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The global rise in lower limb amputation cases necessitates advancements in
prosthetic limb technology to enhance the quality of life for affected patients.
This review paper explores recent advancements in the integration of EEG and
fNIRS modalities for smart lower prosthetic limbs for rehabilitation applications.
The paper synthesizes current research progress, focusing on the synergy
between brain-computer interfaces and neuroimaging technologies to
enhance the functionality and user experience of lower limb prosthetics. The
review discusses the potential of EEG and fNIRS in decoding neural signals,
enablingmore intuitive and responsive control of prosthetic devices. Additionally,
the paper highlights the challenges, innovations, and prospects associated with
the incorporation of these neurotechnologies in the field of rehabilitation. The
insights provided in this review contribute to a deeper understanding of the
evolving landscape of smart lower prosthetic limbs and pave the way for more
effective and user-friendly solutions in the realm of neurorehabilitation.

KEYWORDS

neurorehabilitation, electroencephalography (EEG), brain-computer interfaces (BCIs),
functional near-infrared spectroscopy (fNIRS), lower prosthetic limbs

1 Introduction

Lower limb amputations are relatively common, particularly among patients with
diabetes, peripheral artery disease, severe trauma, and infections. Each year, around
1 million lower limb amputations are performed worldwide, with a significant portion
of these occurring in the diabetic population (Ziegler-Graham et al., 2008; Marcinkowska
et al., 2021). In the United States alone, about 185,000 amputations occur annually, the
majority of which are lower limb amputations (Asif et al., 2021; Jeffcoate et al., 2021). The
impact on patients’ quality of life is profound and multifaceted. Physically, patients face
challenges with mobility and functionality, often experiencing pain and phantom limb
sensations. Mentally, the psychological impact can be severe, leading to depression, anxiety,
and post-traumatic stress disorder. Socially, amputees often encounter stigma and barriers
to participation in social and recreational activities (Moxey et al., 2011).
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The economic impact is substantial, encompassing high medical
costs. For diabetic patients, lifetime costs can exceed $500,000,
including the initial surgery, rehabilitation, and prosthetic
devices. Additionally, many amputees struggle to return to work,
resulting in reduced income and financial instability (Alessa et al.,
2022; Ezzatvar and García-Hermoso, 2023). Therefore, there is a
critical need for advancements in prosthetic technology and
ensuring these advancements are accessible to all amputees.
Providing patients with the best possible prosthetic devices can
significantly enhance their quality of life.

To enhance the quality of life for amputees, recent years have
seen significant innovations in the domain of smart lower prosthetic
limbs (Safari, 2020; Asif et al., 2021; Pană et al., 2022). Current
prosthetic limbs have come a long way, but there are still limitations.
Traditional prosthetics rely on surface electromyography (EMG) to
detect muscle activity for control, which can be limited by residual
limb movement and fatigue. Notably, technologies such as
electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS)—traditionally utilized as neuroimaging as
well as brain-computer interfaces (BCIs) techniques—are now
being implemented in prosthetics (Murphy et al., 2017; Khan R.
A. et al., 2018). The integration of EEG and fNIRS into prosthetic
limb designs is forging paths toward restoring not just lost
functionality, but also intuitive control and a deeper connection
between amputees and their artificial limbs, promising a future
where enhanced autonomy is a reality (Kwon et al., 2020;
Bourguignon et al., 2022; Chen et al., 2023). This review paper
explores the integration of EEG and fNIRS technologies for
advancing lower limb prosthetic control. Key aspects covered
include the potential benefits of a hybrid BCI, recent
advancements, and promising results. The paper concludes by
offering a thorough comparison summarizing the advantages and
disadvantages of recently selected papers that used hybrid systems as
well as recommendations for future research and discuss broader
implications for rehabilitation and assistive technology.

Today, prostheses have evolved, incorporating cutting-edge
technology to enable effective limb control. This integration,
achieved by merging computer-based technologies with electronic
systems, allows for sophisticated levels of prosthesis management.
When a prosthesis is equipped with an electronic system, it is termed
a bionic prosthesis. Such devices employ various techniques to
ensure comprehensive control of the prosthetic limbs through
electronic technology. This review concentrates on two specific
systems: EEG and fNIRS, both instrumental in controlling
prostheses. EEG monitors electrical activity within the brain,
while fNIRS measures the hemodynamic changes in the brain,
i.e., oxygenation and blood flow (Khan R. et al., 2018; Hosni
et al., 2020). They are useful for brain-computer interfaces and in
the management of prosthetic limbs.

This paper delves into the recent advancements in smart lower
prosthetic limbs, emphasizing the critical role played by EEG and
fNIRS technologies. Prosthetics equipped with EEG have the
potential to interpret the electrical signals from the user’s brain,
facilitating natural and fluid limb movements, and markedly
improving the quality of life for amputees. Additionally, fNIRS
can provide vital insights into the brain’s hemodynamic
responses. Through a comprehensive review of the existing
literature, we aim to provide an overview of the current state of

the art, challenges, and prospects in the field of smart prosthetics
driven by EEG and fNIRS. Moreover, we delve into the historical
context and evolution of prosthetic limbs, highlighting the
limitations of traditional designs. We discuss the fundamental
principles of EEG and fNIRS technologies and their relevance in
bridging the gap between the human brain and artificial limbs.
Furthermore, we address the key challenges in the implementation
of EEG-driven prosthetics, such as signal processing, robustness,
and user training. Finally, we explore the potential applications,
including enhanced mobility, proprioception, and the creation of a
direct neural interface with the artificial limb. Table 1 illustrates the
advantages and challenges of EEG and fNIRS in this context.

2 Anatomy and physiology of the lower
limb movements during the gait cycle

Physiological signals that initiate movements in the lower limb
are coordinated by a complex interplay between the nervous system
and the musculoskeletal system. The central nervous system,
primarily the brain and the spinal cord, plays a vital role in
transmitting signals to the lower limb muscles to initiate and
control movement during the gait cycle (Ting et al., 2015).
Figure 1 shows the gait cycle with corresponding lower limb
muscles. When an individual decides to take a step, the brain
sends signals through the motor cortex, which is responsible for
planning and executing voluntary movements. These signals travel
down the spinal cord within a bundle of nerve fibers called the
corticospinal tract. The corticospinal tract carries the motor
commands from the brain to the lower motor neurons located in
the ventral horn of the spinal cord (Ting et al., 2015).

Upon reaching the lower motor neurons, these signals are
distributed to specific muscles involved in walking. For example,
the muscles responsible for extending the leg during the stance phase
and flexing the leg during the swing phase are activated by these
signals. This activation occurs through a process called
neuromuscular transmission, where the lower motor neurons
release chemicals called neurotransmitters that stimulate the
muscles to contract and generate movement (Ting et al., 2015;
Al-Shuka et al., 2019). In addition to the motor commands sent by
the brain, the nervous system also receives feedback from sensory
receptors located in the lower limb. These receptors, known as
proprioceptors, relay information about joint angles, muscle length,
and tension to the brain. This feedback loops back to the brain,
allowing it to monitor and adjust the movements during the gait
cycle (Ting et al., 2015; Al-Shuka et al., 2019). Furthermore, the
brain continuously monitors and integrates information from
various sensory systems, such as the visual and vestibular
systems, to maintain balance and coordination during walking.
This integration occurs in specialized areas of the brain,
including the cerebellum, basal ganglia, and brainstem, which
play crucial roles in modulating and refining the motor
commands sent to the lower limbs (Ting et al., 2015; Al-Shuka
et al., 2019). Overall, the brain’s control over the gait cycle is a
complex process involving the initiation of movement signals, the
integration of sensory information, and the continuous adjustment
and coordination of lower limb muscles. By understanding the
intricate interplay between the brain and the lower limb,
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researchers can gain insights into disorders affecting gait and
develop interventions to optimize motor control and promote
efficient walking patterns (Ting et al., 2015; Al-Shuka et al., 2019;
Lacerenza et al., 2021; Yokoyama et al., 2021).

Electroencephalography and functional near-infrared
spectroscopy are two neuroimaging techniques that offer a direct
link to the brain’s electrical and hemodynamic activities, respectively
(Chen et al., 2020; Liu et al., 2021; Yokoyama et al., 2021). EEG
measures the electrical activity generated by the firing of neurons in
the brain, providing high-temporal resolution insights into the neural
dynamics underlying cognitive and motor processes. On the other
hand, fNIRS detects changes in blood oxygenation within the cortex,
offering a spatially informed view of cerebral blood flow andmetabolic

activity. The complementarity of these methods lies in their combined
ability to capture both the timing (from EEG) and the localized blood-
based neural responses (from fNIRS). This simultaneous recording
can be especially beneficial in real-world applications like brain-
computer interfaces or in clinical settings for neurological
rehabilitation, where understanding both the immediate neural
reactions and the longer-lasting metabolic changes is crucial.

3 Materials and methods

To conduct any review about a specific topic, it is critical to
specify a specific approach to determine relevant papers. The

TABLE 1 Advantages and challenges of EEG and fNIRS in controlling prosthetic limbs (Jungnickel et al., 2019; Gao et al., 2020; Crum, 2021; Liu et al., 2021;
Ortega and Faisal, 2021; Uchitel et al., 2021; Padfield et al., 2022; Kotwal et al., 2023; Vyas et al., 2023).

Criterion Sub-criterion EEG fNIRS

Signal Quality Brain wave detection • EEG technology captures relevant brain wave signals
of an intention a

• EEG electrodes can measure electrical brain activity

• fNIRS technology monitors variations in hemoglobin
concentration (oxyhemoglobin and

deoxyhemoglobin) in the brain. Consequently,
hemoglobin concentration changes can be used to

analyze neural activity in the cortex
• fNIRS optodes can measure brain hemodynamics

Resolution • EEG offers quite high temporal resolution • fNIRS offers better spatial resolution compared to
EEG signals, leading to precise localization of brain
activity and finer-grained control over prosthetic

movements

signal clarity • EEG signals feature low amplitudes, typically
measured in microvolts

• fNIRS offers good signal-to-noise ratio (SNR)

Usability Intuitive control b • EEG-equipped prosthetics interpret and translate
brain waves signals into action

• Users can control their prosthetic limbs through
their thoughts

• fNIRS-equipped prosthetics interpret and translate
hemoglobin concentration changes signals into

action
• Users can control their prosthetic limbs through

their thoughts

Learning curve •Users become experts in generating brain signals
related to desired movements after training

sessions
• EEG-equipped prosthetic systems can adapt

to their brain activity

• fNIRS needs a less extensive training period
compared to EEG.

