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Introduction: Colorectal cancer is the third most common malignancy in
developed countries. Diagnosis strongly depends on the pathologist’s
expertise and laboratory equipment, and patient survival is influenced by the
cancer’s stage at detection. Non-invasive spectroscopic techniques can aid early
diagnosis, monitor disease progression, and assess changes in physiological
parameters in both heterogeneous samples and advanced platforms like
Organ-on-Chip (OoC).

Methods: In this study, Raman microspectroscopy combined with Machine
Learning was used to analyse structural and biochemical changes in a Caco-2
cell-based intestinal epithelial model before and after treatment with a calcium
chelating agent.

Results: The Machine Learning (ML) algorithm successfully classified different
epithelium damage conditions, achieving an accuracy of 91.9% using only 7
features. Two data-splitting approaches, “sample-based” and “spectra-based,”
were also compared. Further, Raman microspectroscopy results were confirmed
by TEER measurements and immunofluorescence staining.

Discussion: Experimental results demonstrate that this approach, combined
with supervised Machine Learning, can investigate dynamic biomolecular
changes in real-time with high spatial resolution. This represents a
promising non-invasive alternative technique for characterizing cells and
biological barriers in organoids and OoC platforms, with potential
applications in cytology diagnostics, tumor monitoring, and drug efficacy
analysis.

KEYWORDS

micro-Raman spectroscopy, machine learning, principal component analysis (PCA),
Caco-2 cells, organ-on-chip

OPEN ACCESS

EDITED BY

Jose Manuel Garcia-Aznar,
University of Zaragoza, Spain

REVIEWED BY

Wei Zhang,
The University of Utah, United States
Yuzhu Liu,
Nanjing University of Information Science and
Technology, China

*CORRESPONDENCE

E. Sciurti,
elisa.sciurti@cnr.it

RECEIVED 02 July 2024
ACCEPTED 25 October 2024
PUBLISHED 11 November 2024

CITATION

Calogiuri A, Bellisario D, Sciurti E, Blasi L,
Esposito V, Casino F, Siciliano P and Francioso L
(2024) Non-invasive real-time investigation of
colorectal cells tight junctions by Raman
microspectroscopy analysis combined with
machine learning algorithms for organ-on-
chip applications.
Front. Bioeng. Biotechnol. 12:1458404.
doi: 10.3389/fbioe.2024.1458404

COPYRIGHT

© 2024 Calogiuri, Bellisario, Sciurti, Blasi,
Esposito, Casino, Siciliano and Francioso. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 11 November 2024
DOI 10.3389/fbioe.2024.1458404

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1458404/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1458404/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1458404/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1458404/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1458404/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1458404/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1458404/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1458404&domain=pdf&date_stamp=2024-11-11
mailto:elisa.sciurti@cnr.it
mailto:elisa.sciurti@cnr.it
https://doi.org/10.3389/fbioe.2024.1458404
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1458404


1 Introduction

Micro-Raman spectroscopy is a technique of great interest
that combines Raman spectroscopy with optical microscopy to
study the chemical composition of microscopic samples (Mariani
et al., 2010). For several years, it has been considered a potential
tool for biological and medical applications (Pappas et al., 2000).
Raman spectroscopy has several limitations in biological tissue
analysis. Its inherently weak signal requires long acquisition
times, while tissue fluorescence can mask the spectra, light
scattering in tissues reduces spatial resolution and overlapping
peaks from various biomolecules complicate compound
identification. Additionally, environmental changes, like
temperature and humidity, affect spectral reproducibility.
Advances in laser technology and detection systems aim to
reduce fluorescence interference and improve signal-to-noise
ratio while Machine Learning algorithms are being developed
for better spectral analysis, expanding the potential of Raman
spectroscopy in biological research. Indeed, the importance of this
technique lies in its potential to detect biochemical and structural
changes in cellular components such as proteins, DNA and lipids
by analysing the Raman spectra data associated with the
vibrational modes of the molecules and the functional groups
of the sample (Mariani et al., 2010; Su et al., 2022). In addition, it
allows the study of a wide range of sample sizes, from single cells
to intact tissues, in a non-invasive manner without the need for
cell/tissue labelling (Pappas et al., 2000). Raman analysis has also
the advantage of flexible sampling, allowing measurements on
fixed, dried and living cells (Mariani et al., 2010). Recently, this
technique has been used, for example, for the identification and
possibly grading of lung neoplasia in cell samples (Jess et al.,
2009), to classify B-leukemia cells into the different
differentiation/maturation stages, and to recognize biochemical
changes under chemotherapeutic treatments (Managò et al.,
2016), to evaluate cellular modifications after pesticides
exposure (Perna et al., 2022); but also for in vivo tissue
diagnosis of colorectal carcinoma (Fousková et al., 2023), to
investigate the resistance mechanisms in a population of cancer
cells (Yu et al., 2023) or to identify biochemical changes taking
place during the development of Hepatitis C (Ditta et al., 2019).
Currently, traditional methods exploited for the study in Organ-
on-Chip (OoC) devices allow to evaluate permeability, integrity of
cell barriers and their differentiation stage. However, these
techniques commonly do not allow working on living epithelia
and require preliminary procedures that might influence or
change the state of cells in culture. In this context, as a non-
destructive, label-free and sensitive technique, Raman
microspectroscopy represents a useful investigation tool for
OoC devices. OoCs are microfluidic platforms designed to
recapitulate the cellular functions and structures in miniature.
Due to their ability to mimic the cellular environment, these
devices are promising technologies for drug screening and
biomedical applications, representing potential substitutes for
animal models (Signore et al., 2021; Ingber, 2022). Raman
microspectroscopy enables rapid and accurate real-time
analysis of biochemical and genetic processes in OoCs by
monitoring the different molecular structures of nuclei, lipids
and proteins in situ, non-destructively and avoiding chip

contaminations from electrodes or exotic materials insertion
(Zbinden et al., 2020; Tawade and Mastrangeli, 2023).

