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Background: Pneumonia and tuberculosis are prevalent pulmonary diseases
globally, each demanding specific care measures. However, distinguishing
between these two conditions imposes challenges due to the high skill
requirements for doctors, the impact of imaging positions and respiratory
intensity of patients, and the associated high healthcare costs, emphasizing
the imperative need for intelligent and efficient diagnostic methods.

Method: This study aims to develop a highly accurate automatic diagnosis and
classification method for various lung diseases (Normal, Pneumonia, and
Tuberculosis). We propose a hybrid model, which is based on the
InceptionV3 architecture, enhanced by introducing Deepwise Separable
Convolution after the Inception modules and incorporating the Squeeze-and-
Excitation mechanism. This architecture successfully enables the model to
extract richer features without significantly increasing the parameter count
and computational workload, thereby markedly improving the performance in
predicting and classifying lung diseases. To objectively assess the proposed
model, external testing and five-fold cross-validation were conducted.
Additionally, widely used baseline models in the scholarly community were
constructed for comparison.

Result: In the external testing phase, the ourmodel achieved an average accuracy
(ACC) of 90.48% and an F1-score (F1) of 91.44%, which is an approximate 4%
improvement over the best-performing baseline model, ResNet. In the five-fold
cross-validation, our model’s average ACC and F1 reached 88.27% ± 2.76% and
89.29%± 2.69%, respectively, demonstrating exceptional predictive performance
and stability. The results indicate that our model holds promise for deployment in
clinical settings to assist in the diagnosis of lung diseases, potentially reducing
misdiagnosis rates and patient losses.

Conclusion: Utilizing deep learning for automatic assistance in the diagnosis of
pneumonia and tuberculosis holds clinical significance by enhancing diagnostic
accuracy, reducing healthcare costs, enabling rapid screening and large-scale
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detection, and facilitating personalized treatment approaches, thereby
contributing to widespread accessibility and improved healthcare services in the
future.
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Introduction

Pneumonia and tuberculosis are common pulmonary infections
with a significant global incidence. Pneumonia is mainly caused by
bacteria such as Streptococcus pneumoniae and Mycoplasma
pneumoniae, and since the beginning of the 21st century, it has
been one of the most predominant factors of widespread contagions
(Torres et al., 2021). Pulmonary tuberculosis is another lung-
affected infectious disease transmitted through the air, with
which a quarter of the world’s population is infested (Pallett and
Houston, 2021). Both these diseases have a considerable impact on
individual health and public hygiene. The severity of pneumonia is
comprehensive, and some mild symptoms may be resolved with
early care, while severe cases might require hospitalization (Sun
et al., 2019). Consequently, Identifying and distinguishing between
these conditions requires significant attention and careful
consideration in the medical field.

Timely diagnosis in the early stages is beneficial for determining
early treatment plans and the proper use of medications, which
could alleviate the negative impact of pneumonia or tuberculosis on
the patient’s physiological health (Driss et al., 2022). X-ray detection
is a commonly used method for the current detection of these lung
diseases. This method involves taking a chest X-ray (CXR) of the
patient’s chest and conducting a comprehensive evaluation of the
patient’s clinical history, vital signs, and laboratory tests, which are
ultimately assessed by a doctor (Yan and Tao, 2023). However,
diagnosing the patient is not straightforward in this process, and
difficulties may be displayed in several aspects. Firstly, the entire
diagnostic process requires a high level of involvement from
physicians, which means that pursuing diagnostic accuracy
necessitates that they are supposed to be familiar with the
radiographic features of the related diseases (Nambu et al., 2014).
Secondly, relying solely on a single CXR cannot directly determine
the patient’s condition. Many external factors, such as the location of
the imaging and the intensity of patient exhalation, could affect the
images presented in CXRs, making it more challenging for doctors
to diagnose lung diseases (Yan and Tao, 2023). Concomitantly,
unclear images caused by external factors may lead doctors to
misjudge bacterial pneumonia and viral pneumonia, resulting in
the treatment process being mistakenly guided (Neuman et al.,
2012). Moreover, in low-resource countries, medical facilities and
resources may not be able to support this type of diagnosis, which is
costly in terms of personnel training and equipment (Rahman et al.,
2020). In general, it can be analyzed from these imperfections that
the overall process of manually diagnosing lung disease by X-ray
might be inefficient. Therefore, a more efficient and intelligent
diagnostic method with digital technologies is expected to
be developed.