• fNIRS can be used to control prosthetic limbs
without susceptibility to electrical noise

System Efficiency Accuracy • EEG signals are highly susceptible to noise, such as
muscle noise and power line interferences

• fNIRS can be integrated with different technologies
using multimodal BCI approaches

• Some researchers combine EEG and fNIRS to boost
the robustness and accuracy of control systems

Brain-computer-
interface capabilities

• EEG integration with BCI establishes a link between
the user’s brain and the prosthetic limb

• fNIRS integration with BCIs establishes a link
between the user’s brain and the prosthetic limb

Latency • EEG signals are direct measures of brain activities,
i.e., faster detection of brain activities

• fNIRS detects changes in hemoglobin concentration,
which are indirect measures of brain activities,

i.e., slower detection of brain activities

Functional
Capability

Task performance • Users can sense their prosthetic limb position and
movement in real-time

• Users can adjust and refine their control over the
prosthetic limb through training and practice

Real-time
adaptability

• Some EEG-driven prosthetics include sensors and
feedback mechanisms to boost control and

coordination of prosthetic limbs

• fNIRS cannot be used in real-time applications

Real-world
Applications

• EEG-driven prosthetic limbs can be used in various
fields, such as rehabilitation

• EEG-driven prosthetic limbs can be integrated into
gaming systems and used in virtual reality

• fNIRS can be used to control prosthetic limbs
• fNIRS can be integrated into wearable robotics,
exoskeletons, and assistive devices for enhanced

mobility and functionality

aThis term refers to specific patterns in brain activity that are indicative of the user’s intention to perform a particular action or task. These signals are typically identified using neuroimaging

techniques and are crucial for understanding and interpreting the user’s mental state or commands in brain-computer interface systems.
bIntuitive control refers to a control system designed to be naturally and easily operated by users with minimal learning or effort. In the context of BCIs, it means that the system interprets the

user’s brain signals in such a way that the user can control it without requiring extensive training or conscious thought about the interaction process.
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adopted methodology in this review is shown in Figure 2. Firstly,
the search selection criteria, such as research keywords:
electroencephalography (EEG), brain-computer interfaces,
functional near-infrared spectroscopy (fNIRS), smart
prostheses, gait rehabilitation), languages, and publication
type, were defined for the period from 2016 till now. Studies
were included if they met the following criteria: (1) the study was
relevant to the review topic based on the assessment of the
abstract and the keywords; (2) the study was accessible in the
English language or could be easily translated to another
language using available translators; (3) the study published as
a review paper or article. Next, well-known and trustworthy
publishers such as Science Direct, IEEE, Springer, and Wiley
were chosen to find the relevant papers. Similarly, the keywords
were used to limit the search boundaries throughout the search
stage. Since the research quality is a crucial parameter when
conducting the research; papers published in ISI and prestigious
journals were considered to guarantee the research quality. The
initial search using the review methodology yielded many papers.
Only the relevant and unduplicated papers were sorted based on
their titles, abstracts, and contributions. The final list of papers
was then screened and reviewed accordingly.

The keywords used to search the literature are: fNIRS, EEG,
prosthetics, lower limb, BCI, gait rehabilitation, and hybrid fNIRS-
EEG. Using these keywords, there were 137 found during the search.
Among that, there were 105 papers shortlisted that satisfied the
criteria. Following the removal of duplicates, 98 papers were
included in the final review.

4 Prosthetic limb EEG-Based control

EEG is a versatile, non-invasive tool essential in diagnosing and
managing neurological and psychiatric conditions, aiding in clinical
and surgical procedures, neonatal care, and cognitive research
(Shoka et al., 2019). The EEG-based control system for prosthetic
limbs derives its functionality from the brainwaves captured by EEG

devices, which are then translated into executable commands
through a brain-computer interface. The central concept of BCI
technology is to establish a communication channel that translates
brain activity patterns into mechanical actions for prostheses. EEG
acquisition, as a technique, is known for its cost-effectiveness and
efficiency. It involves positioning multiple electrodes on the
patient’s scalp to detect cerebral signals (Al-Quraishi et al.,
2018). However, one of the challenges in using EEG is its
susceptibility to electric noise, including bioelectrical signals
such as the ECG, resulting in a relatively low signal-to-noise
ratio (SNR). Consequently, the EEG signals are characterized by
their low amplitudes, typically measured in microvolts, and their
frequency range, which spans from 1 Hz to 100 Hz. To capture
EEG signals, non-invasive methods are mostly used and invasive
methods using specialized electrodes that are attached to the cortex
or even inserted inside the brain can be used as well in rare cases
(Al-Quraishi et al., 2018). Nevertheless, our review focuses
exclusively on non-invasive techniques, which are more
commonly adopted due to their safety and ease of use. Invasive
neuroimaging offers precise control signals for prosthetics but
includes risks like infection and complex surgery. Non-invasive
methods, such as EEG and fNIRS, are safer and easier to manage
but offer lower signal resolution. The choice between them
balances signal quality against safety and practicality.

4.1 EEG-based control architecture

Numerous methods are employed to orchestrate the movement
of prosthetic limbs, yet the non-invasive EEG approach stands out
for its direct and substantial control capabilities. This system
harnesses brain signals to guide the movement of the prosthetic,
transforming cerebral activity into actionable commands via BCI
technology. Consequently, amputees gain a sense of regained
autonomy, akin to their natural limb functionality. Moreover,
this technology allows them to perceive touch sensations with the
prosthetic limb (Murphy et al., 2017).

FIGURE 1
An illustration of how lower limb muscles are controlled by central nervous system during the gait cycle. Reprinted with permission from Ref. (Al-
Shuka et al., 2019). The figure illustrates the twowalking phases: The stance and Swing phases. Sub-phases of the Stance phase are indicated in the figure:
initial contact IC, opposite toe off OT, heel rise HR, and opposite initial contact OI. Sub-phases of the Swing phase are toe-off TO, feet adjacent FA, and
tibia vertical TV.
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Figure 3 illustrates the architecture of an EEG-based, brain-
controlled prosthetic leg, delineating the core stages inherent to
various EEG-based control system designs. These stages
comprise (A) Signal Detection and Sampling (B) Signal

Transmission and Acquisition, and (C) Mapping of the Signal
to the Prosthetic Leg. The specifics of each stage will be
elaborated in the subsequent sections (Murphy et al., 2017;
Al-Quraishi et al., 2018).

FIGURE 2
Flowchart of the selection process of papers used in this review.
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4.1.1 Signal Detection and Sampling
Current EEG electrode technology, especially the conventional

Ag/AgCl wet electrodes, has its fair share of limitations despite
providing a high signal-to-noise ratio (SNR). While Ag/AgCl
electrodes are proficient in detecting EEG signals with high
accuracy, they necessitate conductive gel and meticulous skin
preparation, making the process lengthy and unsuitable for
prolonged signal acquisition (Al-Quraishi et al., 2018; Bansal and
Mahajan, 2019; Soufineyestani et al., 2020; Gu et al., 2021; Hu et al.,
2021; Yuan et al., 2021). To solve these issues, various dry electrodes
have been explored. For instance, Liu et al. (2019) demonstrated
significant progress with the introduction of nano-modified dry
electrodes. These novel electrodes came in two lengths to cater to
various head regions, striking a balance between user comfort and
signal quality. After extensive comparison and clinical testing, Li
et al. (2021) concluded that these electrodes could feasibly replace
traditional Ag/AgCl wet electrodes. However, they emphasized the
need for further evaluation across varied mental tasks and
demographics. In a notable achievement, Li et al. (2021) developed
a polyacrylamide/polyvinyl alcohol super-porous hydrogel-based
semi-dry electrode, particularly effective for EEG recording on hairy
scalps. This new electrode showcased significant potential, marked by a
temporal cross-correlation coefficient of 0.941 compared to
conventional wet electrodes. Recent advancements by Fiedler et al.
(2015) introduce dry electrodes made of polyurethane coated with Ag/
AgCl, significantly enhancing the reliability of EEG signal detection.
Other technologies, such as MEMS and 3D printing, facilitate the
development of dry electrodes but come with their challenges, such as
structural fragility and rigidity, respectively.

Table 2 compares wet and dry EEG electrodes and highlights
advancements in dry electrode technology. While traditional wet
electrodes use conductive gels for improved signal quality and lower
impedance, dry electrodes negate the need for such gels, enhancing
convenience and portability. However, dry electrodes tend to have

higher impedance and susceptibility tomovement artifacts, although
at lower impedances, they generate less noise than wet electrodes.
Another important aspect that plays a significant role in choosing
the electrodes is whether to choose active or passive electrodes. They
differ based on signal handling; active electrodes pre-amplify signals
at the scalp for reduced transmission noise, whereas passive
electrodes amplify signals at the endpoint, highlighting trade-offs
in cost and noise potential. Choosing the appropriate electrode
type—wet/dry and passive/active—necessitates balancing signal
quality and convenience, tailored to specific experimental or
clinical needs. In summary, while traditional wet electrodes like
Ag/AgCl are effective, newer innovations in dry and semi-dry
electrodes are paving the way for more efficient, comfortable, and
longer-term EEG signal acquisition (Lopez-Gordo et al., 2014;
Fiedler et al., 2015; Hinrichs et al., 2020).

To accurately capture the desired signals, it’s imperative that the
electrodes be positioned over the area corresponding to the signal’s
origin. For prosthetic limb control applications, electrodes are
strategically situated on the motor cortex, the part of the brain
responsible for generating movement-related signals (Casson et al.,
2018; Arpaia et al., 2023). Highlighting the significance of electrode
placement, a study by Domingos et al. (2018) determined that
selecting electrode locations tailored to the specific application
boosts the reliability of the results, thereby enhancing EEG system
efficacy. Typically, the arrangement of electrodes adheres to the
10–20 international system, the layout of which is depicted in Figure 4.

The minute electrical signals produced by the human brain
necessitate amplification to discern voltage variations for analytical
interpretation. Amplifiers fulfil this role by intensifying the input
voltage, in the order of tens of microvolts, multiplying it by factors
that can reach up to one million. Recent studies have explored the
development of innovative amplifiers tailored to EEG systems
(Karacaoğlan and Tokmakçi, 2017; Portelli and Nasuto, 2017; Lee
et al., 2019a; Lin et al., 2019; Shad et al., 2020).

FIGURE 3
Block diagram of an EEG-based control for a prosthetic leg.
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4.1.2 Signal Transmission and Acquisition
Digitized EEG signals are transmitted wirelessly to a

computer via the OpenBCI USB dongle, which serves as a
transceiver. The raw brainwave acquisition process is
executed using OpenBCI software. This allows for the
visualization of raw EEG data during the recording phase
and facilitates its storage on the computer in a text format.
Subsequently, this stored data undergoes pre-processing,
wherein it is cleaned and filtered, and is then utilized for the
classification process through specialized software such as
MATLAB or Python. Figure 5 illustrates the general
brainwave processing approach employed for prosthetic
control (Hassan and Hussain, 2023).

Through specialized computer software, raw EEG data is filtered to
eliminate noise and artifacts that affect the integrity of the signal. These
artifacts may originate from both internal and external sources,
potentially misrepresenting the true brain signal. Any recorded
event not originating from the brain is considered noise or an
artifact. These can be divided into two categories: physiological and
extra-physiological artifacts. Physiological artifacts, generated
internally, include those from electromyography (EMG),
electrooculography (EOG), and electrocardiography (ECG). In
contrast, extra-physiological artifacts arise from external
environmental factors. There are various techniques for noise
removal, with Wiener and adaptive filtering being among the
primary methods. In adaptive filtering, the extent of contamination

TABLE 2 Comparison between dry and wet electrodes at higher and lower impedances (Hinrichs et al., 2020).

At low impedances At high impedances

Dry electrodes Wet electrodes Dry electrodes Wet electrodes

Mean 10.0 µV2 33.1 µV2 45.0 µV2 11.1 µV2

Median 2.6 µV2 3.9 µV2 4.9 µV2 3.2 µV2

SD 30.5 µV2 121.4 µV2 189.0 µV2 21.4 µV2

Z −4.98 −4.98 3.36 3.36

P 0.0001 0.0001 0.0008 0.0008

FIGURE 4
EEG electrode placement based on the international standard framework 10–20. Reprinted with permission from (BruceBlaus, 2024).
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is initially assessed by iteratively adjusting weights through an
optimization algorithm. The resultant noise estimate is then
subtracted from the original EEG signals. On the other hand,
Wiener filtering is a linear statistical approach aimed at closely
approximating the real EEG signal. It operates on the principle of
linear time-invariance to minimize the mean square error between the
true and estimated signals. This method’s linearity is achieved by
calculating the power spectral density of both themeasured and artifact
signals. However, the implementation of Wiener filtering presents
challenges, particularly the requirement for periodic calibration as
indicated in the references (Elsayed and Bayoumi, 2017; Shoka
et al., 2019).