In this study, the contactless Raman microspectroscopy was
used to investigate a live intestinal epithelial model and evaluate
alterations of its permeability in a non-invasive way. The intestinal
epithelium is an efficient barrier that protects the body from
pathogens and toxins and separates the intestinal lumen from the
underlying lamina propria (Cherwin et al., 2023). Tight Junctions
(TJs) allow intercellular adhesions between epithelial cells and
guarantee the integrity of the intestinal barrier (Edelblum and
Turner, 2009). Alterations in the transepithelial permeability and
modifications of the TJs function have been linked with colorectal
cancer and different inflammatory disorders such as inflammatory
bowel disease (IBD) (Michielan and D’Incà, 2015). The development
of a chip model that mimics the gut, its microenvironment and its
functionality represents a useful investigative tool to study
permeability alterations and their correlation with specific
diseases. Trans-Epithelial Electrical Resistance (TEER) is the most
used parameter to verify the TJs formation and to assess the barrier
integrity in vitro. TEER is a quantitative and non-invasive method
based on ohmic resistance calculations or impedance-based
measurements (Sciurti et al., 2023). Although the study of TEER
can provide several insights into the state of the intestinal
epithelium, this technique requires the integration of electrodes
into the OoC platform and is influenced by culture parameters such
as temperature, medium, cell confluence and user’s skill (Doryab
and Schmid, 2022). The aim of our work was to use Raman
microspectroscopy as an innovative and non-invasive tool to
investigate structural and biochemical alteration of a Caco-2 cells
epithelial monolayer. Caco-2 cell line is derived from human
colorectal adenocarcinoma and it is a widely used intestinal
epithelial model (Lopez-Escalera and Wellejus, 2022). Caco-2
cells form a polarized monolayer over 21 days, with cell-cell
adhesions ensured by tight junctions that provide barrier
function and low permeability (Liang et al., 2000). Raman
microspectroscopy analysis were performed before and after a
calcium chelating agent treatment which disrupts TJs and
increases epithelial permeability (Orchardt, 1997). Multivariate
data analysis tools as Principal Components Analysis (PCA) and
a design of supervised machine learning system were used to classify
the acquired Raman spectra. This method allowed us to distinguish
between intact and different levels of damaged cell junctions in real
time, without the need of preliminary procedures (e.g., for
immunofluorescent staining), in a rapid, non-invasive, and non-
destructive manner. In recent years, Machine Learning (ML) has
broadened its applications. In fact, the ability to analyse large
quantities of complex data, identify relationships and patterns
within datasets, and classify labeled data has driven
advancements in spectroscopy analyses. Techniques such as Mass
Spectrometry (MS), Near-Infrared (NIR) Spectroscopy, Laser-
induced breakdown Spectroscopy (LIBS), Fourier-Transform
Infrared (FTIR) Spectroscopy, and Raman Spectroscopy have
particularly benefited from these developments, enabling more
precise and rapid interpretation of spectral data (Meza Ramirez
et al., 2021; Beck et al., 2024; Képeš et al., 2024; Zhou et al., 2024).
Our results were correlated with TEER measurements performed in
the transwell platforms with live Caco-2 cells and
immunofluorescence staining analysis to assess the increase of
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the epithelial permeability caused by exposure to calcium chelating
agent. Raman microspectroscopy coupled with machine learning
algorithms is an innovative technique which allows the analysis of
dynamic biomolecular variations in real time with high spatial
resolution, representing a powerful strategy for biological and
medical research.

2 Materials and methods

2.1 Materials

Caco-2 human colon adenocarcinoma cell lines were purchased
from ATCC (Manassas, VA, United States); Dulbecco’s Modified
Eagle Medium (DMEM), phosphate buffered saline (PBS, liquid,
sterile-filtered, suitable for cell culture), ethylene glycol-bis(2-
aminoethylether)- N,N,N′,N′-tetraacetic acid (EGTA) were
purchased from Sigma Aldrich (St. Louis, MO, United States).
Bovine Serum Albumin (BSA), E-cadherin/CD324 Recombinant
Rabbit Monoclonal Antibody, Alexa Fluor 647 (AF647) Goat
anti-Rabbit IgG secondary antibody, ZO-1 Mouse Monoclonal
Antibody (ZO1-1A12), Alexa Fluor Plus 488 (AF488) Donkey
anti-Mouse IgG secondary antibody, Acti-Green Ready Probes
488 Reagent (LifeTechnologies), SlowFade® Gold Antifade
Mountant with DAPI were purchased from Thermo Fisher
Scientific Inc., Waltham, MA, United States.

2.2 Cell line and cell culture

Human epithelial Caco-2 cells were seeded in T-25 cm2
flasks

and incubated at 37 °C in a humidified atmosphere of 5% CO2.
The complete culture medium consisted of Minimum Essential
Eagle Medium (MEM) supplemented with 10% (v/v) fetal serum
bovine (FBS), and 1% (v/v) non-essential amino acid mix
solution. At a confluence of 80%–90%, the cells were
trypsinized and then seeded at 0.5 × 105 cells per well in 12-
well Transwell with 0.4 μm pore polyethylene terephthalate
(PET) membrane insert. Caco-2 cells were used after
continuous growth for 21 days post-seeding in standard
culture conditions to obtain an intact epithelium. Afterwards,
the membranes were cut from the transwell insert, rinsed in PBS
and placed in a commercial biochip (Fluidic 653 microfluidic
ChipShop, Jena, Germany) previously modified with a chamber
opening from topside and membrane removal, prior of the
insertion of our membranes with epithelium from transwell
culture. This step ensures that the PBS does not evaporate
during measurements; after the insertion, the chamber was
sealed with a custom coverslip and filled with DMEM for
conditioning during temperature stabilization and then with
PBS/EGTA for Raman analysis (Figure 1A). The temperature
control at 37 °C has been realized with a commercial Peltier
module connected to a TEC-1091 controller (Meerstetter
Engineering, Rubigen, Switzerland).

