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Zebrafish are ideal model organisms for various fields of biological research,
including genetics, neural transmission patterns, disease and drug testing, and
heart disease studies, because of their unique ability to regenerate cardiac
muscle. Tracking zebrafish trajectories is essential for understanding their
behavior, physiological states, and disease associations. While 2D tracking
methods are limited, 3D tracking provides more accurate descriptions of their
movements, leading to a comprehensive understanding of their behavior. In this
study, we used deep learning models to track the 3D movements of zebrafish.
Videos were captured by two custom-made cameras, and 21,360 images were
labeled for the dataset. The YOLOv7 model was trained using hyperparameter
tuning, with the top- and side-view camera models trained using the v7x.pt and
v7.pt weights, respectively, over 300 iterations with 10,680 data points each. The
models achieved impressive results, with an accuracy of 98.7% and a recall of
98.1% based on the test set. The collected data were also used to generate
dynamic 3D trajectories. Based on a test set with 3,632 3D coordinates, the final
model detected 173.11% more coordinates than the initial model. Compared to
the ground truth, the maximum and minimum errors decreased by 97.39% and
86.36%, respectively, and the average error decreased by 90.5%.This study
presents a feasible 3D tracking method for zebrafish trajectories. The results
can be used for further analysis of movement-related behavioral data,
contributing to experimental research utilizing zebrafish.
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1 Introduction

Model organisms are crucial in research fields like genetics, molecular biology, and cell
biology. They are vital in pharmaceutical development, disease mechanism discovery, and
clinical therapy applications. Common model organisms include mice, rabbits, and
zebrafish. The zebrafish (Danio rerio), a small tropical freshwater fish from Southeast
Asia, is ideal for research due to its strong reproductive ability, rapid development, high
transparency, simple genome, and ease of experimental manipulation. These traits make
zebrafish invaluable in biology, developmental biology, genetics, toxicology, and drug
research (Darland and Dowling, 2001; Gerlai et al., 2000; Guo, 2004; Levin et al., 2003;
Linney et al., 2004). The zebrafish and human genomes share high homology, with 70% of
human genes having an ortholog in zebrafish and 80% of human disease-related genes
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having equivalents in zebrafish (Braithwaite et al., 1996; Lieschke
and Currie, 2007). This homology makes zebrafish key in cancer,
cardiovascular, and neurological research, enabling significant
progress in understanding disease mechanisms and developing
therapies. Animal behavior studies often validate results, a
method widely used across various domains.

Understanding the locomotor behaviors and trajectories of
animals in different environments is essential for studying their
physiological, behavioral, and cognitive aspects. Therefore, tracking
zebrafish trajectories is crucial. In zebrafish studies, 3D trajectories
are more informative than 2D trajectories due to the complexity of
their movements in three-dimensional space. While 2D data can
provide some insights, it cannot fully capture the diversity of
zebrafish movements (Jouary et al., 2016). 3D trajectories offer a
more comprehensive understanding of zebrafish locomotor
behavior and movement capabilities. Most studies use 3D
methods to accurately reconstruct and analyze zebrafish
movement (Maaswinkel et al., 2013; Qian and Chen, 2017;
Audira et al., 2018). These methods are beneficial for
quantitatively analyzing zebrafish behaviors and habits in
different environments, enhancing our understanding of their
behavioral and physiological characteristics. Experimental models
require accurate, reliable, and repeatable detection of subjects’
spatiotemporal positions (Stuart et al., 1990).

AI can be utilized to track zebrafish trajectories across various
applications, including: 1) Behavioral Research–tracking zebrafish
movements in response to stimuli such as light and sound, which
provides insights into their behavior, social interactions, and sensory
processing (Yang et al., 2021;Wang et al., 2018; Zhang et al., 2013; Sun
et al., 2019; Haurum et al., 2020; Barreiros et al., 2021; Bashirzade et al.,
2022); 2) Drug Discovery and Toxicity Testing–observing zebrafish
responses to different drugs to evaluate their efficacy and potential
toxicity (Yang et al., 2021; Zhang et al., 2013; Haurum et al., 2020;
Bashirzade et al., 2022; Zhang et al., 2021; Bozhko et al., 2022); 3)
Environmental Monitoring–monitoring zebrafish activity in

controlled environments to assess their health, population
dynamics, and detect indicators of environmental degradation
(Zhang et al., 2013; Liu et al., 2019).