After EEG signals are processed, features are extracted from the
filtered data for signal classification. Distinctive features are chosen for
their efficacy in accurately describing varying EEG signals, guided by
statistical measures defined by the programmer. Commonly used
features include time-domain measures and frequency band power
features. Before training a model, it is essential to assess the
significance of the available data volume. A limited dataset can
lead to overfitting, resulting in data misrepresentation and
incorrect outcomes. Following feature extraction, these features are
employed by chosen classifiers—such as artificial neural networks,
logistic regression, support vector machines, and linear discriminant
analysis—to interpret and execute commands for application use. The
classifier’s overriding objective is to differentiate between distinct
classes, as referenced in (Arpaia et al., 2023).

4.1.3 Mapping signal to prosthetic leg
To control a prosthetic leg using brainwaves, signals are relayed

from the computer to a microcontroller, such as the Arduino Uno,
through Bluetooth (Murphy et al., 2017). The Arduino board is a cost-
effective, open-source microcontroller that is programmable via the
Arduino Software (IDE). It operates through aUSB cable connected to
a laptop or an external battery. The ArduinoUno interprets brainwave
data to produce appropriate movement commands. These commands
are used by the DC motor within the prosthetic limb to modulate the
prosthetic leg’s speed, position, and direction. Additionally, the
biocompatibility of prosthetic materials is critical to prevent
adverse biological reactions, such as toxicity (Brack and Amalu, 2021).

4.2 EEG technology: new controlling
approaches

Recent research aims to predict an individual’s lower limb
movements via EEG signals to enhance control over prosthetic

limbs. Wang et al. (2018) documented a novel multimodal
method to manipulate a lower-limb exoskeleton, with four
subjects participating in the study. This exoskeleton adjusted to
the user’s motion intentions decoded from EEG signals. Subjects
executed basic motions such as walking forward, standing up, and
sitting down. The study also tested two different Brain-Computer
Interface systems: one relying on steady-state visual evoked
potentials (SSVEP) and the other on motor imagery. As depicted
in Figure 6, the results demonstrated high accuracy rates, achieving
90% for SSVEP and between 94% and 97% for motor imagery, in
classifying the intended motion tasks (Wang et al., 2018). However,
Subject 3 (S3) yielded lower classification accuracies with motor
imagery BCI; this disparity may reflect the inherent variability of
EEG signals across individuals and their susceptibility to numerous
influencing factors.

Hasan (2022) explored the potential of pre-emptively
identifying gait intention, a vital element in crafting and
actualizing prosthetics. Prompt recognition of gait intention
enables the timely calibration of prosthetic system settings to
align with user demands. The study spanned diverse terrains:
asphalt, brick, concrete, grass, and gravel. The researchers utilized
an ankle-mounted camera, an onboard chip, and a low-power
Raspberry Pi unit to achieve their objectives. Their findings
revealed exceedingly precise forecasting of terrain types and
transitions, demonstrating the capacity to anticipate an imminent
terrain change of 0.5 µs–1.3 µs prior to taking the first step onto new
terrain. This research markedly advances the development of lower
prostheses that mimic natural limb function (Hasan, 2022).

Zhang et al. (2022) presented a machine-learning algorithm
adept at discerning human motion intentions through sensor data,
such as displacement, force, and velocity of wheel movement. This
innovation holds significant promise for enhancing the synergy
between humans and robotic assistance. Employing a bi-
directional long short-term memory model, the system accurately
identifies various actions—walking, turning, falling—with a stellar
accuracy rate of 99.61%. In a parallel approach, they utilized a radial
basis function neural network coupled with an adaptive sliding
mode controller (RBFNN-ASMC) to capture and adjust for a
patient’s behavioral intentions. The RBFNN-ASMC controller
demonstrated superior gait correspondence compared to
traditional PID controllers, as depicted in Table 3 (Zhang
et al., 2022).

4.3 Advantages and disadvantages of EEG
for controlling prosthetic

Although EEG signals are integral in prosthetic limb control due
to their high temporal resolution, safe, non-invasive acquisition, and
the variety of features they offer, they come with a trade-off in spatial
resolution and are prone to interference from artifacts like EOG,
ECG, EMG, and power lines, as illustrated in Table 4. This spatial
limitation—around 1 cm—becomes more pronounced with
increased electrode-brain distance, resulting in signal attenuation
and potential performance drawbacks for the system. Moreover,
EEG signals’ non-stationary nature means their frequency and
spectral content shift over time, which can further complicate
signal analysis. Despite these challenges, the advantages of EEG,

FIGURE 5
The block diagram of used method to use brainwave for
prosthesis control.
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such as its ease of use and the safely harvested non-invasive data, are
invaluable, especially in biomedical applications (Arpaia et al., 2023;
Liu et al., 2024). Two feature extractionmethods in the time domain,
LP and ICA, stand out, allowing for the derivation of valuable
insights like event-related potentials, mean, standard deviation, and
fractal dimension (FD).

5 Prosthetic limb fNIRS-Based control

Functional Near-Infrared Spectroscopy employs near-
infrared light to probe cerebral activity, capitalizing on the
transparency of human tissues in the near-infrared range (Von
Lühmann et al., 2021). Contrastingly, while both fNIRS and EEG
are non-invasive, they differ significantly in resolution: fNIRS
provides high spatial resolution (in millimeters) but lags in
temporal resolution (on the scale of seconds) opposite to
EEG’s rapid temporal sensitivity. Currently, achieving
concurrent high temporal and spatial resolutions remains

elusive for clinical applications. The fNIRS mechanism depends
on the differential absorption and scattering characteristics of
NIR light in brain tissue (Chen et al., 2020; Pinti et al., 2020). In
this technique, NIR light is exposed to the scalp, passing through
to interact with cranial tissues. The resulting diffuse reflectance is
then captured by detectors, exploiting the minimal absorption of
NIR light by water and lipids to achieve tissue penetration
(Althobaiti and Al-Naib, 2020; Althobaiti et al., 2018; McGhie
and Aldrich-Wright, 2022).

5.1 fNIRS-based control architecture

The control architecture utilizing fNIRS technology for
prosthetic legs is depicted in Figure 7. The architecture
encompasses a series of sequential phases including signal
acquisition, processing, feature extraction, and classification. The
subsequent sections will delineate the fundamental principles and
methodologies employed in each of these phases.

FIGURE 6
Classification results of four basic movements obtained from subjects (S1, S2, S3, and S4) using (A) SSVEP and (B)motor imagery BCIs. Reprintedwith
permission from (Wang et al., 2018).

TABLE 3 Accuracy and elapsed time of the three algorithms for human activity events. Reprinted with permission from (Zhang et al., 2022).

Maximum error Average error Standard deviation

Hip Knee Hip Knee Hip Knee

PID 16.718° 4.556° 1.405° 1.822° 2.235° 1.497°

RBFNNASMC 16.628° 2.996° 0.197° 0.037° 1.486° 0.269°
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5.1.1 Signal Detection and Sampling in
fNIRS systems

fNIRS systems consist of LEDs, detectors, and processing circuits.
LEDs emit light onto localized tissue areas at various wavelengths, and
detectors capture the back-scattered light, with interactions varying
within the near-infrared (NIR) spectrum. Optodes, combining sources
and detectors, facilitate these interactions. LEDs are favored for their
low power consumption, reliability, and long lifespan, typically using
wavelengths of 660, 670, 700, 850, 870, and 940 nm. Laser diodes, such
as GaAs/AlGaAs and VCSELs, are possible alternatives to LEDs,
offering quite low energy consumption, high-intensity coherent

output, and high peak power, commonly used in the 850 nm range
and from 750 to 980 nm. As light traverses through human tissue, its
intensity diminishes significantly, arriving at detectors ranging from
sub-milliwatts to picowatts, requiring highly sensitive detectors to
accurately capture these attenuated signals. Notable examples
include charge-coupled device cameras, photomultiplier tubes,
avalanche photodiodes, and light-sensitive diodes. Particularly in
fNIRS systems, silicon photomultipliers, known for their high gain,
rapid acquisition speed, exceptional responsivity, and very high
sensitivity are being utilized, as detailed in Refs. (Almajidy et al.,
2020; Von Lühmann et al., 2021; Nareshkumar, 2022).

TABLE 4 Different techniques to analyze EEG signals. Reprinted with permission from (Luján et al., 2021).

Domain of analysis Feature extraction method Feature

Time

• Linear prediction (LP) • Event-related potentials (ERP)

• Independent component analysis (ICA) • Statistics of signal power (mean, standard deviation, 1st difference,
2nd difference, entropy, ANOVAS)

• Hjorth features (activity, mobility, complexity)

• Fractal dimension (FD)

• High order crossings (HOC)

Frequency

• Fast Fourier transform (FFT) • Band power

• Short-time Fourier transform (STFT) • High order spectra (HOS)

• Spectrogram

• Autoregressive method (ARM)

• Eigenvector

Time-Frequency

• Wigner Ville distribution • Combination of time and frequency features

• Scalogram

• Hilbert-Huang spectrum

• Discrete wavelet transform (DWT)

• Wavelet packet decomposition (WPD)

Spatial-Time-Frequency • In multielectrode analysis, the spatial dimension is calculated by the
geometrical position of the electrodes

• Combination of time and frequency features

FIGURE 7
Example of the workflow of fNIRS-based control architecture.
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Although commercial fNIRS systems are advanced, they lack
FDA approval, and standard protocols for device calibration, signal
processing, data analysis, and statistical methods are not established
(Yücel et al., 2021). The main challenge is that placing multiple
sources and detectors on the scalp can be time-intensive, especially
with hair, and full head coverage is impractical due to the large
number of optodes required (Pfeifer et al., 2017; Quaresima and
Ferrari, 2019). Enhancements to headgear design and attachment
methods are critical. Initiatives like the study by Liu et al. (2022)
address limitations such as traditional equipment being expensive,
cumbersome, and complex. They introduced a compact silicon
photomultiplier (SiPM) detector that is compact, immune to the
magnetic field and has high gain, making it suitable for monitoring
brain activity. This design facilitates expanding the array of sources
and detectors for high-density recordings, with placement based on
the target application and the region of interest (ROI), following the
10–20 system for electrode positioning.

Challenges in fNIRS signal interpretation stem from light
traversing various brain tissues and extracerebral artifacts from
the scalp and skull. Standard fNIRS captures a mix of cerebral
and non-cerebral signals, with superficial layers introducing
significant noise. Correcting these measurements is complex due
to dynamic signal fluctuations related to probe distance and internal
and external biological noises. To isolate cerebral signals from noise,
researchers use short-channel subtraction. fNIRS systems employ
long separation channels (~3 cm) for assessing cortical
hemodynamic changes and short separation channels (~1.5 cm)
for filtering noise. Short channels measure extracerebral signals to
reduce noise by subtracting these readings from long channel
signals. This process, while not optimally standardized, shows
enhanced signal fidelity with minimized source-detector distances
of short channels, highlighting their importance in optimizing
fNIRS measurement reliability (Brigadoi and Cooper, 2015; Zhou
et al., 2020; Noah et al., 2021; Paranawithana et al., 2022).

fNIRS technology has three modalities: time-domain,
continuous wave, and frequency-domain. Time-domain offers
high spatial resolution and depth but is costly and bulky.
Continuous wave is portable and affordable with a high sampling
rate but has limited depth and can’t separate absorption from
scattering well. Frequency-domain balances accuracy, sampling
rate, and depth. Researchers must choose based on their study’s
needs, considering factors like resolution and cost, as summarized in
this Ref. (Althobaiti and Al-Naib, 2020).

In a study by Almulla et al. (2020), continuous wave fNIRS was
used to evaluate brain hemodynamic responses in the motor cortex
during standing and sitting tasks. The participants, nine in total, were
instructed to perform real and imagined movements associated with
these tasks across five trials. Statistical parametric mapping (SPM)
analysis confirmed bilateral activation of oxyhemoglobin for both
actual movements and imagined tasks. Notably, sitting tasks elicited
higher oxyhemoglobin activation than standing tasks, consistent across
all measurement channels in the two experiment sets. Furthermore, six
features were extracted from the pre-processed HbO signals: signal
mean, signal slope, signal skewness, signal kurtosis, signal variance, and
signal minimum. Analysis using various classifiers found that the
combination of signal slope and signal variance yielded high accuracy
for both real and imagined task trials. These results have the potential
to advance rehabilitation practices for lower limbs.