This study aims to achieve efficient and accurate diagnosis of
pneumonia and tuberculosis based on chest X-ray images, proposing

the DSEception model. The DSEception model proposed in this
paper is based on the Inception architecture, incorporating the
Deepwise Separable Convolution (DSC) module and the Squeeze-
and-Excitation mechanism from SENet. The DSC module extracts
more detailed texture features while reshaping the feature map size
without significantly increasing the number of parameters. The
Squeeze-and-Excitation mechanism, as a lightweight self-attention
mechanism, enhances the model’s representational ability by
learning and readjusting the importance distribution of different
channels. Compared to the traditional Inception model, DSEception
has significant improvements in feature extraction and channel
importance learning, further enhancing the model’s diagnostic
performance. Additionally, in the initial stages of data
preparation, a series of filtering and data augmentation
techniques were employed to minimize noise interference and
enhance the model’s ability to extract detailed information. These
combined efforts effectively improve the model’s predictive
accuracy, thereby fulfilling the objective of precisely predicting
and classifying different lung diseases. The workflow of this study
is illustrated in Figure 1.

Methods

Data collection

In the investigation into pulmonary diseases, two significant
datasets have been utilized to facilitate the diagnosis and
classification of conditions such as pneumonia and tuberculosis (TB)
through computational models. The first dataset, curated from various
sources, is designed to aid in the classification of pneumonia—an
infection leading to the inflammation of one or both lungs,
potentially caused by viruses, bacteria, fungi, or other pathogens
(https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-
chest-xray-dataset). This dataset is structured to support the
development and validation of Convolutional Neural Networks
(CNNs), comprising training, testing, and prediction subsets to
evaluate the model’s performance. The dataset has been intentionally
balanced to simplify model training, although researchers are
encouraged to introduce additional data sources and imbalance for a
more rigorous analysis, potentially enhancing the CNNmodel through
Data Augmentation techniques. The second dataset, a collaborative
effort by researchers from Qatar University, the University of Dhaka,
and their partners, focuses on Tuberculosis (TB) detection using chest
X-ray images. It juxtaposes 700 publicly accessible TB images and an
additional 2800 TB images available through the NIAID TB portal,
against 3,500 normal images, thus facilitating a comprehensive analysis
of TB-positive cases (https://www.kaggle.com/datasets/vivek468/
beginner-chest-xray-image-classification). The dataset sources include
the publicly available Montgomery and Shenzhen datasets from the
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National Library of Medicine (NLM), the Belarus dataset for a drug
resistance study, and the NIAID TB portal program dataset, offering a
diverse range of TB-positive CXR images for analysis.

Data preprocessing

To enhance feature visibility and improve the predictive
performance of the model, a series of preprocessing operations
were applied to all images. Initially, a mean filter was utilized to
remove noise from the images. Subsequently, a Gaussian high-pass
filter was employed to extract edge information, which was then
combined with the original images to make the edges more
pronounced. Finally, histogram equalization in the contrast space
was conducted, enhancing the representation of detail information
and contributing to the improvement of model performance.

Given the presence of data imbalance in the original dataset,
which could impact the model’s predictive results, data
augmentation was implemented to balance the dataset. For each
dataset, we increased the number of images through cropping,
flipping, and translation, equalizing the image quantity across
datasets to effectively prevent model overfitting caused by data
imbalance. In this study, both the baseline models and the
DSEception model were trained and tested using datasets that
had undergone data preprocessing and augmentation. This
approach ensured fair comparison results and effectively
enhanced the models’ performance.

Model construction

DSEception model
The Inception architecture was introduced by Szegedy et al.

