium

Whitmarsh et al.
(2014)

No No No No High

Carballido-Gamio
et al. (2015)

Yes Yes No Yes Medium

Besler et al. (2018) No No No No High

Krcah et al. (2011) No No No No High

Huang et al. (2015) No No No No High

Pauchard et al. (2016) Yes No Yes (inter-operator variability study,
3 operators)

No Medium

Besler et al. (2021) Yes No Yes (inter-operator variability study,
3 operators)

No Medium

Aldieri et al. (2024) No No No No High

Chen et al. (2019) No No No No High

Yosibash et al. (2020) Yes Yes No No Medium

Hiasa et al. (2020) No No No No High

Zhao et al. (2021) Yes No No No High

Patton et al. (2021) Yes No No No High

Deng et al. (2022) No No No No High

Zhang et al. (2022) No No No No High

Kuiper et al. (2022) Yes Yes No No Medium

Bjornsson et al. (2023) Yes No No No High

Apivanichkul et al.
(2023)

Yes No No No High

Tan et al. (2024) No No No No High

Sultana et al. (2024) No No No No High

Zhang et al. (2024) No No No Yes High

Saillard et al. (2024) Yes Yes Yes No Medium

Testi et al. (2001) Yes No No No High

Kang et al. (2003) No No Yes (inter- and intra-operator variability
study, 3 operators for inter-operator

variability, 1 operator that analyzed the
datasets of nine patients three times each for

intra-operator variability)

No High

Gelaude et al. (2008) Yes No No No High

O’Neill et al. (2012) No No No No High

(Continued on following page)
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resolutions. It is challenging to determine how these variables affect
accuracy and robustness, as the scanner and scanning parameters
are rarely used as isolated study variables. Similar conclusions can be
drawn for the reproducibility and repeatability, which we found only
sparsely addressed in the literature.

3.7 Risk of bias

Table 5 lists the summary of the risk of bias assessment. As can be
observed, most of the studies presented a high risk of bias, whereas a
small portion of the works demonstrated a medium risk. Most studies

scored poorly on inter- and/or intra-operator variability and re-
scanning of the same patient using the same CT scanner. These
results can be explained by the fact that the studies included in the
review did not quantify the accuracy, robustness, reproducibility, and
repeatability of the segmentation method at the same time, but they
focused on one or two of these metrics.

4 Discussion

The aim of the present work was to systematically review the
literature on clinical CT image segmentation methods for the bones

TABLE 5 (Continued) Risk of bias assessment summary. The studies are reported in the same order as in Supplementary Tables S1, S2; Tables 3, 4.

Study Parameters to evaluate the risk of bias Risk of
bias

Heterogeneous CT
dataset

Uses more
than one CT

scanner

Inter- and/or intra-operator
variability study

Re-scanning the
same patient using

the same CT scanner

Zou et al. (2017) No No No No High

Gangwar et al. (2018) No Yes No No High

Väänänen et al.
(2019)

Yes Yes No No Medium

Pelvis

Zoroofi et al. (2003) No No No No High

Anstey et al. (2011) No No No No High

Zhou et al. (2013) Yes No No No High

Cheng et al. (2013) Yes No No No High

Lamecker et al. (2004) No No No No High

Seim et al. (2008) Yes No No No High

Kainmueller et al.
(2009)

Yes No No No High

Audenaert et al.
(2019)

Yes No No No High

Chu et al. (2015a) No No No No High

Chu et al. (2015b) No No No No High

Hanaoka et al. (2017) No No No No High

Wang et al. (2019) Yes Yes No No Medium

Noguchi et al. (2020) Yes Yes No No Medium

González Sánchez
et al. (2020)