FIGURE 1
Experimental steps formembrane insertion ontomicrofluidic chip, equippedwith Peltier module temperature control at 37°C (A). Photograph of the
Raman microspectroscopy setup (B).

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Calogiuri et al. 10.3389/fbioe.2024.1458404

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1458404


2.3 Raman microspectroscopy

Single - point measurements on Caco-2 cells monolayer were
performed using a Raman microspectroscopy apparatus consisting
of an imaging spectrometer (iHR320 from Jobin-Yvon Horiba,
Sincerity cooled detector) coupled to a Zeiss Axio Imager M2
(Carl Zeiss Microscopy, LLC, White Plains, NY, United States)
equipped with a He-Ne laser 633 nm, 17 mW power and
200 μm entrance slit of the spectrometer (Figure 1B).

A diffraction grating with 1800 grooves/mm was used. Raman
measurements were conducted with LabSpec 6.7 Spectroscopy Suite
Software (Jobin Yvon - Horiba). The spectrometer was calibrated
with a silicon wafer before use. Raman spectra were obtained by
focusing the laser on selected points of the samples
using ×10 and ×20 objectives, in the Raman shift range from
500 to 2000 cm−1. Raman analysis were performed first on the
cell-free transwell membrane and then on the cells confluent onto
the same membrane, before the EGTA treatment and subsequently
at 2 and 4 h after the chelating agent exposure. The microfluidic chip
was mechanically blocked to the motorized stage in order to
guarantee that the mapped acquisition points are exactly the
same from experiment start until end of last acquisition, after 4 h
of EGTA agent exposure.

2.4 Data preprocessing and spectra analysis

Data preprocessing and analysis of acquired spectra was
performed using Origin (Pro 2023) software. The Raman spectra
underwent the following processing steps: i) cosmic ray removal,
this is essential to mitigate the impact of abrupt and isolated peaks
introduced into the spectra, which could potentially mask or distort
the original spectral features ii) the Savitzky-Golay filter was adopted
and applied with a second-order polynomial and a window size of
50 points iii) baseline correction was realized using the
Asymmetrical Least Squares Smoothing algorithm, with a
smoothing factor 4 in order to reduce external factors like
autofluorescence iv) normalization based on the maximum value
(Butler et al., 2016; Krafft et al., 2017; Ditta et al., 2019). For each
Caco-2membranes, different Raman spectra were acquired on blank
membranes (no cells) and setting the software to acquire a points
map over the same intercellular region at 2 h and 4 h of EGTA
treatment. The Origin software peak analyzer tool was used to
identify the top 20 significant peaks for the intercellular region
(corresponding to a TJs abundant location) and the intracellular
space from the Raman spectra. The acquired data were analysed by
PCA and the spectra were represented along the first 2 principal
components vectors in the score plot. The examination of the scores
and loading were used to discriminate the different classes of the
Raman spectra (Frausto-Reyes et al., 2005). To detect and classify
different conditions of the Caco-2 monolayer using Raman spectra
measurements, a supervised machine learning system was designed
and trained with labeled measurements on Matlab2021 software.
The detection and classification problems were solved by classifying
the Ramanmeasurements into one of the four available classes (t = 0,
t = 2 h, t = 4 h, empty/blank membrane). The most important peaks
for a correct classification of the four classes were identified through
analysis of loadings related to the first most significant 9 principal

components (explaining 99% of the total variance). For each
principal component, the 30 loadings with the highest absolute
value were extracted. The peaks associated with all the heaviest PC
loadings were then extracted for each acquired measurement and for
all conditions. The extracted features were ranked by importance
coefficients extracted by the training of a linear SVM algorithm and
then subsequently selected to obtain the optimal number of features
that maximize the performance of the model (Guo et al., 2002; Kim
and Rattakorn, 2011; Rebrošová et al., 2017). For each class, the
dataframe of labeled features was randomly divided in two subsets
(Lee et al., 2024): 80% of the dataset was used as a training set and
20% of the dataset was used as a testing set. To avoid overfitting, the
presented classification approaches were performed using 10-fold
cross-validation for the validation step. In this method, the training
data was first divided into k-folds of equal size. Then, k-1 fold was
used to test the classifier, and the remaining folds were used for
training. This process was repeated k times, with each fold being
used exactly once as the test set (Kohavi, 1995). This method
guarantees that every peak set in the dataset was used for both
training and testing. The training accuracies were subsequently
calculated as average on the remaining 10% of the training data
that was held out for each testing.

2.5 TEER measurements

To monitor the growth of the Caco-2 cells, to assess the
formation of tight junctions (TJs) and to test the effect of EGTA
on the integrity of the Caco-2 monolayer, TEER measurements were
performed in Transwell using impedance spectroscopy technique.
Chopstick-like parallel electrodes were custommade with 2 tungsten
needles, 800 µm diameter, inserter in a PTFE circular disk at 10 mm
gap, in order to allow insertion of the needles in the apical and
basolateral compartments of the transwell insert in a reliable way.
Needles length was regulated to avoid mechanical contact with
multiwell bottom and with the Transwell membrane. Impedance
spectra were recorded over a frequency range of 1 Hz–100 kHz at an
alternating potential of 10 mV, using a potentiostat/galvanostat
(PalmSens EmStat 4 M model). Impedance measurements were
performed for 32 days, before and after the EGTA treatment and the
acquired data were fitted with an optimized equivalent electric
circuit using Zview software (Scribner Associates Inc., Southern
Pines, NC, United States) to obtain TEER values.