In a subsequent study by Almulla et al. (2022), the fNIRS system
was employed to investigate brain hemodynamics associated with
postural tasks. This study specifically focused on the observation and
motor imagination of such tasks. The research involved 13 healthy
participants, each performing five trials of standing balance tasks
across three experimental conditions: Action Observation (AO),
Motor Imagery (MI), and a combination of both (AO+ MI). The
findings revealed significant activation in prefrontal and motor
regions during dynamic and static standing tasks, particularly
noticeable in the combined AO+ MI and MI settings. While the
AO condition alone also led to activation, the combined AO+ MI
condition elicited higher activation patterns, especially within the
frontopolar area during more demanding balance tasks.
Additionally, this combination condition demonstrated significant
engagement of the premotor and supplementary motor cortices,
which play a crucial role in balance control. Compared with the
isolated AO and MI conditions, the AO+ MI setup resulted in the
most pronounced activation. These findings not only align with
previous research but also underscore the effectiveness of fNIRS as a
valuable tool within the realm of rehabilitation diagnostics.

5.1.2 Signal Transmission and Acquisition
The process of acquiring signals in fNIRS involves the use of

optodes to pick up brainwave activity. As the optodes detect these
signals, they’re subsequently amplified and converted into a digital
format for transmission. Typically, a USB connection facilitates the
transfer of these digitized signals to a computer for monitoring and
analysis. Specialized software, such as NIRStar or Aurora, handles the
collection of raw data, allowing for real-time visualization during the
recording phase. The data is then stored on the computer system for
further manipulation. This raw data undergoes an initial phase of pre-
processing, where it’s cleaned and filtered to remove any unwanted
noise or artifacts that could potentially skew results. For the
classification process, advanced analytical tools like MATLAB or
Python are utilized. Here, the technique for brainwave analysis
adheres to a framework which is depicted in Figure 5. Following
this, relevant features are meticulously extracted from the pre-
processed signals to accurately characterize them, and these features
serve as the input for various classification algorithms. The classification
stage is vital, as it distinguishes different brainwave patterns and
correlates them to specific instructions for practical applications.
Among the numerous classifiers available, some of the most
frequently employed include Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), Quadratic Discriminant Analysis,
and k-nearest Neighbor. These classifiers have been verified as effective
in numerous studies, as indicated by the references (Pfeifer et al., 2017;
Khan R. A. et al., 2018; Klein and Kranczioch, 2019).

5.1.3 Mapping signal to prosthetic leg
fNIRS is emerging as a promising method for controlling bionic

prosthetic limbs due to its low susceptibility to noise and immunity to
electrical interference, advantages over other brain-computer interface
technologies. In a typical setup, a microcontroller, such as the Arduino
Uno, retrieves the preprocessed brainwave data from the computer. Its
primary role is to interpret these brainwave signals, translating them
into precise commands that drive the prosthetic leg’smovements. ADC
motor, under the command of the microcontroller, articulates the leg,
effectively converting cognitive intentions into physical motion.
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5.2 fNIRS technology: New controlling
approaches

Recent studies have explored the use of fNIRS to enhance lower
prosthetic limbs. Möller et al. (2019) assessed brain activity in
29 transfemoral amputees and 16 healthy subjects during level
walking via fNIRS. The authors posited that amputees would
exhibit greater brain activity than the healthy subjects. Subjects
with transfemoral amputations were dichotomized into two groups:
those with non-microprocessor-controlled prosthetic knees (n = 14)
and those with microprocessor-controlled prosthetic knees (n = 15).
The findings indicated increased cortical brain activity in amputees
with non-microprocessor-controlled knees during ambulation,
suggesting indirect benefits of microprocessor-controlled knees in
reducing cerebral exertion in amputees (Möller et al., 2019).

Furthermore, Li et al. (2020) investigated a prediction method for
walking intentions using fNIRS measurements to refine the control
commands of walking assistive devices. The cerebral hemoglobin
signal from 30 subjects was captured using fNIRS technology, and

subsequently processed to extract the Teager-Kaiser energy operator.
The authors employed a gradient boosting decision tree (GBDT)
model for real-time detection, achieving high accuracy in discerning
walking intention with a false positive rate of 2.91%, a true positive
rate of 100%, and a detection latency of 0.39 ± 1.06 s. The study
confirmed the practicality of using fNIRS to decode self-pacedwalking
intentions (Li et al., 2020).

Schack et al. (2022) utilized functional near-infrared spectroscopy
to assess walking performance and prefrontal cortical (PFC) activity in
33 healthy participants and 39 lower limb amputees. The study
investigated three conditions: walking on even terrain, walking
while carrying a tray holding two cups of water and walking on
uneven terrain. The research compared PFC activity between the two
groups—healthy subjects and amputees—concluding that PFC
activity increased for amputees during ambulation on both even
and uneven surfaces as depicted in Figure 8. This figure clarifies
that, across all conditions, each graph segment (a, b, c) juxtaposes the
PFC metrics of healthy subjects against those of amputees. This
indicates that lower limb amputees require heightened cognitive

FIGURE 8
Bar charts of the mean PFC activation (Arbitrary Unit) with 95% confidence intervals (shown as light gray lines) for each of the 20 channels for
different walking conditions (A)UW (Usual walking with self-selected walking speed); (B)WCT (walking and carrying a tray with two cups filled with water),
and (C) WUT (walking on uneven terrain). Reprinted with permission from (Schack et al., 2022).
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attention during walking, as their PFC activity levels exceed those of
healthy individuals Schack et al. (2022).

5.3 Advantages and disadvantages of fNIRS
for controlling prosthetic

fNIRS offers the significant advantage of collecting data on
prosthetic use with high spatial resolution, as illustrated in
Figure 6. Its limitation, however, lies in its low temporal
resolution. Despite this drawback, the characteristics of
fNIRS—portability, non-invasiveness, and cost-effectiveness—make
it a viable option for a range of applications. One notable limitation of
fNIRS concerns its penetration depth; it does not extend deeply into
the inner cortical areas. Additionally, signal acquisition is susceptible
to artifacts, such as those caused by movement. There can also be
propagation delays when capturing hemodynamic responses linked to
specific neuronal activities (Xu et al., 2021).

In comparing functional near-infrared spectroscopy to other
neuroimaging techniques such as EEG, MRI, and PET, fNIRS stands
out for its balance of cost, accessibility, and user-friendliness. Unlike
MRI and PET, fNIRS is non-invasive, portable, and significantly less
expensive, making it a more accessible option for continuous use in
controlling prosthetic limbs. Its temporal resolution surpasses that
of MRI and PET, though it falls short of EEG, and while its spatial
resolution is moderate, it remains sufficient for identifying cortical
activation patterns pertinent to prosthetic control. Ethical
considerations, including informed consent, neural data privacy,
and potential psychological impacts of long-term BCI integration,
are of paramount importance. Ensuring patient safety through

rigorous testing to rule out adverse effects contributes to the
responsible deployment of fNIRS in clinical and non-
clinical settings.

Unlike EEG, fNIRS is less affected by scalp-sourced electrical
noise and offers better spatial resolution, though it has slower
temporal resolution and is limited by light penetration, affecting
the depth of measurable neural activity. These characteristics
position fNIRS as a promising, non-invasive alternative for real-
time applications, combining practicality with a balance of spatial
and temporal data quality.

6 Combining EEG and fNIRS to control
lower limb prosthetics

The potential of EEG and fNIRS to uncover brain activity has
captured the interest of scientists in recent years. As a result,
numerous studies have evaluated the feasibility of employing
EEG and fNIRS for control purposes in gait rehabilitation and
brain-computer interface applications (Al-Quraishi et al., 2018;
Tariq et al., 2018). Researchers have begun to employ a hybrid
system combining EEG and fNIRS as a non-invasive hybrid
technique, introducing innovative approaches in BCI technology
(Khan et al., 2021). The primary benefit of this fusion is the ability to
compensate for the individual limitations of each technique through
their integration.

For example, Khan and Hong (2017) proposed a hybrid EEG-
fNIRS system capable of interpreting eight, which is quite a
significant number, of distinct brain commands for BCI
applications, as depicted in Figure 9. Their methodology attained

FIGURE 9
Block diagram of hybrid EEG-fNIRS system. Reprinted with permission from (Khan and Hasan, 2020).
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a decoding accuracy of 75.6% for four commands using fNIRS and
an 86% accuracy rate for another four commands derived via EEG. It
is worth noting that such a system is quite complex and integrating
and processing data from two different modalities is also complex
and requires advanced algorithms. Moreover, effective use of the
system requires significant user training to achieve optimal
performance. Furthermore, the research also identified certain
constraints, such as the necessity for manual feature extraction,
which could influence classification precision.

Multiple studies have assessed the efficacy of integrated EEG-
fNIRS systems in comparison to the individual use of each
technology (Ahn and June 2017; Cicalese et al., 2020). For
example, Li et al. (2017) reported that the combined EEG-fNIRS
approach yielded a marked increase in classification accuracy,
reaching around 90%, superior to that of either EEG or fNIRS
when used separately. Nonetheless, the integration presents salient
challenges: foremost are the delayed hemodynamic response
inherent to fNIRS, which compromises temporal resolution, and
the intricate setup required for colocating fNIRS optodes with EEG

electrodes (Li et al., 2017). In seeking to overcome such limitations,
Qiu et al. (2022) introduced a novel multimodal fusion framework
that harnesses both EEG and fNIRS. This framework utilizes
advanced feature extraction and selection across multiple
domains to enhance BCI functionality and ensure greater
classification precision. Their methodology underwent empirical
testing through motor imagery (MI) and mental arithmetic (MA)
tasks within an EEG-fNIRS framework. The results underscore the
superiority of this fusion technique, demonstrating classification
accuracies of 96.74% in the MI task and an exceptional 98.42% in the
MA task (Qiu et al., 2022).

In a notable study, Al-Quraishi et al. (2021) explored the
interplay between brain activity and hemodynamic responses
using the multimodal neuroimaging capabilities of EEG and
fNIRS. The research involved experiments that focused on ankle
joint movements, with twenty participants serving as subjects. These
individuals were examined using a configuration of twenty EEG
electrodes and thirty-two fNIRS optodes, which were strategically
positioned over the motor cortex. The EEG signals revealed an

FIGURE 10
Confusionmatrix of (A) fNIRS alone; (B) EEG alone; (C) fNIRS–EEG based on all channels, and (D) fNIRS–EEG based on selected channels. Reprinted
with permission from (Al-Quraishi et al., 2021).
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event-related desynchronization (ERD) in the 8–11 Hz frequency
range. Concurrently, the fNIRS data were analyzed to measure
variations in oxygenated hemoglobin (oxyHb) concentration.
Pearson’s correlation coefficient was utilized to evaluate the
relationship between oxyHb changes and the ERD during ankle
joint movements. The analyses produced compelling evidence of a
negative correlation between the ERD and hemodynamic responses.
Notably, channels Ch28, Ch25, Ch32, and Ch35 from fNIRS
exhibited significant correlations with EEG channels Cz and Cpz,
particularly during right ankle joint movements. These channels
were subsequently utilized for classifying movements with enhanced
precision. Statistical analyses solidified the understanding that the
dual-modality approach surpassed the performance of the singular
modalities in classifying ankle joint movements, achieving an
average accuracy of 93.01% ± 5.60% with a p-value <0.01. These
results are presented in Figure 10 (Al-Quraishi et al., 2021), which
includes a confusion matrix for both individual and hybrid
modalities.