Table 1 compares several widely used zebrafish tracking
methods and their associated equipment and features. Noldus, a
Dutch company, offers EthoVision XT, a versatile and flexible video
tracking software with various configurations for different
experimental needs. However, it is expensive and not specifically
designed for zebrafish. In 2005, the French company ViewPoint
Behavior Technology introduced software for zebrafish behavioral
research, enabling automatic tracking and analysis of movement and
behavior. This system includes additional devices and software for
various analyses, but it is also costly, which can be a barrier for small
to medium-sized laboratories. In 2018, G. Audira developed the
Zebrafish 3D swim behavior observation system (Audira et al.,
2018), including a fish tank, backboard, mirror, and
supplementary lighting. This setup records two perspectives in
one video using a mirror. However, it is fixed and cannot
accommodate different tank shapes or sizes based on
experimental requirements. Zebrafish behavior assessment
systems typically require multiple expensive and complex devices.
Three-dimensional tracking often needs commercial software or
complex programming, multicamera synchronization, and high
frame rates (60 and 100 frames/second). These methods are
semi-automatic, require human intervention, and are challenging
due to the variable and non-normally distributed zebrafish behavior
data. Larger sample sizes are often necessary. Existing tracking
software is limited and expensive, posing difficulties for smaller
laboratories. New methods are needed to address these issues.

In this regard, deep learning techniques are useful for accurately
tracking zebrafish motion trajectories (Chang et al., 2024; Alzoubi
et al., 2024), enabling precise studies of their movement patterns and
behavioral performance (Fan et al., 2023). Compared to manual
tracking, computer-based methods offer significant advantages.
Manual tracking is time-consuming, labor-intensive, and error-

TABLE 1 A comparison of various widely used zebrafish tracking methods, the associated equipment, and their features.

Software EthoVision XT ZebraLab Gilbert audira Self-developed 3D
visual tracking

methodFunction

Dimensions 2D Mainly 2D; 3D hardware needs to be
purchased separately

3D 3D✔

Tanks Single/multiple Single/multiple Single Single

Limit Limited to pure white background, different
fish tanks and experiments require

additional software purchase

Limited to pure white background,
different fish tanks and experiments
require additional software purchase

Limited to pure white
background, fish tank

size fixed

Striped or pure white
background available✔

Object Adult Adult and embryo Adult Adult

Manual Manual identification Manual identification Manual identification Automatic identification✔

Dataset labels Manual identification Manual identification Manual identification Automatic identification✔

EthoVision XT offers many software and equipment options to meet diverse experimental requirements. Although not specifically designed for zebrafish, the complex interface and numerous

options provide flexibility and broad applicability. However, the detailed configuration relies on user settings, and the software can be relatively expensive. ZebraLab, designed for zebrafish

behavioral research, provides an automated video tracking system capable of tracking and analyzing zebrafish movement, activity, and behavior. The system also offers additional devices and

software for various behavioral analyses and experimental designs. Nevertheless, the basic software, behavior analysis plugins, and hardware devices are priced in the range of hundreds of

dollars, potentially posing financial challenges for smaller laboratories. The Zebrafish 3D Swim Behavior Observation Aquarium System, developed in collaboration by Gilbert Audira and

colleagues at Chung Yuan Christian University, includes a tank, backdrop, mirror, and supplementary lighting. This system records two perspectives in the same video using a mirror. However,

due to its fixed nature, it cannot accommodate different-shaped or sized tanks based on experimental design requirements. In this study, a 3D tracking system was used for single zebrafish

tracking within a tank. The proposed method is adaptable to both plain and striped backgrounds, effectively minimizing manual intervention during operation.
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prone, whereas computer-based methods are automated, reducing
time and ensuring high accuracy and repeatability. With suitable
algorithms and parameters, comprehensive and precise trajectory
tracking can be achieved by quantifying animal locomotion features
in different environments. Deep learning, a branch of machine
learning, models neural networks based on the human brain,
using multilayered neural networks to learn complex data
representations. Compared to traditional machine learning, deep
learning offers superior learning and generalization capabilities,
automatically extracting features and reducing manual effort.
Convolutional neural networks (CNNs), consisting of
convolutional and pooling layers, are commonly used for object
detection. The process involves feature extraction, object
classification, and bounding box regression. Common object
detection methods include R-CNN (Girshick, 2014), Fast R-CNN
(Girshick, 2012), Faster R-CNN (Shaoqing Ren et al., 2016), and
YOLO (you only look once) (Redmon, 2015). YOLO is an end-to-
end object detection method and is among the most widely adopted
approaches. YOLOv7, an improvement of YOLOv4 (Bochkovskiy
et al., 2020) developed by Chien-Yao Wang and his team, addresses
performance issues with large datasets (Wang et al., 2022).
YOLOv7 incorporates new technologies and optimization
methods, such as the perception domain attention (PA)
mechanism, anomaly detection, panoramic image recognition,
and multiscale fusion. These enhancements improve model
accuracy and operational efficiency, making YOLOv7 a stable
and efficient object detection framework.