2.6 Immunofluorescent staining

Caco-2 cells were rinsed with PBS and fixed with 4%
paraformaldehyde for 15 min, at room temperature (RT). F-actin
was labeled by following the manufacture’s protocol using Acti-
Green Ready Probes 488 Reagent (LifeTechnologies). Briefly, after
permeabilization with 0.1% (v/v) Triton X-100, cells were incubated
with few drops of staining solution for 30 min in the dark at RT and
then rinsed three times in PBS. Caco-2 cells were labeled with
E-cadherin Monoclonal Antibody at a dilution of 1:500 in PBS with
1% BSA and incubated for 3 h at RT. After three washes, cells were
incubated with AF647 secondary antibody at a dilution of 1:400 for
30 min at RT. Tight junction protein ZO-1 staining was carried out
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by incubating Caco-2 cells with ZO-1 Monoclonal Antibody at a
dilution of 1:100 in 0.1% BSA, overnight at 4 °C. After three washes,
cells were incubated with AF488 secondary antibody at a dilution of
1:2000 for 45 min at RT. Lastly, nuclei were stained with SlowFade®
Gold Antifade Mountant with DAPI and imaged with Zeiss
Axio Imager M2.

3 Results and discussion

3.1 Raman analysis on fixed cells

To optimize our experimental setup in terms of calibration and
acquisition parameters of the Raman analysis protocol for the
cellular compartment characterizations, a series of preliminary
analyses were performed. First, an intact cell monolayer (21 days
after seeding) on the transwell membrane was fixed with 4%
paraformaldehyde. Using the LabSpec 6.7 Spectroscopy Suite
software, 10 spectra in the intracellular space and 10 spectra in
the intercellular space were selected from the live image acquired
with a ×20 objective. By focusing the laser beam at the selected
points, Raman spectra of the different cellular compartments were
recorded and analysed. A prior review of the literature (Talari et al.,
2015; Brozek-Pluska, 2020; Zhang et al., 2020; Pezzotti, 2021; Beton-

Mysur and Brozek-Pluska, 2023), summarized in Table 1, was
essential to identify the molecular functional groups and bonds
structure vs. detected peaks.

A comparison between the Raman signals detected in our
analyses and those reported in the literature, allowed us to
identify peaks uniquely associated with the intracellular
compartment or the cell membranes (intercellular) region. As
shown in Figures 2A, B, the most significant peaks found by
averaging the spectra extracted from the intracellular region were
at 621 cm−1, 667 cm−1, 729 cm−1, 742 cm−1, 852 cm−1, 860 cm−1,
893 cm−1, 928 cm−1, 937 cm−1 and 1,003 cm−1. From cell membrane
spectra, intense peaks were identified at 1,614 cm−1, 671 cm−1,
678 cm−1, 815 cm−1, 858 cm−1, 920 cm−1, 938 cm−1, 1,053 cm−1,
1,090 cm−1 related to different molecular structures (Table 1) and a
significant band at 1,080 cm−1 was associated with E-cadherin, one
of the adhesion proteins involved in the cell-cell interactions.

A depth exploration of the Raman spectra was also performed
using PCAmethod. The data were clearly separated into two clusters
corresponding to different cellular compartments, with an explained
total variance of 86.7% on the first two principal components (82.6%
on PC1 and 4.1% on PC2), indicating a strong differentiation
between the two analysed cellular regions. The reported results in
Figure 2 demonstrate that Raman microspectroscopy allowed us to
observe the different contributions of biological components

TABLE 1 The assignments of Raman peaks for characterization of Caco-2 and eukaryotic cell (Talari et al., 2015; Brozek-Pluska, 2020; Zhang et al., 2020;
Pezzotti, 2021; Beton-Mysur and Brozek-Pluska, 2023).

Peak no. Center (cm−1) Major assignment

1 621 cm−1 Phenylalanine

2 667–669 cm−1 Cystine (collagen type I), Nucleic acids T and G

3 671 cm−1 Nucleic acids T and G

4 678 cm−1 Ring breathing modes in the DNA bases

5 729 cm−1 Nucleic acids A

6 742 cm−1 DNA, tryptophan

7 815 cm−1 Proline, hydroxyproline, tyrosine, PO2- stretch

8 852–858 cm−1 Proline, hydroxyproline, tyrosine

9 860 cm−1 Phosphate group

10 893 cm−1 Phosphodiester, deoxyribose

11 920 cm−1 Proline ring, glucose, lactic acid and praline ring

12 928 cm−1 Proline and Valine

13 937–938 cm−1 Proline, hydroxyproline

14 1,003 cm−1 Phenylalanine

15 1,035 cm−1 Collagen

16 1,053 cm−1 C-O stretching, C-N stretching (proteins)

17 1,080 cm−1 sE-cadherine

18 1,090 cm−1 PO2- stretch

19 1,230 cm−1 Amide III

20 1,298 cm−1 Fatty acids, CH2 deformation

21 1,614 cm−1 Tyrosine
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composing the Raman spectrum, reflecting the variability of
biochemical constitution in the analysed cellular compartments
(Table 1). Additionally, Figure 3 shows that Raman
microspectroscopy can distinguish different compartments of
fixed epithelial cells by PCA (Shin et al., 2018).