While the synergistic EEG-fNIRS system demonstrates superior
performance in comparison to each standalone system, there
remains a significant pursuit for advancing the system’s accuracy
through the development of innovative processing techniques and
classification methodologies. Table 5 presents a comparison of
selected studies employing hybrid systems within their
experimental frameworks. The combination of EEG and fNIRS
modalities for prosthetic applications presents a promising
avenue to improve brain-computer interfaces, yet it brings forth
several challenges, especially in configuring both fNIRS optodes and
EEG electrodes. A notable constraint arises from the rather complex
setup and arrangements of these modalities, leading to difficulties in
managing backend wiring. The integration of numerous electrodes
and optodes for a large number of channels requires meticulous
handling to prevent wire entanglement, ensuring a dependable
connection without compromising the user’s mobility or comfort.
Wireless connections could be used to avoid using wires and optical
fibers, but at the expense of the signal quality and the added
complexity of the overall system. Another significant drawback is
the considerable footprint of the combined EEG and fNIRS system.
The necessity for multiple electrodes and optodes across the scalp
can result in a cumbersome and bulky configuration, potentially
impeding the widespread adoption of prosthetic applications.
Streamlining the design to reduce overall size and weight while
preserving functionality becomes a vital consideration to enhance
user acceptance and practicality. It is worth mentioning that
mitigating the risks of signal contamination from external light
sources or electromagnetic interference with the sources and
detectors of the hybrid system is essential for obtaining reliable
data in real-world scenarios.

Consideration for user comfort and practicality is also essential
in applying non-invasive EEG and fNIRS technologies outside
clinical settings. Innovations in sensor design strive for minimal
obtrusiveness and optimized wearability, balancing technical
efficacy with user-centric factors. Longitudinal studies provide
data on ergonomic integration and the clinical relevance of these
systems, ensuring they meet healthcare’s patient-centered goals. As
the potential of EEG and fNIRS grows, their everyday applicability
hinges on addressing these user experience challenges (Das et al.,
2016; Park et al., 2020).

The adoption of EEG and fNIRS technologies in clinical settings
faces specific challenges that need to be addressed for their optimal
utilization. One critical consideration is the choice of EEG device
type, which depends on features and applications. For instance, the
wireless EEG setup proves beneficial when monitoring patients who
need freedom of movement, as opposed to clinical EEG devices
where patients are required to remain stationary during recording to
prevent signal distortion. Overcoming the challenge of signal
distortion during movement hinges on the design mechanism
employed. In a wireless EEG setup, the system is specifically
designed to measure brain activity during motion with minimal
signal loss, ensuring accurate recordings even when patients are
mobile. Despite the ambition for a system with high temporal and
spatial resolutions in clinical settings, the realization of such a goal
remains a challenge. Striking a balance between achieving superior
resolution and maintaining practicality in clinical applications poses
a considerable obstacle. Researchers and developers continue to
explore ways to enhance the resolution of EEG systems for clinical
use, but the current technological landscape presents limitations in
achieving the desired level of both temporal and spatial precision. In
the case of fNIRS technology, its utilization in clinical settings relies
on exploiting the absorption and scattering properties of near-
infrared (NIR) light to gather information about brain activity.
While fNIRS provides valuable insights, challenges persist in
optimizing its accuracy and reliability for clinical applications.
Overcoming these obstacles involves refining the technology’s
sensitivity and specificity, ensuring robust performance across
different patient populations and clinical conditions. Clinical
trials with large groups of subjects with various clinical situations
are needed. One of the important limitations of such systems can be
foreseen when they are integrated with the real prosthesis due to the
socket designs that offer comfort to the patients. Hence, the
designers of prosthetics and hybrid (fNIRS, EEG, and EMG)
system designers should consider this very important challenge.
For instance, miniaturized EMG sensors have been indeed
integrated into the sockets offering an excellent starting point for
such research problems (Su et al., 2023).

The recent advances in machine learning algorithms used in
signal processing have a considerable impact in enhancing the
performance of hybrid systems and getting higher classification
accuracy. The common machine learning (ML) algorithms used
to augment classification accuracy include linear discriminant
analysis (LDA), support vector machine (SVM), artificial neural
networks (ANNs), etc. A study by FJ Ramírez-Arias investigated the
effect of ML algorithms in EEG signals classification (Ramírez-Arias
et al., 2022). They aimed to relate the motor movements, including
right and left hands, fists, feet, and relaxation, to their signals.
Therefore, EEG datasets of 30 Physionet subjects were utilized to
train and evaluate nine ML algorithms. The results showed how the
advances in ML algorithms yielded higher classification accuracies.
For instance, LDA, SVM, and ANNs models reported accuracies of
92.3%, 98%, and 99.9%, respectively (Ramírez-Arias et al., 2022).

Similarly, ML algorithms exhibit remarkable performance and
superior accuracy in the classification of hybrid EEG-fNIRS systems.
When information obtained from fNIRS and EEG were used in ML
algorithms, the hybrid EEG-fNIRS BCI system’s efficacy and
accuracy were notably improved, as proved by Padmavathy et al.
They showed that the novel Deep Neural Network yielded the best
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accuracy rate of 84% for integrated EEG-fNIRS compared to
independent EEG and fNIRS with an accuracy of 74% and 75%,
respectively. Although multi-modal recording techniques can
greatly improve system performance, tremendous advances in
machine learning algorithms and BCIs have greatly improved the
performance of these techniques (Padmavathy et al., 2020).

Though a considerable amount of research has been carried out
in the last decade, there are several possible directions for future
research. (i) Understanding the neural control mechanisms by
investigating neural signals for lower limb movements using EEG
and fNIRS. The approach for that could be by identifying specific
EEG and fNIRS signal patterns for various movements (e.g.,
walking, running, climbing stairs) and developing algorithms to
decode these signals into commands for prosthetic control. More
importantly, training users to generate consistent neural signals
through motor imagery tasks. (ii) Real-time signal processing and
feedback with the objective of ensuring real-time processing of EEG

and fNIRS signals for immediate prosthetic control by developing
real-time signal processing pipelines for filtering, preprocessing, and
decoding signals. (iii) Integration with existing prosthetic
technologies by collaborating with prosthetic manufacturers to
integrate neural control modules. Moreover, conduct user trials
to validate the integrated system’s performance. (iv) Clinical trials
and validation by design and conduct clinical trials with amputees
using the hybrid BCI prosthetic system. Furthermore, measuring the
outcomes like control accuracy, user comfort, ease of use, and
functionality. (v) Rehabilitation and training programs by
designing training protocols for users to generate consistent
neural signals and provide rehabilitation sessions to enhance
motor imagery capabilities. Finally, (vi) the ethical and regulatory
considerations should be looked at to ensure compliance with
medical device regulations and safety standards. Moreover, a
special emphasis should be on data security and user
consent concerns.

TABLE 5 Summary advantages and disadvantages of selected papers that use hybrid systems.

Author, year Advantages Disadvantages

Von Lühmann et al. (2017) • Modular design • Limited channel numbers, only 13 fNIRS channels,
and 8 EEG channels• Both wet and dry EEG electrodes can be used

• Relatively limited scalability can only be theoretically
scaled up to four modules

• 3-axis accelerometer for local movement monitoring

• Capability of imaging not demonstrated
• Shared ADC architecture

• Modules possess a large footprint

• Not capable of whole scalp sampling

• The weight of each module is unclear

Kassab et al. (2018) • 128 fNIRS channels, 32 EEG channels • Increased size, weight, and cabling as compared to
the above system• Same advantages as of Ref. (Von Lühmann et al., 2017)

• Same limitations as of Ref. (Von Lühmann et al.,
2017)

Lee et al. (2019b) • 16 EEG channels • Limited fNIRS channel numbers, only 8 fNIRS
channels• Custom-designed dry EEG electrodes

• Extensive analog cabling for EEG and fNIRS into the
control module

• Battery operated

• Fixed SDS of 27 mm (sparse spatial sampling)

• Separate ADCs

• The total weight of the system is unclear

Hasan et al. (2020) • High motor classification accuracy of 72.42% ± 3% through
fNIRS using the Tree classifier

• Low motor classification accuracy of 52.49% ± 4%
through EEG only

• A hybrid system is highly affected by the low spatial
resolution of the EEG system

Arif et al. (2022) • A novel methodology has been proposed for enhancing the
average classification of EEG-fNIRS BCI systems

• A comparison of accuracy based on gender has not
been conducted, potentially impacting the overall

accuracy• The novel classifier with a high average classification accuracy
of 91.35% • A false positive detection can result in some false

detection of activity

• The presence of artifacts affects the performance of
the system

Mughal et al. (2022) • High average accuracy levels of 78.44% for fNIRS, 86.24% for
EEG, and 88.41% for hybrid EEG-fNIRS BCI when using the

proposed model

• The proposed methodology is computationally costly

• The proposed algorithm has not yet been
implemented for real-time BCI.

Xu et al. (2023) • The relative activation of the left and right brain regions was
significant during the exercise imagination period of the

subjects

• Data were collected from healthy subjects
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Furthermore, the cost implications and accessibility issues
associated with integrating EEG and fNIRS technologies into
prosthetic limbs are essential aspects to consider. The initial costs of
acquiring and setting up these neurotechnologies, coupledwith ongoing
operational and training expenses, pose significant financial challenges.
To enhance accessibility, potential strategies include seeking
government funding and subsidies, advocating for insurance
coverage, improving manufacturing processes to scale production
and reduce costs, and fostering public-private partnerships to
support research and development. By implementing these
measures, we can make these advanced prosthetic technologies more
affordable and accessible to a broader population, ultimately improving
the quality of life for individuals requiring prosthetic limbs.

In the future, it will be important to focus on the reliability and
upkeep of EEG and fNIRS-based prosthetics, ensuring signal
stability over time, equipment durability, and the necessity for
recalibration or updates. This attention could prove beneficial for
both researchers and clinicians working with these technologies.

In addition to EEG-fNIRS hybrid BCIs, other hybrid systems
such as EEG-EMG and fNIRS-EMG have shown promise in the field
of lower limb prosthetics. These systems leverage the strengths of
both modalities to enhance control mechanisms (Brambilla et al.,
2021; Hong and Khan, 2017). However, our review prioritizes EEG-
fNIRS hybrid BCIs due to their unique ability to provide
comprehensive neural and hemodynamic insights, which are
pivotal for the development of advanced prosthetic controls.
Future research should also explore the other hybrid systems to
fully understand their potential.

7 Conclusion

In conclusion, lower limb amputees contend with a significant
impairment that adversely impacts their quality of life, prompting
extensive research into enhancing lower prosthetic limbs. The
escalating global cases of lower limb amputations underscore the
urgency for innovative solutions. Recent advancements have
explored combining different brain signal measurement systems,
with a particular focus on fusing fNIRS and EEG to create a hybrid
BCI. This approach holds tremendous potential, evidenced by a high
motor classification accuracy of 72.42% ± 3% using the Tree classifier.
Moreover, the hybrid system not only significantly reduces

computational burden but also achieves classification accuracy with
high reliability, comparable to existing literature. Novel methodologies
have been proposed for EEG-fNIRS BCI systems, leading to a
remarkably high average classification accuracy of 91.35%. While
the review encapsulates recent progress in combining fNIRS and
EEG modalities for natural, sensitive, and responsive control of
prosthetic devices, the identified advancements emphasize the
transformative impact of these technologies. This opens avenues for
breakthroughs in the rehabilitation field and underscores the
promising trajectory for further research, potentially revolutionizing
prosthetic control for enhanced patient outcomes.