In this study, we employed two synchronized cameras to capture
videos, which were subsequently cropped and annotated to create a
dataset. Through experimental testing, we determined the most
suitable hyperparameters for training a deep learning model for
accurate zebrafish recognition. Subsequently, by merging and
proportionally transforming the quadrants from the two cameras,
we obtained the 3D coordinates of the zebrafish and thus reproduced
the 3D zebrafish movement trajectories. We employed a deep
learning model for object detection to identify and track the
zebrafish. The reconstructed 3D coordinates were used to
generate dynamic visualizations of the zebrafish movements
within the aquarium. This method significantly enhances the
analysis and study of zebrafish behavior.

2 Materials and methods

We propose a novel deep learning approach for 3D trajectory
tracking, focusing on achieving fully automatic, low-cost detection
and visualization of 3D trajectories with minimal human
intervention. This method aims to address issues related to
trajectory tracking accuracy, continuous tracking, and data
representations, providing an improved data analysis approach
for zebrafish studies. The proposed framework is illustrated in
Figure 1A. Synchronized videos were simultaneously captured by
top-down and side-view cameras (Figure 1B). These videos were
subsequently cropped and transformed to generate datasets; then,

FIGURE 1
Schematic diagram of the proposedmethod and the information collection procedure. (A) As shown in the schematic diagram, synchronized videos
were acquired by simultaneously capturing top-down and side-view perspectives using two cameras. The obtained videos were uniformly cropped, and
the images were annotated. Subsequently, a deep learning model was trained using the annotated dataset to determine the position of the zebrafish. By
merging and transforming quadrants from two perspectives, 3D coordinates of zebrafish in each frame were obtained. Finally, these coordinate-
generated trajectories were connected, and the trajectories were dynamically reconstructed in a 3-axis quadrant diagram, which represented the
restored aquarium dimensions. (B) The scenario in which two cameras simultaneously capture footage from a top-down and side-view perspective. (C)
The images were cropped and then labeled using LablImg after processing.
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the data were annotated using the labeling software LablImg
(Tzutalin, 2017) (Figure 1C). The deep learning model was
trained using the annotated data to determine the zebrafish
positions. By merging and transforming the quadrants from two
perspectives, the 3D coordinates of the zebrafish in each frame were
obtained. Initially, a small dataset was used to train models with
different hyperparameters to identify the best configuration, which
was then used to train the model with the entire dataset. Evaluation
metrics confirmed the model’s accuracy. The trained model was
then applied for detection and 3D coordinate recognition, followed
by trajectory connection. Finally, the trajectories were dynamically
displayed (Figure 2).

2.1 Data collection and labeling

Two Logitech C922 Pro HD Stream webcams were utilized to
capture the required videos at the Taiwan Zebrafish Core Facility, a
branch of the National Institute of Health Research in Taiwan.
Synchronized recording was performed using two cameras, which
captured videos from both the top and side of the fish tank
(Figure 1B). A total of 61 min and 346 s were recorded across
eight videos, with a frame width and height of 1,920 and 1,080 pixels.
A Python program was used to crop one frame every 0.1 s using
custom-written Python code, resulting in a total of 36,980 images.
Additionally, four videos with a total duration of 2 min were
recorded and used as a test set.

To ensure the synchronized start and end of the two camera
recordings, the video frames simultaneously displayed the top and
side views. Prior to capturing the dataset, we conducted stereo
calibration using a calibration board of the same dimensions as
the fish tank to ensure the relative positions and orientations of the
cameras. After recording, the regions outside the fish tank were
cropped to focus on the experimental area. LabelImg software was
used to annotate the zebrafish positions within the images, and these
annotated images were saved in a format compatible with YOLO for
further processing.