Starting for this preliminary assessment, the experimental study
will focus on the TJs regions, acquiring multiple spectra with the
laser spot focused on the cell-cell junctions areas,
subsequently processed.

3.2 Raman microspectroscopy on live cells

To evaluate the performance of Raman microspectroscopy on
live cells as a potential tool for the non-invasive analysis of the state
of the intestinal epithelium in an OoC system, live Caco-2 cells were
examined. The permeability of the Caco-2 monolayer, as an
intestinal model, and the integrity of TJs were investigated by
comparing the cell status 21 days after seeding and 2 and 4 h
after EGTA exposure. EGTA, through the extracellular depletion of

FIGURE 2
Average Raman spectra of the Caco-2 monolayer acquired from the intercellular region (A) and the intracellular region (B). The identified peaks
associated with biological molecules in the TJ area were: 671 cm−1, 678 cm−1, 815 cm−1, 858 cm−1, 920 cm−1, 938 cm−1, 1,053 cm−1,1080 cm−1, 1,090 cm−1

and 1,614 cm−1; for the intracellular space, the identified peaks were: 621 cm−1, 667 cm−1, 729 cm−1, 742 cm−1, 852 cm−1, 860 cm−1, 893 cm−1, 928 cm−1,
937 cm−1and 1,003 cm−1.
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Ca2+, induces the disruption of the TJs and the formation of
epithelial hot spots, leading to a gradual decrease in the epithelial
barrier functions (Panou et al., 2023).

To ensure that the epithelium analysed by Raman spectroscopy
exhibits alterations similar to those observed in samples analysed
exclusively by TEER and IF after EGTA treatment, the cell culture
was maintained until the characteristic permeability of fully

intestinal differentiated cells was achieved in our experimental
system. The PET transparent membrane of the Transwell insert
on which the cells were cultured was cut and immersed in 5 mM
EGTA solution in the microfluidic chip reported above. Raman
spectra were acquired using three different batches and from each,
20 selected spots distributed in the intercellular space at different
time points of EGTA exposure (time 0, 2 h, 4 h). The recorded data
were pre-processed as reported in section 2.4 and the average spectra
at different treatment conditions are shown in Figure 4.

The Raman spectra from the intercellular space were then
analysed by PCA in order to simplify the complexity of acquired
spectral data by using a lower number of unrelated variables, the
principal components (PCs). As shown in Figures 5A, B, C the high
explained variance of the first three principal components, adding
up to 97.3% (PC1 at 95.2%, PC2 at 0.9%, and PC3 at 0.6%), confirms
that the first graph of PC1 vs. PC2 is the projection that better
reports a good discrimination between the untreated epithelium and
the blank membrane (no cells), while the points related to 2 h and
4 h EGTA treatment are mainly superposed, indicating that the 2 h
treatment caused a detectable damage (not so different from 4 h
spectra) of the TJ as confirmed also by the immunofluorescence
investigation results reported in section 3.4.

Figure 5D reports the loading plots for the three first principal
components PC1, PC2 and PC3 and correlation of loading weights
vs. the reference spectra of intact epithelium (Untreated cells
spectrum in Figure 5D). The underlying spectral informative data
can be explained, e.g., on the PC1 component by the corresponding
increased proteins-related features in the 852–858 cm−1 region
(proline, hydroxyproline) and 1,614 cm−1 shift, related to
aromatic band (Tyrosine, Tryptophan, Phenylalanine) (Talari
et al., 2015; Beton-Mysur and Brozek-Pluska, 2023).

FIGURE 3
Score plot of PCA on fixed cells experiment. Each Raman
spectrum was represented by dots (red for the intracellular region and
black for the cellular membrane), transformed in the two principal
eigenvectors, PC1 (82.6%) and PC2 (4.1%) space.

FIGURE 4
Average spectra of the live cells samples at T = 0 h, after 2 h and 4 h of exposure to 5 mM EGTA. The shaded area surrounding each peak represents
the standard deviation.
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In order to generate a classification tool able to distinguish intact
from damaged junctions, the Raman data were used to train a
supervised classification algorithm using only the most determinant
peaks (Ressom et al., 2007). From the previous PCA, the loadings
were used to extract specific peaks and then used as predictors for
the training of a supervised ML classification model. The intensity of
peaks with the highest absolute loadings were selected (see section
2.4) from the loadings matrix of the first 9 principal components

(which together explain 99% of the variance in the data), identifying
peaks that can capture the difference between conditions, ensuring
that our model is trained on the most discriminative features of the
data (King and Jackson, 1999; Li et al., 2016). The total data set of
220 analysed spectra included 60 spectra for each status of the Caco-
2 monolayer (time 0 h, 2 h, 4 h) acquired from three similar samples
and 40 spectra related to empty membrane areas. After extraction
and elimination of duplicate peaks, a total of 162 predictors were