Author contributions

NA: Writing–original draft. IA-N: Writing–review and editing.
MA: Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The authors
extend their appreciation to the King Salman Center for Disability
Research for funding this work through Research Group no KSRG-
2023-195.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Ahn, S., and Jun, S. C. (2017). Multi-modal integration of EEG-fNIRS for brain-
computer interfaces - current limitations and future directions. Front. Hum. Neurosci.
11, 503. doi:10.3389/fnhum.2017.00503

Alessa, M., Alkhalaf, H. A., Alwabari, S. S., Alwabari, N. J., Alkhalaf, H., Alwayel, Z.,
et al. (2022). The psychosocial impact of lower limb amputation on patients and
caregivers. Cureus 14, e31248. doi:10.7759/cureus.31248

Almajidy, R. K., Mankodiya, K., Abtahi, M., and Hofmann, U. G. (2020). A
newcomer’s guide to functional near infrared spectroscopy experiments. IEEE Rev.
Biomed. Eng. 13, 292–308. doi:10.1109/rbme.2019.2944351

Almulla, L., Al-Naib, I., and Althobaiti, M. (2020). Hemodynamic responses during
standing and sitting activities: a study toward fNIRS-BCI. Biomed. Phys. Eng. Express 6,
055005. doi:10.1088/2057-1976/aba102

Almulla, L., Al-Naib, I., Ateeq, I. S., and Althobaiti, M. (2022). Observation and motor
imagery balance tasks evaluation: an fNIRS feasibility study. PLoS One 17, e0265898.
doi:10.1371/journal.pone.0265898

Al-Quraishi, M. S., Elamvazuthi, I., Daud, S. A., Parasuraman, S., and Borboni, A.
(2018). EEG-based control for upper and lower limb exoskeletons and prostheses: a
systematic review. Sensors (Basel) 18, 3342. doi:10.3390/s18103342

Al-Quraishi, M. S., Elamvazuthi, I., Tang, T. B., Al-Qurishi, M., Adil, S. H., and
Ebrahim, M. (2021). Bimodal data fusion of simultaneous measurements of EEG and
fNIRS during lower limb movements. Brain Sci. 11, 713. doi:10.3390/brainsci11060713

Al-Shuka, H. F. N., Rahman, M. H., Leonhardt, S., Ciobanu, I., and Berteanu, M.
(2019). Biomechanics, actuation, and multi-level control strategies of power-
augmentation lower extremity exoskeletons: an overview. Int. J. Dyn. Control 7,
1462–1488. doi:10.1007/s40435-019-00517-w

Althobaiti, M., and Al-Naib, I. (2020). Recent developments in instrumentation of
functional near-infrared spectroscopy systems.Appl. Sci. 10, 6522. doi:10.3390/app10186522

Althobaiti, M., Vavadi, H., and Zhu, Q. (2018). An automated preprocessing method
for diffuse optical tomography to improve breast cancer diagnosis. Technol. Cancer Res.
Treat. 17, 153303381880279. doi:10.1177/1533033818802791

Frontiers in Bioengineering and Biotechnology frontiersin.org17

AlQahtani et al. 10.3389/fbioe.2024.1454262

https://doi.org/10.3389/fnhum.2017.00503
https://doi.org/10.7759/cureus.31248
https://doi.org/10.1109/rbme.2019.2944351
https://doi.org/10.1088/2057-1976/aba102
https://doi.org/10.1371/journal.pone.0265898
https://doi.org/10.3390/s18103342
https://doi.org/10.3390/brainsci11060713
https://doi.org/10.1007/s40435-019-00517-w
https://doi.org/10.3390/app10186522
https://doi.org/10.1177/1533033818802791
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1454262


Arif, A., Khan, M. J., Javed, K., Sajid, H., Rubab, S., Naseer, N., et al. (2022).
Hemodynamic response detection using integrated EEG-fNIRS-VPA for BCI.
Comput. Mater. Contin. 70, 535–555. doi:10.32604/cmc.2022.018318

Arpaia, P., Esposito, A., Gargiulo, L., and Moccaldi, N. (2023). Wearable brain-
computer interfaces. London, UK: Informa UK Limited.

Asif, M., Tiwana, M. I., Khan, U. S., Qureshi, W. S., Iqbal, J., Rashid, N., et al. (2021).
Advancements, trends and future prospects of lower limb prosthesis. IEEE Access 9,
85956–85977. doi:10.1109/ACCESS.2021.3086807

Bansal, D., and Mahajan, R. (2019). EEG-based brain-computer interfaces: cognitive
analysis and control applications. Cambridge, MA: Academic Press.

Bourguignon, N. J., Bue, S. L., Guerrero-Mosquera, C., and Borragán, G. (2022).
Bimodal EEG-fNIRS in neuroergonomics. Current evidence and prospects for
future research. Curr. Evid. prospects future Res. Front. Neuroergon. 3, 934234.
doi:10.3389/fnrgo.2022.934234

Brack, R., and Amalu, E. H. (2021). A review of technology, materials and R&D
challenges of upper limb prosthesis for improved user suitability. J. Orthop. 23, 88–96.
doi:10.1016/j.jor.2020.12.009

Brambilla, C., Pirovano, I., Mira, R. M., Rizzo, G., Scano, A., and Mastropietro, A.
(2021). Combined use of EMG and EEG techniques for neuromotor assessment in
rehabilitative applications: a systematic review. Sensors (Basel) 21 (21), 7014. doi:10.
3390/s21217014

Brigadoi, S., and Cooper, R. J. (2015). How short is short? Optimum source-detector
distance for short-separation channels in functional near-infrared spectroscopy.
Neurophotonics 2, 025005. doi:10.1117/1.NPh.2.2.025005

BruceBlaus (2024). EEG 10-10 system with additional information. Available at:
https://commons.wikimedia.org/wiki/File:EEG_10-10_system_with_additional_
information.svg (Accessed February 4, 2024).

Casson, A. J., Abdulaal, M., Dulabh, M., Kohli, S., Krachunov, S., and Trimble, E.
(2018). “Electroencephalogram,” in Seamless healthcare monitoring: advancements in
wearable, attachable, and invisible devices. Editors T. Tamura and W. Chen (Cham:
Springer International Publishing), 45–81.

Chen, J., Xia, Y., Zhou, X., Vidal Rosas, E., Thomas, A., Loureiro, R., et al. (2023).
fNIRS-EEG BCIs for motor rehabilitation: a review. Bioeng. (Basel) 10, 1393. doi:10.
3390/bioengineering10121393

Chen, W. L., Wagner, J., Heugel, N., Sugar, J., Lee, Y. W., Conant, L., et al. (2020).
Functional near-infrared spectroscopy and its clinical application in the field of
neuroscience: advances and future directions. Front. Neurosci. 14, 724. doi:10.3389/
fnins.2020.00724

Cicalese, P. A., Li, R., Ahmadi, M. B., Wang, C., Francis, J. T., Selvaraj, S., et al.
(2020). An EEG-fNIRS hybridization technique in the four-class classification of
Alzheimer’s disease. J. Neurosci. Methods 336, 108618. doi:10.1016/j.jneumeth.
2020.108618

Crum, J. E. (2021). Future applications of real-world neuroimaging to clinical
psychology. Psychol. Rep. 124, 2403–2426. doi:10.1177/0033294120926669

Das, R., Maiorana, E., and Campisi, P. (2016). EEG biometrics using visual stimuli: a
longitudinal study. IEEE Signal Process. Lett. 23, 341–345. doi:10.1109/LSP.2016.2516043

Domingos, I. S., Deligianni, F., and Yang, G.-Z. (2018). “Dry versus wet EEG electrode
systems in motor imagery classification,” in Proceedings of the UK RAS conference:
robotics working for and among US, 74–76.

Elsayed, N., and Bayoumi,M. (2017). Brain computer interface: EEG signal preprocessing
issues and solution. Int. J. Comput. Appl. 169, 12–16. doi:10.5120/ijca2017914621

Ezzatvar, Y., and García-Hermoso, A. (2023). Global estimates of diabetes-related
amputations incidence in 2010-2020: a systematic review and meta-analysis. Diabetes
Res. Clin. Pract. 195, 110194. doi:10.1016/j.diabres.2022.110194

Fiedler, P., Griebel, S., Pedrosa, P., Fonseca, C., Vaz, F., Zentner, L., et al. (2015).
Multichannel EEG with novel Ti/TiN dry electrodes. Sens. Actuators A Phys. 221,
139–147. doi:10.1016/j.sna.2014.10.010

Gao, Y., Cavuoto, L., Schwaitzberg, S., Norfleet, J. E., Intes, X., and De, S. (2020). The
effects of transcranial electrical stimulation on human motor functions: a
comprehensive review of functional neuroimaging studies. Front. Neurosci. 14, 744.
doi:10.3389/fnins.2020.00744

Gu, X., Cao, Z., Jolfaei, A., Xu, P., Wu, D., Jung, T. P., et al. (2021). EEG-based brain-
computer interfaces (BCIs): a survey of recent studies on signal sensing technologies and
computational intelligence approaches and their applications. IEEE/ACM Trans.
Comput. Biol. Bioinform. 18, 1645–1666. doi:10.1109/TCBB.2021.3052811

Hasan, M. A. H., Khan, M. U., and Mishra, D. (2020). A computationally efficient
method for hybrid EEG-fNIRS BCI based on the Pearson correlation. Biomed. Res. Int.
2020, 1–13. doi:10.1155/2020/1838140

Hasan, S. M. S. (2022). Volitional control of lower-limb prosthesis with vision-assisted
environmental awareness. [FIU electronic theses and dissertations]. Miami: FIU
Electronic Theses and Dissertations. [Florida].

Hassan, F., and Hussain, S. F. (2023). “Review of EEG signals classification using
machine learning and deep-learning techniques,” in Advances in non-invasive biomedical
signal sensing and processing with machine learning. Editors S. M. Qaisar, H. Nisar, and
A. Subasi (Cham: Springer International Publishing), 159–183.

Hinrichs, H., Scholz, M., Baum, A. K., Kam, J. W. Y., Knight, R. T., and Heinze, H. J.
(2020). Comparison between a wireless dry electrode EEG system with a conventional
wired wet electrode EEG system for clinical applications. Sci. Rep. 10, 5218. doi:10.1038/
s41598-020-62154-0

Hong, K. S., and Khan, M. J. (2017). Hybrid brain-computer interface techniques for
improved classification accuracy and increased number of commands: a review. Front.
neurorobotics 11, 35. doi:10.3389/fnbot.2017.00035

Hosni, S. M., Borgheai, S. B., McLinden, J., and Shahriari, Y. (2020). An fNIRS-based
motor imagery BCI for ALS: a subject-specific data-driven approach. IEEE Trans.
Neural Syst. Rehabil. Eng. 28, 3063–3073. doi:10.1109/tnsre.2020.3038717

Hu, L., Xie, J., Pan, C., Wu, X., and Hu, D. (2021). Multi-feature fusion method based
on WOSF and MSE for four-class MI EEG identification. Biomed. Signal Process.
Control 69, 102907. doi:10.1016/j.bspc.2021.102907

Jeffcoate, W., Game, F., Morbach, S., Narres, M., Van Acker, K., and Icks, A. (2021).
Assessing data on the incidence of lower limb amputation in diabetes. Diabetologia 64,
1442–1446. doi:10.1007/s00125-021-05440-4

Jungnickel, E., Gehrke, L., Klug, M., and Gramann, K. (2019). “MoBI-mobile brain/
body imaging,” in Neuroergonomics: the brain at work and in everyday life. Editors
H. Ayaz and F. Dehais (Cambridge, MA: Academic Press), 59–63.

Karacaoğlan, E., and Tokmakçi, M. (2017). “The design of silver active dry with pin
electrodes for EEG measurements,” in 2017 medical technologies national congress
(TIPTEKNO) (Trabzon, Turkey: IEEE), 1–4.