We utilized a dataset of 36,980 images and successfully
reconstructed the coordinates of 18,490 zebrafish. Zebrafish
prefer shallow water areas with high visibility (Lin et al., 2021).
Reflections on the water surface can create bright regions below,
interfering with visual observations and making tracking beneath
the surface challenging. To address this, the dataset was augmented
with data from the upper layers of the water column, enhancing the
model’s ability to detect zebrafish below the water surface and
improving overall detection performance.

To represent the data distribution clearly, the zebrafish
movement range was divided into three intervals along the X, Y,
and Z-axes (Figure 3A). The entire range was further subdivided
into 27 regions (Figure 3B), with the number and proportion of
zebrafish in each region determined (Figure 3C). The lower, middle,
and upper regions included 4,556, 3,265, and 10,669 coordinates,
accounting for 24.64%, 16.66%, and 57.7% of the distribution. A 3D
heatmap was generated to intuitively represent the dataset’s

FIGURE 2
Flow chart of the proposed method. As shown in the procedural diagram of the proposed methodology, two synchronized cameras recorded
videos. To transform the footage into an annotatable dataset, the dynamic videos collected by both cameras were segmented into numerous static
images. Subsequently, labelingwas performed to facilitate recognition by a deep learningmodel. To achieve optimalmodel performance and recognition
results, preliminary training was conducted using a small dataset with various hyperparameter configurations, and the validation results were
compared. With this approach, we identified the most effective parameter settings, which were utilized for model training with the entire dataset.
Evaluation metrics were employed to confirm the model’s accuracy. The trained model was employed for the detection and reconstruction of 3D
coordinates, facilitating the generation of continuous trajectories. Ultimately, the trajectories were dynamically visualized on a 3-axis quadrant diagram
representing the restored aquarium dimensions.
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distribution (Figure 3D). Circle sizes indicate relative proportions,
with smaller circles in deep blue and larger circles in bright green.

YOLOv7 is a deep learningmodel for object detection, introduced
with six base models: YOLOv7, YOLOv7x, YOLOv7-d6, YOLOv7-e6,
YOLOv7-e6e, and YOLOv7-w6. Each model has a slightly different
neural network, and their performance can vary for the same task. To
select the optimal weight, we trained all weights and chose the best
based on test set performance. In the first round of testing, the top and
side-view camera models were trained 300 times using
1,000 annotated images. We compared precision and recall based
on these results. In the second round, the camera models were trained
300 times using 3,470 annotated images and were used to detect
zebrafish in the same test videos with a 90% confidence level. We
evaluated and compared their accuracy, precision, and recall.

We utilized data from two cameras to obtain 3D coordinates
through two approaches. The first approach involved merging and
annotating images from both cameras to train a unified model,
enhancing generalizability. However, mutual interference between
images might reduce accuracy. The second approach involved
separately annotating images from each camera to obtain distinct
models for top- and side-view cameras, improving accuracy but
potentially reducing generalizability. To determine the most suitable
method, we created two datasets: one with merged images and
another with separate images from each camera, each containing
1,000 images. YOLOv7.pt was used as the base model, with
300 training iterations for both datasets. The trained models were
then tested with the same test videos at a 70% confidence level, and
their accuracy, precision, and recall were compared.

In deep learning, the number of training iterations significantly
influences the training outcomes, impacting both model

generalizability and overfitting. Therefore, when training deep
learning models, different training iterations should be explored
to achieve the optimal training results. Using the same dataset, we
trained the models with 100, 150, 200, 250, 300, 350, 400, 450, and
500 iterations. Subsequently, each model was tested with the test set,
and the accuracy, precision, and recall were compared. The number
of training iterations that led to the best performance was selected
for the following experiments.

Moreover, deep learning models require a substantial amount of
sample data, and the amount of data directly impacts model
performance. Insufficient data may result in the model failing to
learn enough features, while excessive data might lead to an overly
complex model with poor generalizability. Therefore, we explored
different dataset sizes and compared the training performance of
different models to effectively enhance the performance and
accuracy of the proposed deep learning models. We trained the
model with the w6 weight for 300 iterations using images collected
by the side-view camera as the dataset. Then, models were trained for
3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, and 10,000 iterations.
Subsequently, eachmodel was tested with the test set, and the accuracy,
precision, and recall were compared. The dataset that led to the best
performance was identified, and this dataset was used in the following
experiments.