FIGURE 5
Score Plots of PCA performed on whole acquired spectra from live cells samples with different EGTA exposures (A) PC1 vs. PC2, (B) PC1 vs. PC3 and
(C) PC2 vs. PC3. Black dots = untreated cells (T0), red dots = 2 h EGTA exposure (T2), green dots = 4 h EGTA exposure (T4), blue dots = cell-free
membranes (blank). (D) Loading plots for the three first principal components PC1, PC2 and PC3 and correlation of loading weights vs. the reference
spectra of intact epithelium (T0-no EGTA treatment).
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found. They were then ranked according to the feature importance
score (Brank et al., 2002; Wang et al., 2022) (calculated from SVM
weights) obtained from outputs of the learning process of an SVM
model with a “linear” kernel, box constraint of 10, and with “one vs.
all” options, trained with the feature extracted by all measures
(Brank et al., 2002; Wang et al., 2022). To train and evaluate the
ML model, the dataset was randomly divided into training sets
(80%) and test sets (20%) [“spectra method” splitting (Guo et al.,
2017)]. The best ML classifiers were selected using the Classification
Learner application of Matlab 2021. Table 2 summarizes the main
hyperparameters of the ML models used in this work. The
information about the performance of the classification ML
model is typically summarized into a confusion matrix from
which a fundamental parameter, the accuracy (Acc), can be
calculated. To avoid overfitting, the classification was performed
using a 10-fold cross-validation scheme and different classification
predictive algorithms were compared. The number of features was
progressively reduced until the optimal set was identified, where
further addition of features did not improve the model’s
performance or led to a decrease in accuracy (Chemmakha et al.,
2022). With an optimal number of 13 features, a robust performance
was achieved in both validation and test phase results.

Table 3 compares the performance of different classification
models, Quadratic SVM (qSVM), Cubic SVM (cSVM) and Wide
Neural Networks (WNN) through the quantitative metrics,
Specificity, Precision, Sensitivity, F1 Score on the testing data and
Accuracy, which was also calculated for the training.

As shown in Figure 6 after the validation phase, high accuracy
values were obtained for all analysed models, and very promising
results were confirmed in the testing phase. The validation
accuracies for the qSVM, cSVM, the Neural Network model with

WNN were 90.7%, 90.9% and 92.0% respectively, and the
downstream test phase accuracies were 97.2%, 90.9%, and 88.6%,
respectively. These results demonstrate the ability of the presented
models to discriminate different levels of epithelium damage and
their generalization ability. A slight misclassification was observed
for training and test phases mainly between classes 2 h and 4 h
treatments; this output was correlated to a fast degradation of tight
junctions after 2 h treatment, as explained and supported by the
immunostaining fluorescence tests in paragraph 3.4.

To evaluate the reason behind the high performance of the
previously obtained models, a focus was placed on the nature of the
features that enables the accurate identification of the epithelium
state. All the 13 Raman shifts with their associated intensities were
assigned in several biological related peaks, listed in Table 1,
including 621, 1,003, 1,035, 1,230, 1,298, 1,614 cm-1. These
differences in the intercellular space fingerprint are attributable
to structural and compositional changes of proteins and fatty
acids that were induced by the treatment. Not all features
coincide with the peak centre of the biological components, but
rather they are located in large peaks shoulder where there is a major
difference between classes (Yang et al., 2024).

Since the Raman measurements were conducted on live tissues
grown on the same porous membrane and presenting comparable
TEER values, this study established a correlation between the
predicted damage status and the TEER measurements recorded
at the corresponding treatments with EGTA. As reported in the
manuscript in paragraph 3.4, the measured TEER values are 700 ±
26 Ω·cm2 of the intact epithelium, 328.9 ± 9.1 Ω·cm2 after 2 h and
197.9 ± 4.5Ω·cm2 at 4 h of EGTA treatment; these values are related
to classes T0, T2 and T4 classified by the ML algorithm, respectively.

3.3 Real scenario damage assessment by
optimized ML models on never seen live
epithelium

In clinical applications, measurements acquired from different
biological samples may exhibit consistent results variance, so
different methods of dataset splitting can have a large impact on
the accuracy of the test and may result in overly optimistic
performance estimates (Wu et al., 2021; Blake et al., 2022). In
order to reduce the effect of the variance of the data set and to
further investigate the applicability of the model in a clinical setting,
the splitting of dataset in training set and test set at the highest
hierarchical level, is strongly recommended (Guo et al., 2017).
Present work adopted this suggested splitting approach, reporting
the identification results below. In our case, the different membranes
from which measurements have been acquired, namely, “sample-
based” (Guo et al., 2017), was considered the highest hierarchical
level. To develop a tool that can correctly predict the Raman spectra
even into a real clinical scenario application (where algorithm must
be applied to unknow tissue samples), the training of the ML
classification algorithm was performed using the highest
hierarchical level splitting of the dataset, as explained above. The
training and the validation of the models were carried out by using
only a restricted number of samples, in our case 160 labelled spectra
from all damage cases, acquired from two of the three membranes.
From the last membrane, 60 spectra acquired from an unknown

TABLE 2 Main hyperparameters of the ML models used in this work.

Model Hyperparameter Value

Quadratic SVM Kernel Function Quadratic

Kernel Scale Automatic

Box constraint level 1

Multiclass method One-vs-One

Standardize Data Yes

Cubic SVM Kernel Function Cubic

Kernel Scale Automatic

Box constraint level 1

Multiclass method One-vs-One

Standardize Data Yes

Wide Neural Network Number of fully connected layer 1

First layer size 100

Activation ReLU

Iteration limit 1,000

Regularization Strenght 0

Standardize Data Yes
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TABLE 3 Performance metrics (Train Accuracy, Test Accuracy, Specificity, Precision, Sensitivity (or Recall), F1 Score).