(2014) in 2014, utilizing the concept of “Network In Network” to
implement a novel convolution operation known as the “Inception
module”. This module enables the model to capture information at
various scales while maintaining parameter efficiency, allowing for
the extraction of image features across different scales within a single

module. Owing to its excellent generalization ability and predictive
capability, the Inception model has been widely applied in
processing various medical images (Gao et al., 2020; Wang et al.,
2019; Tamilarasi and Gopinathan, 2021; Fan et al., 2023). However,
the Inception model’s capacity to capture certain detail information
in lung X-ray images is somewhat limited, constraining the model’s
predictive performance to an extent. Depthwise Separable
Convolution (DSC), proposed by Sifre et al. (Sifre and Mallat,
2014) in 2014, has been shown to reduce the model’s
computational complexity and the number of parameters while
maintaining or even enhancing model performance and
extracting richer texture features. The Squeeze-and-Excitation
(SE) mechanism, introduced by Hu et al. (Jie et al., 2019) in
2017 as an innovative network architecture aimed at improving
the performance of convolutional neural networks, allows for
dynamic feature recalibration. This adaptive recalibration process
enhances the model’s ability to distinguish the importance of
different features, thereby reallocating feature attention regions
and effectively improving model prediction accuracy.

The DSEception model proposed in this paper is based on the
Inception architecture, incorporating the DSC module to reshape
the feature map size while extracting more detailed texture features
without significantly increasing the number of parameters.
Moreover, the model integrates the Squeeze-and-Excitation
mechanism from SENet, a lightweight self-attention mechanism
that enhances the model’s representational ability by learning the
importance of different channels and readjusting the distribution of
feature importance. The construction of DSEceptionmodel is shown
in Figure 2. These innovations enable DSEception to extract richer
features and enhance the detection capability for lung X-ray images,
focusing on both broad tissue structures and minute pathological
details, significantly improving the model’s performance in
diagnosing and classifying lung diseases (pneumonia,
tuberculosis, and normal lung conditions).

Baseline models
To objectively and comprehensively assess the DSEception

model presented in this study, we constructed a set of widely

FIGURE 1
The workflow of this study. The process first involves the collection of data on tuberculosis, pneumonia, and normal lungs. Following that, data
preprocessing is carried out, which includes various data augmentation techniques. The preprocessed data is then fed into a deep learning model for
prediction, ultimately yielding relatively accurate results for assisted diagnosis.
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utilized baseline models for comparison, encompassing Inception,
VGG, ResNet, and DenseNet. ResNet, proposed by He et al. (2016)
in 2015, innovates with the introduction of residual blocks, each
comprising one or more convolutional layers, augmented with a
“shortcut connection” or “skip connection” between these layers’ in
put and output. This design aids in learning the residual mappings
between inputs and outputs, thereby alleviating the vanishing
gradient issue and facilitating the construction of deeper
networks. Due to its capability to capture finer semantic details,
ResNet has found extensive application in medical imaging research
(Muhammad et al., 2023; Xu et al., 2023).

The VGG network, introduced by the Visual Geometry Group at
the University of Oxford in 2014 (Simonyan and Zisserman, 2014),
despite its parameter intensity and computational demands, is
celebrated for its architectural simplicity and exemplary
performance, serving as a critical benchmark in the realm of
deep learning applications. Its utility extends beyond medical
image recognition to encompass tasks like image segmentation,
credited to the formidable expressive power of its feature
extraction layers (Johansen et al., 2020; Veni and Manjula, 2023).

DenseNet, unveiled by Huang et al. (2016) in 2016, distinguishes
itself by ensuring each layer receives inputs from all preceding layers,
thereby fostering dense inter-layer connections. This structure is
particularly advantageous for image recognition and classification
tasks, demonstrating exceptional efficacy across various medical
imaging applications. The juxtaposition with these established
baseline models illuminates the DSEception model’s advantages

and areas for enhancement, offering profound insights for our
investigation’s progression (Huang et al., 2020; Yang et al., 2021).