No No No No High

Hiasa et al. (2020) No No No No High

Jeuthe et al. (2021) Yes Yes No No Medium

Liu et al. (2021) Yes Yes No No Medium

Xu et al. (2022) No No No No High

Wu et al. (2022) Yes No No No High

Zhai et al. (2023) Yes Yes No No Medium

Guo et al. (2018) No No No No High
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in the human hip to establish the current level of evidence on
accuracy, robustness, reproducibility and repeatability, to support
the use of these methods for quantifying image-based bone
biomarkers in large clinical cohorts. We found that studies that
reported the accuracy of segmentation of the femur and the pelvis
used different metrics, making inter-study comparison challenging.
However, even though there may exist a need to standardize
reporting of accuracy across studies, the accuracy of automatic
segmentation methods in terms of predicting ground truth
manual segmentation appears to be as high, if not higher than
has been achieved with semi-automated methods. This is a positive
finding as automation is essential for the translation of any
segmentation method to clinical practice. With respect to
robustness of the automated or semi-automated segmentation
methods that we reviewed, we found reporting to be sparse, with
only one paper on automatic segmentation reporting robustness as a
percentage of successfully completed segmentations but not
reporting robustness across different scanners. Finally, we found
reproducibility and repeatability generally not to be reported in the
segmentation studies and only a few studies reported reproducibility
in the form of inter-operator differences. Here, interestingly, but
perhaps not surprisingly, one of the few studies that reported inter-
operator differences found it to be larger for manual segmentation
than for a semi-automatic graph cut segmentation protocol
(Pauchard et al., 2016). This points to the weakness of using
manual segmentation from a single rater as the ground truth
when validating segmentation methods.

We believe that the present study clearly shows that further work
is necessary to investigate which is the best automatic segmentation
method to integrate into a clinical workflow for estimating CT-based
biomarkers for femur fracture risk assessment, not only in terms of
accuracy, robustness, reproducibility, and repeatability, but also in
terms of computational cost. However, in the authors’ opinion,
artificial intelligence-based approaches, such as deep-learning-based
or machine learning-based methods, may represent the most
promising methods for developing fully automated workflow for
deriving CT-based biomarkers. The advantages of such methods are
related to decreasing human interaction and reducing the
computational cost with respect to other non-machine learning
based automated methods, which are two essential requirements for
clinical application of segmentation methods. This is supported by
the fact that recently, AI-based methods for segmentation have been
implemented into commercial software platforms (e.g. Mimics,
Simpleware). However, to the authors’ knowledge, there is no
work that has have evaluated the accuracy, robustness,
reproducibility, and repeatability of these methods in the femur
and the pelvis.

It is important to highlight that there are some limitations
associated with this review. First, not all studies reported the CT
imaging specifications and parameters, which might influence the
segmentation results. Second, not all studies used the same metrics
to assess the segmentation accuracy and they were evaluated on
datasets of very different sizes and demographics, which makes
inter-study comparison challenging. As such, in future studies, the
use of standardized metrics, and perhaps, publicly available test
datasets, would ease the comparison across methods. Moreover, not
all studies reported computation time and thememory requirements
for the segmentation process. This is crucial information for

understanding the cost associated with acquiring the
segmentations and the ease of incorporating them into clinical
practice. Finally, it is important to highlight that most of the
studies included in this review were limited to methods applied
to non-pathological femur and/or pelvis. However, approaches
successfully applied to other skeletal sites and not yet applied to
femur/pelvis can be found in the literature. Some examples based on
convolutional neural networks and successfully applied to vertebra
are reported in (Lessmann et al., 2019; Sekuboyina et al., 2021). Due
to the emergence of several artificial intelligence-based approaches
applied to specific skeletal districts and also across multiple regions
of interests (Mazurowski et al., 2023) the interesting point will be to
evaluate if such methods are sufficiently accurate for the creation of
FE models for any bone in the body.

5 Recommendations

Bearing in mind the need in the field of image-based bone
biomarker research and clinical practice to have access to
accurate, robust, reproducible and repeatable automatic
methods to segment bones, we propose that future work puts
emphasis on the acquisition of high-quality datasets, preferably
published in an open-access repository, for advancing the
development of a standardized segmentation protocol. Human
donor specimens with soft tissue attached could be scanned to
replicate the beam hardening effect of soft tissue in clinical scans.
Thereafter, the same specimens could be scanned in high
accuracy optical scanners after removal of soft tissues and the
resulting hard tissue surfaces used as ground truth. This option
could be useful to establish the accuracy of the segmentation
methods. However, the scans should preferably be taken soon
after death to maintain a similar texture and noise level as an in-
vivo scan. To assess the robustness and reproducibility of
segmentation methods, repeated in-vivo scans on human
subjects on multiple scanners could be acquired. Moreover, to
investigate repeatability, the data acquisition could include
sessions of rescanning with repositioning. In the case of using
in-vivo CT scans, the ground truth could be obtained by using the
STAPLE method (Warfield et al., 2004), which generates ground
truth data by combining (“stapling”) multiple segmentations
from different expert raters, to address the inter-rater
variability in manual segmentation that is used to derive the
gold standard.