Train accuracy Test accuracy Specificity Precision Sensitivity F1 score

Quadratic SVM 0.903 0.977 0.992 0.981 0.979 0.977

Cubic SVM 0.909 0.909 0.969 0.904 0.917 0.909

Wide Neural Networks 0.920 0.886 0.958 0.901 0.875 0.886

FIGURE 6
Normalized confusion matrix across four classes of algorithms trained with dataset split by “spectra method” and corresponding to different EGTA
exposure times (T0, T2 h, T4 h and empty membrane). In the left panels are illustrated the confusion matrices of the training phase for Quadratic SVM (A),
Cubic SVM (C) and Wide Neural Network (E)”. In the right panels, the corresponding accuracy confusion matrices for test phase (B), (D) and (F).
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treated epithelium observed for the first time were used to test the
capability of the model to identify the right and effective damage
level of the live epithelium. This protocol simulates the application
of our developed algorithm applied for the first time to a patient
biopsy or to an OoC device with optical laser access on cells area for
this non-invasive analysis. In this case, the peaks with the highest
absolute loading were selected from the loading matrix of the first

five principal components (99% of the variance) extracted by the
PCA performed on the spectra obtained from two of the three
previous membranes (160 spectra), identifying 97 predictors
(peaks). The predictors were ranked again according to the
feature importance score as reported in the previous paragraph.

As shown in Figure 7 promising results were obtained after the
validation step; all selectedmodels were able to discriminate between

FIGURE 7
Heatmap of the cross-validation accuracy across four classes, corresponding to different EGTA exposure times (T0, T2 h, T4 h and blank
membrane), trained with dataset split by “sample-based” method. In the left panels are illustrated the confusion matrices for the training phase for
Quadratic SVM (A), Cubic SVM (C) and Wide Neural Network (E) algorithms. In the right panels, the corresponding accuracy confusion matrices for test
phase (B), (D) and (F). The fourth row on the test confusion matrix is blank because the test measurements were performed on intact, 2 h and 4 h
treated epithelia only.
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intact/untreated (Class 0) vs. damaged junctions (Class 1 and 2) and
between minor junction damage and severe damage (Class 1 vs Class
2), in both the validation and testing phases. The fourth row on the
test confusion matrix is blank because the test measurements were
performed on intact, 2 h and 4 h treated epithelia only, missing the
blank substrate as in a real clinical test (no interest to investigate cell-
free chips or blank supports). The best model training result was
performed by qSVM (Figure 7A), reaching an accuracy of 91.9% with
7 peaks as optimal features number, with the optimal set identified
using the same method described in Section 3.2. Comparable training
results were also obtained by the cSVM (Figure 7C) and the WNN
algorithm (Figure 7E), with a validation accuracy of 89.4%,
respectively. Despite the good performance in the validation step,
different outcomes show up in the testing step, as shown in Figures 7B,
D and F with an accuracy of 70% for the quadratic SVMmodel, 71.7%
for the cubic SVMmodel and 75% for theWNNmodel. Indeed, all the
models suffer in discriminating between heavily damaged epithelium
and cell-free membranes (Class 2 vs. Class 3) due to the physical and
biological similarity between these two epithelia, because of the
significant injury induced by a 4 h EGTA treatment and observed
detachment of the cells (see Figure 9 fluorescence data for details). In
addition, the 7 Raman shifts features exploited to differentiate the
acquisitions into the 4 classes align with the peaks of specific
biomolecules identified in previous analyses. These biomolecules
include Phenylalanine (observed at 621 cm⁻1 and 1,003 cm⁻1),
phosphate groups (at 860 cm⁻1), and fatty acids (at 1,298 cm⁻1).

This suggests that the spectral changes detected by theMLmodel after
EGTA treatment occur in regions associated with these key biological
components of the cell membrane, highlighting the congruence
between the observed spectral variations and the molecular
composition of the membrane. In conclusion, it is well known [39]
that “sample-based” splitting method of dataset leads to a decrease in
model performance compared to the standard “by spectra-based”
method. Nevertheless, it represents a more realistic method to assess
how well the model would perform in the real application setting and
better understand the influence of the data heterogeneity.

3.4 TEER and immunostaining-supported
validation of the ML algorithms

To validate with traditional techniques, the experimental results
obtained with presented Ramanmicrospectroscopy and theML data
analysis, TEER measurements and immunofluorescent staining
were used to assess the real epithelia damage status. Trans-
Epithelial Electrical Resistance (TEER) analysis was used to study
the electrical properties of the cell monolayer and, in particular, to
monitor the integrity of the epithelial barrier (Srinivasan et al.,
2015). Impedance spectroscopy offers the possibility of a continuous
and non-invasive analysis of TEER by measuring current over a
range of frequencies, providing more detailed information than
classic single frequency TEER measurements (Benson et al.,

FIGURE 8
Impedance spectroscopy on live Caco-2 cells. (A) Photograph of the custom fabricated chopstick-like electrodes; (B) TEER values as a function of
time of Caco-2 cells incubated for 32 days (inset: electric equivalent circuit model); (C) Bode plot of the intact Caco-2 monolayer and after 2 h and 4 h of
EGTA treatment; (D) Bode plot of the transwell inserts with and without cells.
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2013). To monitor the cellular growth and the cell-cell connection
through the formation of TJs between adjacent cells, impedance
spectra were recorded using custom fabricated chopstick-like
electrodes (Figure 8A) after changing the cell culture medium,
over a period of 32 days. The experimental impedance data were
fitted using an equivalent circuit model (inset Figure 8B)
representing the cellular system, where Rs is the resistance of the
cell medium, R(TEER) is the resistance of the paracellular route, C is
the capacitance of both the apical and the basolateral membranes of
the cells and CPE is the empirical constant phase element modeling
the impedance of the electrode-medium interface. As shown in
Figure 8B, TEER values increased during the cells incubation and
reached 688 Ω·cm2 after 32 days. These results indicate a rapid cell
growth during the first 14 days after seeding, suggesting the
formation of an intact cell monolayer, after which the TEER
values increase very slowly. Impedance measurements were also