Model evaluation
In this study, we employed several evaluation metrics to assess

and compare the performance of our model. These metrics include
accuracy (ACC), precision (PRE), recall (REC), and F1-score (F1).
Each of these metrics is calculated based on parameters derived from
the confusion matrix, which consists of True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). The

FIGURE 2
The construction of DSEception model. Initially, the model employs the Inception architecture to perform preliminary feature extraction.
Subsequently, it utilizes a Deepwise Separable Convolution structure to extract detailed texture features. Furthermore, the Squeeze-and-Excitation
blocks are integrated to adjust the model’s attentional focus without significantly increasing the number of parameters.

FIGURE 3
Schematic diagram of how the confusion matrix is calculated.
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calculation and interpretation of these metrics are essential for
understanding the model’s performance in terms of correctly
identifying positive cases and avoiding false detections. Figure 3
illustrates the structure of the confusion matrix used in these
calculations.

• ACC is the ratio of correctly classified instances to the total
number of instances. It represents the model’s overall
performance in terms of its ability to correctly classify both
positive and negative instances. The formula for calculating
accuracy is shown in Equation 1.

• PRE measures the accuracy of positive predictions, indicating
the proportion of true positive instances among all instances
that the model classified as positive. The formula for
calculating precision is provided in Equation 2.

• REC indicates the model’s ability to capture positive instances,
reflecting the proportion of actual positive instances that the
model correctly identified. The formula for calculating recall is
given in Equation 3.

• The F1 Score is the weighted average of precision and recall,
providing a balance between these two metrics. It is
particularly useful when the class distribution is
imbalanced. The formula for calculating the F1 Score is
illustrated in Equation 4.

ACC � TP + TN

TP + FP + TN + FN
(1)

PRE � TP

TP + FP
(2)

REC � TP

TP + FN
(3)

F1 � 2 × PRE × REC

PRE + REC
(4)

In addition, we utilized the ROC curve to visualize the model’s
performance and computed the Area Under Curve (AUC). The
ROC (Receiver Operating Characteristic) curve is an instrumental
graphical tool for evaluating the performance of classification
models across all possible thresholds. It plots the True Positive
Rate (TPR) against the False Positive Rate (FPR). The TPR
represents the model’s ability to correctly identify positive
samples, whereas the FPR indicates the frequency of incorrectly
identifying negative samples as positive. An ideal ROC curve would
approach the top left corner of the plot, signifying a low FPR and a
high TPR, which is desirable in most classification contexts. The
AUC, quantifying the overall performance of a classifier, represents
the area under the ROC curve, with values ranging from 0 to 1. An
AUC value of one indicates perfect classification, 0.5 suggests no
discriminative ability (equivalent to random guessing), and values
less than 0.5 imply performance worse than random guessing.

Results

Experimental set up

In this study, to ensure a fair and objective evaluation of the
models, a uniform fine-tuning and optimization experiment was
applied across all models. Specifically, the number of training epochs

was set to 30 for all models, under which condition each model
achieved full convergence without showing signs of overfitting. For
the DSEception Model, the learning rate was adjusted to
0.0001 using the gradient threshold method, and the batch size
was set to 32. Under these parameter settings, the model
demonstrated optimal predictive performance. Similarly, for other
baseline models, equivalent strategies for parameter settings were
employed to ensure that each model could perform at its best.

The experimental framework for this investigation was
meticulously configured within a computing milieu governed by
Windows 11 Professional Edition. Computational operations were
conducted utilizing Python 3.7.0. The cornerstone libraries
harnessed in this study encompassed Tensorflow-gpu 2.6.0 for
the crafting of deep learning architectures, alongside Scikit-learn
and Sklearn 0.0.post1 for the implementation of machine learning
algorithms and data manipulation, scipy 1.10.0 for advanced
scientific computations, and matplotlib for the graphical
representation of data and exhibition of results. From a hardware
perspective, the experimental activities were executed on an Intel
Core i5 12400F CPU, which boasts a base frequency of 2.5 GHz and
can achieve a turbo frequency of up to 4.40GHz, incorporating six
cores and twelve threads. This CPU was augmented by an NVIDIA
GeForce GTX 3060 GPU, which is furnished with a 12 GB memory
capacity and a 192-bit memory bus width, thereby ensuring
expeditious data handling and model training processes.