To correct for partial volume effect (PVE) that represents an
important issue when CT images at clinical resolution are used to
segment the femur, leading to errors in surface reconstruction,
we suggest performing a comparison across imaging modalities
of different resolutions such as micro-CT, HR-pQCT and CT
with the ultimate aim to develop segmentation methods that are
able to directly correct for PVE. To validate the segmentation
methods, we propose the use of the HD metric for quantifying
accuracy, as the ultimate goal of any segmentation method is to
accurately capture the surface of the organ under investigation.
Moreover, we suggest reporting HD metric in different regions
i.e., femoral neck, head, and shaft. The femoral neck and head
represent critical regions to be segmented due to their thin
cortical thickness and thus a lower accuracy in such regions
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would be more critical than in the shaft, especially in view of
using the segmentations in FE analysis. To quantify robustness,
we propose the use of percentage of segmentations that achieved
HDs that are smaller than the in-plane resolution of the image
data. To evaluate the reproducibility and repeatability, CVRMSE of
HD may be quantified to investigate the consistency of the results
using the same CT dataset, the inter- and intra-operator
differences, and the effect of a re-scanning taken several
days apart.

6 Conclusions

In conclusion, we found that automatic segmentation tools
developed to date have produced at least as accurate outcomes as
methods that require manual intervention. The development of
automatic segmentation tools has thus matured far enough to
suggest their use for quantifying image-based bone biomarkers in
large clinical cohorts, as these methods can be operator
independent and process images at low cost. However, only
few studies systematically investigated the robustness of
automatic segmentation methods, and limited data is available
on their reproducibility and repeatability. These aspects require a
more in-depth investigation in future studies. To this end, the
development of open-access CT data and standardized metrics
for quantifying accuracy, robustness, reproducibility, and
repeatability in future works is recommended. Access to the
CT data could be provided under the condition that methods
developed or validated on the data be released as open source.
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Appendix A

In the following, a brief description of the main segmentation
methods adopted for femur/pelvis has been reported.

a) Threshold-based method. In this approach, the pixels are
binarized depending on their intensity value. The
segmentation is achieved by grouping all pixels with
intensities greater than the threshold into one class and all
other pixels into another class.

b) Statistical shape model-based method. This method aims to use
prior knowledge about the shape to segment images and
describes the anatomical variation observed in medical
images. To create a statistical shape model, a training
dataset that corresponds to a database of ground truth
segmentations is used to compute the mean shape and
extract the variation. The mean shape that represents the
knowledge about the general shape is computed as the
shape to which all other shapes in the training dataset have
minimal distance to. The principal modes of variation, that
corresponds to the knowledge about how much the shape
differs between subjects, is extracted using principal
component analysis by computing the eigenvectors of the
covariance matrix. The eigenvectors corresponding to the
eigenvalues of the covariance matrix are the directions of
variation present in the data.

c) Atlas-based method. This method is based on the atlas that is
assumed as a reference image and in which the region of
interest has been accurately segmented, generating the binary
mask. To segment a new image, the atlas is first registered to

the new image, and then the binary mask is deformed from the
atlas onto the new image to segment it.

d) Graph-cut method. This method represents an energy-based
method in which an image is converted to a graph and the
image segmentation problem is transformed into a cost
function minimization problem. A graph of an image
consists of a set of vertices and edges that connect them.
Each image voxel corresponds to a vertex in the graph. Besides
these vertices, there are two additional vertices, called terminal
vertices that are used to represent the object and the
background. Two kinds of edges can be identified: n-edges
that connect two neighboring voxels, and t-edges that link each
voxel to the terminal vertices. All edges in the graph are
assigned some cost. The cost of n-edges corresponds to a
penalty for discontinuity between the voxels, whereas the cost
of a t-edge corresponds to a penalty for assigning the
corresponding label to the voxel. An s-t cut is defined as a
subset of edges such that the terminal vertices become
completely separated. The idea of the method is to compute
the best cut that would furnish the optimal segmentation.
Thus, to find the optimal segmentation the cut that has the
minimum cost among all cuts must be found.