performed on the Caco-2 cell layer after EGTA treatment to assess
its effect on the TJs and consequently on the epithelial permeability.
EGTA solution (5 mM) was added to the apical compartment of the
Transwell insert and the integrity of the cell barrier was electrically
monitored for 4 h. The Bode plot of the intact cell monolayer and
after 2 h and 4 h of EGTA exposure is shown in Figure 8C. At high
frequencies a resistive behavior is dominant, whereas at low
frequencies the system is dominated by a capacitive behavior.
The resistance (TEER) and the capacitance of the epithelium
contribute mainly at mid-frequencies of the frequency spectrum
with impedance magnitude and phase shown as typical of a parallel
R-C circuit (Figures 8C, D). The presence of an intact cell layer
(Figure 8C, blue line) determines an increase in the impedance
magnitude due to the epithelial barrier resistance and a peak in the
phase plot representing the capacitive contribution of the cell layer.
EGTA treatment causes a gradual flattening of the magnitude and

FIGURE 9
Fluorescent microscopy images of Caco-2 epithelial cell layer. Caco-2 monolayer stained with E-cadherin monoclonal antibody(A) ZO-1
monoclonal antibodies(D) and phalloidin(G) before any treatment with EGTA; E-cadherin (B), ZO-1 (E) and actin microfilaments (H) staining 2 h after
EGTA exposure; the tight junction proteins E-cadherin (C), ZO-1 (F) and actin (I) staining of Caco-2 cells after a 4 h EGTA treatment. White arrows indicate
cells detachment due to the epithelial injury. The nucleus was stained with DAPI (blue). Scale bar = 20 μm.
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phase plots, indicating a gradual disruption of the integrity of the cell
barrier. TEER values decrease from values of 700 ± 26 Ω·cm2 of the
intact epithelium to values of 328.9 ± 9.1 Ω·cm2 and 197.9 ±
4.5 Ω·cm2 after 2 h and 4 h of EGTA treatment, respectively.

These data confirm that the Raman-based ML algorithm
successfully classifies versus the 3 different output classes (intact
epithelium, 2 h and 4 h treatment) that are related to 3 different
values of TEER parameters. The main advantage of the present
Machine Learning-supported microspectroscopy Raman technique
resides on the contactless method of measurement, avoiding any
electrodes insertion into an OoC device of transwell platform.

In order to complete the experimental assessment on the TJ
functionality vs. the EGTA treatments, the immunofluorescent
staining of intercellular junctions was carried out, following the
TEER tests. The TJs are essential adhesive proteins of contact
between neighboring epithelial cells; they comprise different
proteins and among them, E-cadherin and ZO-1 are the major
components. Therefore, it was observed the fluorescence related to
these transmembrane proteins, whereas actin filaments were
visualized by means of phalloidin staining. Experimental results
show marked E-cadherin and ZO-1 (Figures 9A, D) as well as a
homogeneous staining of actin microfilaments with phalloidin
(Figure 9G) before any treatment with EGTA. After 2 h of
EGTA exposure, a slightly reduced fluorescent signal related to
adherent proteins and actin, was observed, thus indicating that the
Caco-2 monolayer was compromised (Figures 9B, E, H). Finally,
after 4 h of EGTA treatment the altered localization fluorescent
staining of transmembrane proteins, the shrinkage of cell
morphology and cytoskeletal elements, suggested a loss of cell
adherence (Figures 9C, F, I). Indeed, the Caco-2 monolayer
shows the presence of “holes” (white arrows in Figures 9C, F, I)
as a consequence of the detachment of the cells induced by the 4 h
EGTA treatment; these findings confirm that the models slightly
suffer in discriminating between damaged epithelium and cell-free
membranes due to the similarity of these two classes, likely due to
the significant epithelial injury induced by a 4 h EGTA treatment
and the consequent exposure of cell-free membranes. The dark
background (PET membrane) visible in Figure 9 between cells
suggests that Raman analysis on those points collects an
appreciable signal coming from the blank substrate underneath,
missing the Raman tight junctions fingerprint (Hu et al., 2013).

4 Conclusion

A study on Raman microspectroscopy as a marker-independent
technique to assess epithelial integrity in cell cultures and Organ-on-
Chip devices was presented. Multi-points, intercellular-localized
measurements on Caco-2 cells monolayer using a Raman
microspectroscopy were performed to detect and classify different
physiological/pathological conditions in a non-invasive way.
Afterwards, a data processing chain and related supervised
Machine Learning algorithm (ML) was designed and trained to
classifying the Raman measurements in four epithelium status
classes (intact epithelium, 2 h, 4 h, empty membrane),
experimenting a dual approach in dataset splitting and moving
towards a pre-clinical strengthening of the whole process. The ML
algorithm successfully classifies the different epithelia damage status

with the Quadratic SVM classifier, reaching an accuracy of 91.9%
with only 7 features, opening the possibility to adopt low-cost
hardware for computational tasks.

Moreover, to further support results from the Raman
microspectroscopy and the complex data analysis, TEER and
immunofluorescent staining were used to assess the epithelial
condition, confirming the validity and consistency of the method.
Our findings confirmed that this approach represents a promising
tool for a non-invasive and non-destructive characterization of cells
and biological barriers in organoids platforms with applications in
cytology diagnostics, tumor progression or drug efficacy analysis.
Future prospects for improving Raman spectroscopy in biological
tissues investigations include the development of spectroscopy-
compatible OoC devices for more standardized and reproducible
measurements through a precise experimental control. Additionally,
biocompatible micro/nanostructures substrates can enhance the
Raman signal for a more sensitive analysis. Finally, a large
number of measurements coupled with automatic positioning
systems will be mandatory for the development of more robust
predictive models, enhancing the technique’s reliability.
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