Result of five-fold cross-validation

In this study, to comprehensively assess the predictive accuracy
and stability of the models, five-fold cross-validation was conducted
on all models. Specifically, for the DSEception model during the
training phase, the Adam optimizer was utilized, with the learning
rate set to 0.0001 and the number of training epochs fixed at 30.
Under these parameter settings, the model was able to fully converge
without showing any signs of overfitting, as depicted in Figure 4A.

The results from the five-fold cross-validation (presented in
Table 1) demonstrated that the DSEception model exhibited
outstanding predictive performance, with average ACC, PRE,
REC, and F1 score of 90.98% ± 1.48%, 91.02% ± 2.91%,
93.42% ± 0.83%, and 91.94% ± 2.11%, respectively. Additionally,
the AUC for each classification exceeded 97%, with the AUC for
tuberculosis reaching 99.49% ± 0.03%, showcasing the model’s
exceptional stability (as shown in Figure 4B). In contrast, the
ROC curves for the baseline models (illustrated in Figures 4C–F),
with the best-performing being Inception, had average ACC, PRE,
REC, and F1 scores of 88.27% ± 2.76%, 89.29% ± 2.66%, 90.23% ±
2.72%, and 89.29% ± 2.69%, respectively, all of which were more
than 1% lower than those of the DSEception model. Compared to
widely used traditional models, the superior predictive capabilities
and stability of the proposed DSEception model significantly
enhance the trust of medical practitioners and patients in this model.

Results of independent validation

To assess the predictive capability of the DSEception model
proposed in this study on unseen datasets, external testing was
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conducted and compared with baseline models. The results from the
external testing underscore the DSEception model’s exceptional
ability to maintain high predictive performance when confronted

with unseen datasets. The ROC curve of the DSEception model in
external testing, as depicted in Figure 5A, achieved an average AUC
of 98.10%. Although this is not the highest, it is not significantly

FIGURE 4
The results of Five-Fold Cross-Validation. (A) the training flow of DSEception Model. As can be seen from the figure, as the model is continuously
iterated, the training and validation accuracy continue to increase, and the loss continues to decrease until it reaches stability. This shows that the model
has converged and there is no overfitting. (B) the ROC curve of DSEceptionModel. (C)–(F) the ROC curve of DenseNet, Inception, ResNet and VGG. From
the above ROC curves, it can be seen that the AUC of the DSEception Model represented by (B) in the recognition of pneumonia, tuberculosis and
normal is higher than that of the comparison model (C–F).

TABLE 1 The results of Five-Fold Cross-Validation.

Mean ACC (%) Mean PRE (%) Mean REC (%) Mean F1 (%)

DSEception 90.98% ± 1.48 91.02% ± 2.91 93.42% ± 0.83 91.94% ± 2.11

Inception 88.27% ± 2.76 89.29% ± 2.66 90.23% ± 2.72 89.29% ± 2.69

VGG 81.65% ± 11.24 79.95% ± 8.78 86.21% ± 7.21 78.52% ± 12.11

ResNet 83.30% ± 8.63 79.93% ± 7.69 87.88% ± 5.78 80.37% ± 10.10

DenseNet 88.91% ± 0.97 86.67% ± 3.18 90.63% ± 0.35 88.24% ± 2.00
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different from the other models. Furthermore, the predictive
outcomes for all models, as shown in Table 2, indicate that the
DSEception model’s ACC, PRE, REC, and F1 score reached 90.48%,
90.07%, 93.49%, and 91.44%, respectively, marking an improvement
of over 3% compared to the baseline models.