e) Deep-learning method. This method uses deep neural networks
to automatically perform the segmentation. An essential phase
of such a method is the training of the networks. The most
common approach in medical image segmentation is to use
ground truth data to train the network to perform the desired
segmentation task. For the training, it is important to use
datasets that contain a variety of data that can be found in
clinical practice.
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Glossary

Anatomical abbreviations

All union of all quadrants

FH femoral head

FN femoral neck

IA inferior-anterior quadrant

IT intertrochanter

SA supero-anterior quadrant

SP superior-posterior quadrant

TH total hip

TR trochanter

Densitometric abbreviations

aBMD areal bone mineral density

BMD bone mineral density

ECTD average density in the trabecular compartment close to the cortex

vBMD volumetric bone mineral density

vBMD-C cortical volumetric BMD

vBMD-I integral volumetric BMD

vBMD-T trabecular volumetric BMD

Measurements and indices abbreviations

AD average symmetric surface distance

ADE average distance error

ADRMS average symmetric roots mean square surface distance

ASD average surface distance

BMI body mass index

BR buckling ratio

CM cortical mass per unit cortical surface area

CortShaftThick cortical thickness of shaft

CortNeckThick cortical thickness of neck

CortArea cortical area

CSA cross-sectional area

CSMI cross-sectional moment of inertia

CTh cortical thickness

CV coefficient of variation

%CV percent cortical volume

CVRMS root mean square coefficient variation

dcort vertebral cortical thickness

dmean mean distance

dr area deviation

dRMS root mean square distance

DS surface distance

DSC Dice similarity coefficient

FN Delta the displacement between the geometric center of the mineral mass
projection profile and its centre of mass

FN Sigma standard deviation of the mineral mass projection profile

FNG false negatives

FO false overlap

FP false positives

HD Hausdorff distance

HR Hazard Ratio

JAC Jaccard similarity index

LTI local thinning index

MAE mean absolute error

MD maximum distance

MDE maximal distance error

ME mean error

M-HD modified Hausdorff distance

MO mean overlap

NBSI FN bending/torsional strength index

NCSI FN compressive strength index

TCSI trochanteric compressive strength index

NSA neck-shaft angle

OR odds ratio

R2 coefficient of determination

RE relative error

RMSD root-mean-squared distance error

RMSE root mean square error

RMS-SYM root mean-square average symmetric distance

rtot radii of the vertebral body

rtrab radii of the vertebral trabecular compartment

SD standard deviation

SDRMS root-mean-square standard deviation

SSDgAvg symmetric surface distance global average

SSDMax symmetric surface distance maximal surface distance

SSDSAvgAvg symmetric surface distance average of slice averages

SYM average symmetric distance

THRCTM ratio between cortical and trabecular mass of total hip

TN true negatives

TP true positives

V volume

VD volume difference

VOEg volumetric overlap global error
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VOESAvg average slice error

VOESmax slice maximum error

VOESmin slice minimum error

X±SD absolute difference mean and standard deviation

Other abbreviations

ARF0 predicted absolute risk of current fracture (from multi-
scale modelling)

CBM cortical bone mapping

CM cortical bone mass

DCD directional cut discrepancy

EFFECT European Femur Fracture Study

F female

FL failure load

FRAX fracture risk assessment tool

HC Harrells C

L1,
L2 and L3

vertebral levels

M male

MrOS Osteoporotic Fractures in Men Study

N number

NR not reported

PA pixel accuracy

PC1 principal component analysis to develop a global FE-derived risk
index based on the FE parameters which were mutually correlated

SL values were computed as means over the corresponding clusters of
selected slices

SSDM statistical shape and density modeling

Zmin section modulus along the weakest axis
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