Kassab, A., Le Lan, J., Tremblay, J., Vannasing, P., Dehbozorgi, M., Pouliot, P., et al.
(2018). Multichannel wearable fNIRS-EEG system for long-term clinical monitoring.
Hum. Brain Mapp. 39, 7–23. doi:10.1002/hbm.23849

Khan, H., Naseer, N., Yazidi, A., Eide, P. K., Hassan, H. W., and Mirtaheri, P. (2021).
Analysis of human gait using hybrid EEG-fNIRS-based BCI system: a review. Front.
Hum. Neurosci. 14, 613254. doi:10.3389/fnhum.2020.613254

Khan, M. J., and Hong, K. S. (2017). Hybrid EEG-fNIRS-based eight-command
decoding for BCI: application to quadcopter control. Front. Neurorobot. 11, 6. doi:10.
3389/fnbot.2017.00006

Khan, M. U., and Hasan, M. A. H. (2020). Hybrid EEG-fNIRS BCI fusion using multi-
resolution singular value decomposition (MSVD). Front. Hum. Neurosci. 14, 599802.
doi:10.3389/fnhum.2020.599802

Khan, R., Naseer, N., Nazeer, H., and Khan, M. N. (2018a). Control of a prosthetic leg
based on walking intentions for gait rehabilitation: an fNIRS study. Front. Hum.
Neurosci. 12. doi:10.3389/conf.fnhum.2018.227.00144

Khan, R. A., Naseer, N., Qureshi, N. K., Noori, F. M., Nazeer, H., and Khan, M. U.
(2018b). fNIRS-based neurorobotic interface for gait rehabilitation. J. Neuroeng.
Rehabil. 15, 7. doi:10.1186/s12984-018-0346-2

Klein, F., and Kranczioch, C. (2019). Signal processing in fNIRS: a case for the
removal of systemic activity for single trial data. Front. Hum. Neurosci. 13, 331. doi:10.
3389/fnhum.2019.00331

Kotwal, A., Sharma, V., and Manhas, J. (2023). “Deep neural based learning of EEG
features using spatial, temporal and spectral dimensions across different cognitive
workload of human brain: dimensions, methodologies, research challenges and future
scope,” in Emerging trends in expert applications and security. Editors V. S. Rathore,
V. Piuri, R. Babo, and M. C. Ferreira (Singapore: Springer Nature), 61–69.

Kwon, J., Shin, J., and Im, C. H. (2020). Toward a compact hybrid brain-computer
interface (BCI): performance evaluation of multi-class hybrid EEG-fNIRS BCIs with
limited number of channels. PLoS One 15, e0230491. doi:10.1371/journal.pone.0230491

Lacerenza, M., Spinelli, L., Buttafava, M., Dalla Mora, A., Zappa, F., Pifferi, A., et al.
(2021). Monitoring the motor cortex hemodynamic response function in freely moving
walking subjects: a time-domain fNIRS pilot study. Neurophotonics 8, 015006. doi:10.
1117/1.NPh.8.1.015006

Lee, S., Shin, Y., Kumar, A., Kim, K., and Lee, H. N. (2019a). Two-wired active spring-
loaded dry electrodes for EEG measurements. Sensors (Basel) 19, 4572. doi:10.3390/
s19204572

Lee, S., Shin, Y., Kumar, A., Kim,M., and Lee, H. N. (2019b). Dry electrode-based fully
isolated EEG/fNIRS hybrid brain-monitoring system. IEEE Trans. Biomed. Eng. 66,
1055–1068. doi:10.1109/tbme.2018.2866550

Li, C., Xu, J., Zhu, Y., Kuang, S., Qu, W., and Sun, L. (2020). Detecting self-paced
walking intention based on fNIRS technology for the development of BCI. Med. Biol.
Eng. Comput. 58, 933–941. doi:10.1007/s11517-020-02140-w

Li, G., Wang, S., Li, M., and Duan, Y. Y. (2021). Towards real-life EEG applications:
novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically
’charge-discharge’ electrolyte. J. Neural Eng. 18, 046016. doi:10.1088/1741-2552/abeeab

Li, R., Potter, T., Huang, W., and Zhang, Y. (2017). Enhancing performance of a
hybrid EEG-fNIRS system using channel selection and early temporal features. Front.
Hum. Neurosci. 11, 462. doi:10.3389/fnhum.2017.00462

Lin, B. S., Huang, Y. K., and Lin, B. S. (2019). Design of smart EEG cap. Comput.
Methods Programs Biomed. 178, 41–46. doi:10.1016/j.cmpb.2019.06.009

Liu, G., Cui, W., Hu, X., Xiao, R., Zhang, S., Cai, J., et al. (2022). Development of a
miniaturized and modular probe for fNIRS instrument. Lasers Med. Sci. 37, 2269–2277.
doi:10.1007/s10103-021-03493-w

Frontiers in Bioengineering and Biotechnology frontiersin.org18

AlQahtani et al. 10.3389/fbioe.2024.1454262

https://doi.org/10.32604/cmc.2022.018318
https://doi.org/10.1109/ACCESS.2021.3086807
https://doi.org/10.3389/fnrgo.2022.934234
https://doi.org/10.1016/j.jor.2020.12.009
https://doi.org/10.3390/s21217014
https://doi.org/10.3390/s21217014
https://doi.org/10.1117/1.NPh.2.2.025005
https://commons.wikimedia.org/wiki/File:EEG_10-10_system_with_additional_information.svg
https://commons.wikimedia.org/wiki/File:EEG_10-10_system_with_additional_information.svg
https://doi.org/10.3390/bioengineering10121393
https://doi.org/10.3390/bioengineering10121393
https://doi.org/10.3389/fnins.2020.00724
https://doi.org/10.3389/fnins.2020.00724
https://doi.org/10.1016/j.jneumeth.2020.108618
https://doi.org/10.1016/j.jneumeth.2020.108618
https://doi.org/10.1177/0033294120926669
https://doi.org/10.1109/LSP.2016.2516043
https://doi.org/10.5120/ijca2017914621
https://doi.org/10.1016/j.diabres.2022.110194
https://doi.org/10.1016/j.sna.2014.10.010
https://doi.org/10.3389/fnins.2020.00744
https://doi.org/10.1109/TCBB.2021.3052811
https://doi.org/10.1155/2020/1838140
https://doi.org/10.1038/s41598-020-62154-0
https://doi.org/10.1038/s41598-020-62154-0
https://doi.org/10.3389/fnbot.2017.00035
https://doi.org/10.1109/tnsre.2020.3038717
https://doi.org/10.1016/j.bspc.2021.102907
https://doi.org/10.1007/s00125-021-05440-4
https://doi.org/10.1002/hbm.23849
https://doi.org/10.3389/fnhum.2020.613254
https://doi.org/10.3389/fnbot.2017.00006
https://doi.org/10.3389/fnbot.2017.00006
https://doi.org/10.3389/fnhum.2020.599802
https://doi.org/10.3389/conf.fnhum.2018.227.00144
https://doi.org/10.1186/s12984-018-0346-2
https://doi.org/10.3389/fnhum.2019.00331
https://doi.org/10.3389/fnhum.2019.00331
https://doi.org/10.1371/journal.pone.0230491
https://doi.org/10.1117/1.NPh.8.1.015006
https://doi.org/10.1117/1.NPh.8.1.015006
https://doi.org/10.3390/s19204572
https://doi.org/10.3390/s19204572
https://doi.org/10.1109/tbme.2018.2866550
https://doi.org/10.1007/s11517-020-02140-w
https://doi.org/10.1088/1741-2552/abeeab
https://doi.org/10.3389/fnhum.2017.00462
https://doi.org/10.1016/j.cmpb.2019.06.009
https://doi.org/10.1007/s10103-021-03493-w
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1454262


Liu, J., Liu, X., He, E., Gao, F., Li, Z., Xiao, G., et al. (2019). A novel dry-contact
electrode for measuring electroencephalography signals. Sens. Actuators A Phys. 294,
73–80. doi:10.1016/j.sna.2019.05.017

Liu, S., Wang, L., and Gao, R. X. (2024). Cognitive neuroscience and robotics:
advancements and future research directions. Robot. Comput. Integr. Manuf. 85,
102610. doi:10.1016/j.rcim.2023.102610

Liu, Z., Shore, J., Wang, M., Yuan, F., Buss, A., and Zhao, X. (2021). A systematic
review on hybrid EEG/fNIRS in brain-computer interface. Biomed. Signal Process.
Control 68, 102595. doi:10.1016/j.bspc.2021.102595

Lopez-Gordo, M. A., Sanchez-Morillo, D., and Valle, F. P. (2014). Dry EEG
electrodes. Sensors (Basel) 14, 12847–12870. doi:10.3390/s140712847

Luján, M. Á., Jimeno, M. V., Mateo Sotos, J., Ricarte, J. J., and Borja, A. L. (2021). A
survey on EEG signal processing techniques and machine learning: applications to the
neurofeedback of autobiographical memory deficits in schizophrenia. Electronics 10,
3037. doi:10.3390/electronics10233037

Marcinkowska, K., Lisicka, I., Czaicki, A., Wierzba, W., Franek, E., et al. (2021).
Amputations of lower limb in subjects with diabetes mellitus: reasons and 30-day
mortality. J. Diabetes Res. 2021, e8866126. doi:10.1155/2021/8866126

McGhie, B. S., and Aldrich-Wright, J. R. (2022). Photoactive and luminescent
transition metal complexes as anticancer agents: a guiding light in the search for
new and improved cancer treatments. Biomedicines 10, 578. doi:10.3390/
biomedicines10030578

Möller, S., Rusaw, D., Hagberg, K., and Ramstrand, N. (2019). Reduced cortical brain
activity with the use of microprocessor-controlled prosthetic knees during walking.
Prosthet. Orthot. Int. 43, 257–265. doi:10.1177/0309364618805260

Moxey, P. W., Gogalniceanu, P., Hinchliffe, R. J., Loftus, I. M., Jones, K. J., Thompson,
M. M., et al. (2011). Lower extremity amputations--a review of global variability in
incidence. Diabet. Med. 28, 1144–1153. doi:10.1111/j.1464-5491.2011.03279.x

Mughal, N. E., Khan, M. J., Khalil, K., Javed, K., Sajid, H., Naseer, N., et al. (2022).
EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM.
Front. Neurorobot. 16, 873239. doi:10.3389/fnbot.2022.873239

Murphy, D. P., Bai, O., Gorgey, A. S., Fox, J., Lovegreen,W. T., Burkhardt, B. W., et al.
(2017). Electroencephalogram-based brain-computer interface and lower-limb
prosthesis control: a case study. Front. Neurol. 8, 696. doi:10.3389/fneur.2017.00696

Nareshkumar, R. R. (2022). Prototype instrumentation for frequency
domain—functional near infrared spectroscopy. KTH, Sch. Eng. Sci. Chem.
Biotechnol. Health (CBH).