The ROC curves of the baseline models are illustrated in
Figures 5B–E, with the best-performing ResNet model having

average ACC, PRE, REC, and F1 scores of 86.94%, 85.75%,
91.08%, and 87.34%, respectively. Compared to ResNet and
other baseline models, the DSEception model’s superior
capability in handling unseen data is particularly noteworthy,
demonstrating its potential to assist clinicians in the efficient,
accurate, and rapid diagnosis of various types of
pulmonary diseases.

FIGURE 5
The results of independent validation. (A) the ROC curve of DSEception Model. (B)–(E) the ROC curve of DenseNet, Inception,ResNet and VGG. It
can be seen that the average AUC of DSEception Model is similar to or slightly higher than that of other models.
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Visualization and clinical
interpretive analysis

We employed a deep learning model for the analysis of chest
X-ray images and generated corresponding heatmaps through
visualization techniques to explore the model’s focus areas in
identifying different thoracic diseases. As illustrated in Figure 6,
the heatmap of a normal chest X-ray image shows uniformly
distributed areas of low intensity, indicating no abnormal focal
attention by the model. In contrast, for cases of pneumonia and
tuberculosis, the heatmaps reveal regions of significantly increased
attention, particularly in specific parts of the lungs typically
associated with infection and pathological changes. For
pneumonia, the heatmap highlights areas of concentrated
inflammation, often manifesting as localized increased density in
the lung parenchyma. In tuberculosis cases, the focus is on the apical
and upper lobe regions, consistent with clinical observations that
tuberculosis tends to form lesions in these areas. These results not
only confirm the diagnostic consistency of the model but also
highlight the potential of deep learning in the interpretive

analysis of medical imaging, providing valuable visual aids for
clinical decision-making.

Discussion

This study is dedicated to the precise diagnosis of various
pulmonary diseases (Normal, Pneumonia, and Tuberculosis)
through the proposed DSEception Model. To evaluate its
effectiveness, both five-fold cross-validation and external
testing were conducted. In external testing, the DSEception
Model demonstrated exceptional performance, with an average
accuracy (ACC) and F1 score reaching 90.48% and 91.44%,
respectively, marking an improvement of over 3% in accuracy
compared to baseline models. During the five-fold cross-
validation, the model exhibited superior stability, with an
average ACC and F1 score of 90.98% ± 1.48% and 91.94% ±
2.11%, respectively. Hence, due to its high reliability and stability,
the DSEception Model is expected to gain widespread trust
among medical professionals and patients.

TABLE 2 The results of independent validation.

Mean ACC (%) Mean PRE (%) Mean REC (%) Mean F1 (%)

DSEception 90.48 90.07 93.49 91.44

Inception 84.65 82.08 88.48 83.60

VGG 85.21 79.41 89.13 80.44

ResNet 86.94 85.75 91.08 87.34

DenseNet 84.31 78.61 88.40 79.66

FIGURE 6
The heatmap of different classes. (A–C) the heat map of Normal, Pneumonia, Tuberculosis classes, and (D–F) the original X-ray images of Normal,
Pneumonia, Tuberculosis classes.
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The DSEception model, built upon the
InceptionV3 architecture, incorporates depthwise separable
convolutions following the Inception modules to enhance
parameter efficiency and reduce computational demands.
Moreover, the model integrates the SE mechanism from SENet, a
lightweight self-attention mechanism that significantly improves the
model’s representational ability by precisely learning the importance
of different channels without notably increasing the number of
parameters and computational load. These innovative approaches
enable the Inception modules to extract more complex features
more effectively, thus significantly enhancing the model’s
performance in diagnosing and classifying pulmonary diseases.