Noah, J. A., Zhang, X., Dravida, S., DiCocco, C., Suzuki, T., Aslin, R. N., et al. (2021).
Comparison of short-channel separation and spatial domain filtering for removal of
non-neural components in functional near-infrared spectroscopy signals.
Neurophotonics 8, 015004. doi:10.1117/1.NPh.8.1.015004

Ortega, P., and Faisal, A. A. (2021). Deep learning multimodal fNIRS and EEG signals
for bimanual grip force decoding. J. Neural Eng. 18, 0460e6. doi:10.1088/1741-2552/ac1ab3

Padfield, N., Camilleri, K., Camilleri, T., Fabri, S., and Bugeja, M. (2022). A
comprehensive review of endogenous EEG-based BCIs for dynamic device control.
Sensors (Basel) 22, 5802. doi:10.3390/s22155802

Padmavathy, T. V., Kumar, M. P., Shakunthala, M., Kumar, M. V., and Saravanan, S.
(2020). A novel deep learning classifier and genetic algorithm based feature selection for
hybrid eeg-fnirs brain-computer interface. NeuroQuantology 18 (9), 125–134. doi:10.
14704/nq.2020.18.9.nq20224

Pană, C. F., Manta, L. F., Vladu, I. C., Cismaru, Ș. I., Petcu, F. L., Cojocaru, D., et al.
(2022). The design of a smart lower-limb prosthesis supporting people with transtibial
amputation—a data acquisition system. Appl. Sci. 12, 6722. doi:10.3390/app12136722

Paranawithana, I., Mao, D., Wong, Y. T., and McKay, C. M. (2022). Reducing false
discoveries in resting-state functional connectivity using short channel correction: an
fNIRS study. Neurophotonics 9, 015001. doi:10.1117/1.NPh.9.1.015001

Park, S., Han, C. H., and Im, C. H. (2020). Design of wearable EEG devices specialized
for passive brain-computer interface applications. Sensors (Basel) 20, 4572. doi:10.3390/
s20164572

Pfeifer, M. D., Scholkmann, F., and Labruyère, R. (2017). Signal processing in functional
near-infrared spectroscopy (fNIRS): methodological differences lead to different statistical
results. Front. Hum. Neurosci. 11, 641. doi:10.3389/fnhum.2017.00641

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., et al.
(2020). The present and future use of functional near-infrared spectroscopy (fNIRS) for
cognitive neuroscience. Ann. N. Y. Acad. Sci. 1464, 5–29. doi:10.1111/nyas.13948

Portelli, A. J., and Nasuto, S. J. (2017). Design and development of non-contact bio-
potential electrodes for pervasive health monitoring applications. Biosens. (Basel) 7, 2.
doi:10.3390/bios7010002

Qiu, L., Zhong, Y., He, Z., and Pan, J. (2022). Improved classification performance of
EEG-fNIRS multimodal brain-computer interface based on multi-domain features and
multi-level progressive learning. Front. Hum. Neurosci. 16, 973959. doi:10.3389/fnhum.
2022.973959

Quaresima, V., and Ferrari, M. (2019). Functional near-infrared spectroscopy (fNIRS)
for assessing cerebral cortex function during human behavior in natural/social situations: a
concise review. Organ. Res. Methods 22, 46–68. doi:10.1177/1094428116658959

Ramírez-Arias, F. J., García-Guerrero, E. E., Tlelo-Cuautle, E., Colores-Vargas, J. M.,
García-Canseco, E., López-Bonilla, O. R., et al. (2022). Evaluation of machine learning
algorithms for classification of EEG signals. Technologies 10 (4), 79. doi:10.3390/
technologies10040079

Safari, R. (2020). Lower limb prosthetic interfaces: clinical and technological
advancement and potential future direction. Prosthet. Orthot. Int. 44, 384–401.
doi:10.1177/0309364620969226

Schack, J., Pripp, A. H., Mirtaheri, P., Steen, H., Güler, E., and Gjøvaag, T. (2022).
Increased prefrontal cortical activation during challenging walking conditions in
persons with lower limb amputation – an fNIRS observational study. Theory Pract.
38, 255–265. doi:10.1080/09593985.2020.1758979

Shad, E. H. T., Molinas, M., and Ytterdal, T. (2020). Impedance and noise of passive
and active dry EEG electrodes: a review. IEEE Sens. J. 20, 14565–14577. doi:10.1109/
JSEN.2020.3012394

Shoka, A., Dessouky, M., El-sherbeny, A., and El-Sayed, A. (2019). Literature review
on EEG preprocessing, feature extraction, and classifications techniques. Menoufia
J. Electron. Eng. Res. 28, 292–299. doi:10.21608/mjeer.2019.64927

Soufineyestani, M., Dowling, D., and Khan, A. (2020). Electroencephalography (EEG)
technology applications and available devices. Appl. Sci. 10, 7453. doi:10.3390/
app10217453

Su, H., Kim, T. H., Moeinnia, H., and Kim,W. S. (2023). A 3-D-printed portable EMG
wristband for the quantitative detection of finger motion. IEEE Sens. J. 23, 7895–7901.
doi:10.1109/JSEN.2023.3247695

Tariq, M., Trivailo, P. M., and Simic, M. (2018). EEG-based BCI control schemes for
lower-limb assistive-robots. Front. Hum. Neurosci. 12, 312. doi:10.3389/fnhum.2018.00312

Ting, L. H., Chiel, H. J., Trumbower, R. D., Allen, J. L., McKay, J. L., Hackney, M. E.,
et al. (2015). Neuromechanical principles underlying movement modularity and their
implications for rehabilitation. Neuron 86, 38–54. doi:10.1016/j.neuron.2015.02.042

Uchitel, J., Vidal-Rosas, E. E., Cooper, R. J., and Zhao, H. (2021). Wearable, integrated
EEG-fNIRS technologies: a review. Sensors (Basel) 21, 6106. doi:10.3390/s21186106

Von Lühmann, A.,Wabnitz, H., Sander, T., andMüller, K. R. (2017). M3BA: a mobile,
modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-
based hybrid BCI and monitoring. IEEE Trans. Biomed. Eng. 64, 1199–1210. doi:10.
1109/TBME.2016.2594127

Von Lühmann, A., Zheng, Y., Ortega-Martinez, A., Kiran, S., Somers, D. C., Cronin-
Golomb, A., et al. (2021). Toward Neuroscience of the Everyday World (NEW) using
functional near-infrared spectroscopy. Curr. Opin. Biomed. Eng. 18, 100272. doi:10.
1016/j.cobme.2021.100272

Vyas, S., Dwivedi, S., Brenner, L. J., Pedron, I., Gabbard, J. L., Krishnamurthy, V. R.,
et al. (2023). Adaptive training on basic AR interactions: Bi-variate metrics and
neuroergonomic evaluation paradigms. Int. J. Hum. Comput. Interact., 1–16. doi:10.
1080/10447318.2023.2250578

Wang, C., Wu, X., Wang, Z., and Ma, Y. (2018). Implementation of a brain-computer
interface on a lower-limb exoskeleton. IEEE Access 6, 38524–38534. doi:10.1109/
ACCESS.2018.2853628

Xu, N., Shan, W., Qi, J., Wu, J., and Wang, Q. (2021). Presurgical evaluation of
epilepsy using resting-state MEG functional connectivity. Front. Hum. Neurosci. 15,
649074. doi:10.3389/fnhum.2021.649074

Xu, T., Zhou, Z., Yang, Y., Li, Y., Li, J., Bezerianos, A., et al. (2023). Motor imagery
decoding enhancement based on hybrid EEG-fNIRS signals. IEEE Access 11,
65277–65288. doi:10.1109/ACCESS.2023.3289709

Yokoyama, H., Kaneko, N., Watanabe, K., and Nakazawa, K. (2021). Neural decoding of
gait phases during motor imagery and improvement of the decoding accuracy by
concurrent action observation. J. Neural Eng. 18, 046099. doi:10.1088/1741-2552/ac07bd

Yuan, H., Li, Y., Yang, J., Li, H., Yang, Q., Guo, C., et al. (2021). State of the art of non-
invasive electrode materials for brain-computer interface. Micromachines (Basel) 12,
1521. doi:10.3390/mi12121521

Yücel, M. A., Lühmann, A. V., Scholkmann, F., Gervain, J., Dan, I., Ayaz, H., et al.
(2021). Best practices for fNIRS publications. Neurophotonics 8, 012101. doi:10.1117/1.
NPh.8.1.012101

Zhang, P., Gao, X., Miao, M., and Zhao, P. (2022). Design and control of a lower limb
rehabilitation robot based on human motion intention recognition with multi-source
sensor information. Machines 10, 1125. doi:10.3390/machines10121125

Zhou, X., Sobczak, G., McKay, C. M., and Litovsky, R. Y. (2020). Comparing fNIRS
signal qualities between approaches with and without short channels. PLoS One 15,
e0244186. doi:10.1371/journal.pone.0244186

Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., and Brookmeyer,
R. (2008). Estimating the prevalence of limb loss in the United States: 2005 to 2050.
Archives Phys. Med. rehabilitation 89 (3), 422–429. doi:10.1016/j.apmr.2007.11.005

Frontiers in Bioengineering and Biotechnology frontiersin.org19

AlQahtani et al. 10.3389/fbioe.2024.1454262

https://doi.org/10.1016/j.sna.2019.05.017
https://doi.org/10.1016/j.rcim.2023.102610
https://doi.org/10.1016/j.bspc.2021.102595
https://doi.org/10.3390/s140712847
https://doi.org/10.3390/electronics10233037
https://doi.org/10.1155/2021/8866126
https://doi.org/10.3390/biomedicines10030578
https://doi.org/10.3390/biomedicines10030578
https://doi.org/10.1177/0309364618805260
https://doi.org/10.1111/j.1464-5491.2011.03279.x
https://doi.org/10.3389/fnbot.2022.873239
https://doi.org/10.3389/fneur.2017.00696
https://doi.org/10.1117/1.NPh.8.1.015004
https://doi.org/10.1088/1741-2552/ac1ab3
https://doi.org/10.3390/s22155802
https://doi.org/10.14704/nq.2020.18.9.nq20224
https://doi.org/10.14704/nq.2020.18.9.nq20224
https://doi.org/10.3390/app12136722
https://doi.org/10.1117/1.NPh.9.1.015001
https://doi.org/10.3390/s20164572
https://doi.org/10.3390/s20164572
https://doi.org/10.3389/fnhum.2017.00641
https://doi.org/10.1111/nyas.13948
https://doi.org/10.3390/bios7010002
https://doi.org/10.3389/fnhum.2022.973959
https://doi.org/10.3389/fnhum.2022.973959
https://doi.org/10.1177/1094428116658959
https://doi.org/10.3390/technologies10040079
https://doi.org/10.3390/technologies10040079
https://doi.org/10.1177/0309364620969226
https://doi.org/10.1080/09593985.2020.1758979
https://doi.org/10.1109/JSEN.2020.3012394
https://doi.org/10.1109/JSEN.2020.3012394
https://doi.org/10.21608/mjeer.2019.64927
https://doi.org/10.3390/app10217453
https://doi.org/10.3390/app10217453
https://doi.org/10.1109/JSEN.2023.3247695
https://doi.org/10.3389/fnhum.2018.00312
https://doi.org/10.1016/j.neuron.2015.02.042
https://doi.org/10.3390/s21186106
https://doi.org/10.1109/TBME.2016.2594127
https://doi.org/10.1109/TBME.2016.2594127
https://doi.org/10.1016/j.cobme.2021.100272
https://doi.org/10.1016/j.cobme.2021.100272
https://doi.org/10.1080/10447318.2023.2250578
https://doi.org/10.1080/10447318.2023.2250578
https://doi.org/10.1109/ACCESS.2018.2853628
https://doi.org/10.1109/ACCESS.2018.2853628
https://doi.org/10.3389/fnhum.2021.649074
https://doi.org/10.1109/ACCESS.2023.3289709
https://doi.org/10.1088/1741-2552/ac07bd
https://doi.org/10.3390/mi12121521
https://doi.org/10.1117/1.NPh.8.1.012101
https://doi.org/10.1117/1.NPh.8.1.012101
https://doi.org/10.3390/machines10121125
https://doi.org/10.1371/journal.pone.0244186
https://doi.org/10.1016/j.apmr.2007.11.005
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1454262

	Recent progress on smart lower prosthetic limbs: a comprehensive review on using EEG and fNIRS devices in rehabilitation
	1 Introduction
	2 Anatomy and physiology of the lower limb movements during the gait cycle
	3 Materials and methods
	4 Prosthetic limb EEG-Based control
	4.1 EEG-based control architecture
	4.1.1 Signal Detection and Sampling
	4.1.2 Signal Transmission and Acquisition
	4.1.3 Mapping signal to prosthetic leg

	4.2 EEG technology: new controlling approaches
	4.3 Advantages and disadvantages of EEG for controlling prosthetic

	5 Prosthetic limb fNIRS-Based control
	5.1 fNIRS-based control architecture
	5.1.1 Signal Detection and Sampling in fNIRS systems
	5.1.2 Signal Transmission and Acquisition
	5.1.3 Mapping signal to prosthetic leg

	5.2 fNIRS technology: New controlling approaches
	5.3 Advantages and disadvantages of fNIRS for controlling prosthetic

	6 Combining EEG and fNIRS to control lower limb prosthetics
	7 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