Extensive research has highlighted that traditional manual
survey methods in medical diagnosis may be influenced by
sampling errors, leading to misdiagnoses (Feng et al., 2014). This
issue is prevalent in the context of lung diseases, where the
differentiation between various conditions requires precision and
accuracy. The mathematical model introduced in this paper
addresses this critical gap, offering a more reliable and systematic
approach to diagnosis. This model excels in distinguishing between
three primary types of lung diseases. Specific characteristics of these
diseases might be overlooked in manual evaluations due to
complexity in radiological findings. By integrating a complete set
of diagnostic criteria and utilizing algorithms, the model increases
the accuracy of identifying these diseases, thereby helping medical
personnel in making proper healthcare decisions. Furthermore, if
the approach proposed in this paper is implemented, hospitals and
related medical institutions could significantly reduce medical
expenses. Data shows that in regions with relative low economic
development, the prevalence of health insurance among residents is
low (Durizzo et al., 2022). The diagnostic method proposed in this
paper benefits in these resource-limited medical environments: by
minimizing unnecessary tests, diagnoses, treatments, and hospital
stays, the model optimizes the allocation of medical costs for both
hospitals and patients. Mediately, this method improves the overall
experience of patients during medical visits. The stress and anxiety
associated with long-term and uncertain diagnostic processes can be
substantial for patients. A rapid and accurate diagnosis, as
streamlined by this model, alleviates these psychological burdens.
Therefore, timely and accurate treatment not only saves patients
from unnecessary additional medical expenses but also provides
stronger support for their mental health, promoting recovery during
the illness.

On the other hand, the DSEception model proposed in this
study excels in feature extraction and channel importance learning
while maintaining a low parameter count and high computational
efficiency, making it highly suitable for application in medical
electronic products. Medical devices incorporating the
DSEception model, such as intelligent imaging diagnostic systems
and portable diagnostic tools, can provide rapid and accurate
auxiliary diagnoses in clinical settings, particularly in resource-
limited or immediate diagnosis scenarios. Specifically, the
DSEception model can be embedded in medical imaging analysis
instruments like CT or X-ray machines, enabling real-time analysis
of imaging data to provide high-precision lesion detection and
classification results, thereby assisting physicians in making
diagnostic decisions. Furthermore, when combined with
smartphones or other portable devices, the DSEception model

can be used for telemedicine, facilitating rapid screening and
diagnosis for patients in remote areas, thus enhancing the
accessibility and efficiency of medical services. Additionally, the
lightweight nature of the DSEception model makes it feasible for
hardware implementation, allowing it to operate without reliance on
high-performance computing equipment. This not only reduces the
cost of medical devices but also makes themmore accessible, thereby
serving a broader range of primary healthcare institutions and home
healthcare environments.

The work still has imperfections, which can be specifically
discussed in terms of classification limitations, data set scale, and
the necessity of clinical translation. Firstly, the current study is
only applicable to the specific diagnosis of three types of
pulmonary diseases; however, pulmonary diseases have more
complexities than this. Therefore, future research could
consider including a greater variety of pulmonary disease
classifications to enhance the model’s generalization ability
and precision in diagnosis. Consequently, the method
proposed in this paper would be able to address the complex
and varied clinical situations more comprehensively. Secondly,
the current research data set used is limited in scale, which may
affect the reliability of the model, so future work should include
verification on a more extensive data set. Such validation will help
ensure that the model can accurately diagnose specific patient
conditions in different clinical environments. Ultimately,
although this study has made theoretical progress, it has not
yet been implemented in the real medical diagnostic process.
Future work needs to focus on further developing this theoretical
approach into a complete methodology that can be integrated
into the current medical system, further developing the potential
value of this research.

Conclusion

In summation, a novel deep learning model for the automated
differentiation of pneumonia and tuberculosis using X-ray imaging
has been pioneered in this study. The model’s performance in
accuracy and reliability, as evidenced through rigorous cross-
validation and independent testing, marks a significant
advancement in the field of pulmonary disease diagnosis. The
work not only simplifies the diagnostic process, reducing the
workload for physicians, but also facilitates the advancement of
more accurate diagnostic methodologies for prevalent respiratory
diseases. Future efforts may focus on expanding the model’s
classification spectrum, enhancing the generalizability with multi-
center trials, and achieving clinical implementation. This research
holds the promise of changing the approach to diagnosing
pulmonary diseases globally, emphasizing the transformative
potential of integrating advanced deep learning with medical
imaging in healthcare.
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