2.2 Trajectory reproduction

After model training, the 3D coordinates were reconstructed
based on the detected data. The data collected by both cameras were
extracted and restored, and the center of the detection framework

FIGURE 3
Statistical analysis of the dataset. (A) To determine the coordinate distribution of the dataset within the aquarium, the movement range of the
zebrafish was divided into three intervals along the X-axis, Y-axis, and Z-axis directions. (B) The regions of the 3-axis quadrant are labeled with numerical
identifiers, resulting in a total of 27 regions. (C) This chart provides a statistical overview of the coordinates within each region, as well as their proportions
within the entire dataset. Additionally, the totals and proportions are summarized for the upper, middle, and lower layers. (D) For an intuitive
representation of the dataset’s distribution, a 3D heatmap was generated to illustrate the spatial pattern of the data. The circle sizes directly reflect the
relative proportions, while the color of the circles ranges from dark blue for smaller proportions to bright green for larger proportions.
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was calculated as the coordinate point for display. The X-Y and X-Z
axes were separately designated, using the X-axis as the merging
criterion. The top camera captures images with the X-Y axes, while
the side camera captures images with the X-Z plane. Both cameras
are synchronized to capture images simultaneously. Moreover, we
attempted to fill in values that were missed during the recognition
process. The time stamps during the detection process were used as
the basis for generating the 3D trajectories.

2.3 Experimental environment and
evaluation indicators

The recordings were conducted using a Logitech C922 Pro HD
Stream Webcam, capturing videos at 60 frames/second with a
resolution of 1,920 × 1,080 pixels. The aquarium, made from
acrylic, measured 438 × 14 cm in length, width, and height. All
deep learning processes, including training and evaluation, were
performed on a computer with an i5-12500 processor, 32 GB of
RAM, an NVIDIA GeForce RTX 3060, and a Windows 10 Pro
x64 operating system. Data preprocessing and 3D graph plotting
were done using Python 3.7. The LabelImg tool was used for dataset
annotation, and network construction and training validation were
conducted within a virtual environment using Anaconda3.

Three evaluation metrics were employed to assess the
performance of the proposed method: accuracy (Equation 1),
precision (Equation 2), and recall (also known as sensitivity or
true positive rate (TPR)) (Equation 3). The variables. Tp, Fp, Tn and
Fn represent the number of predicted true positives, false positives,
true negatives, and false negatives, respectively. The performance
metrics are defined as follows:

Accuracy � Tp + Tn

Tp+Fp + Tn + Fn
(1)

Precision � Tp

Tp + Fp
(2)

Recall TPR( ) � Tp

Tp + Fn
(3)

This evaluation process not only contributes to understanding
the model’s performance but also provides valuable feedback for
refining the model to achieve higher accuracy and reliability.
Additionally, to assess the accuracy of the identified coordinates,
we utilized the Euclidean distance (Equation 4) to confirm the
disparity between the recognition results and the original
coordinates.

Euclidean distance �
������������������������������
x2 − x1( )2 + y2 − y1( )2 + z2 − z1( )2{ }√

(4)

3 Results

3.1 Value selection adjustment results

Here, we present the performance evaluation of the training
model and the model results. First, we describe the selections used
for the base model. Subsequently, we discuss the hyperparameter

adjustment process, including the data methods, training iterations,
and dataset size. Finally, the model performance was evaluated.
Section 3.2 presents the results of the final model. Except for the
initial round of weight adjustments, all tuning outcomes are
validated using a separate set of 1,000 test images distinct from
the training data.

YOLOv7 is equipped with six initial weights: yolo-v7.pt, yolo-
e6.pt, yolo-d6.pt, yolo-e6e.pt, yolo-w6.pt, and yolo-v7x.pt. In the
first round of testing, the top- and side-view camera models were
separately trained 300 times with 1,000 annotated images. The
results were then compared in terms of precision and recall, as
these metrics are closely related to the accuracy of the detection
results, with better values closer to 1. The top three performing base
models were selected for the second round of testing. In the second
round, 3,470 annotated images were used for individual model
training (300 iterations each), and the trained models were tested
with a 90% confidence threshold with the same test video. Then, the
accuracy, precision, and recall of the models were compared. For the
side-view camera, the precision and recall were compared in the first
round, and the results in second round are shown in Figure 4A. The
e6e weight exhibited an accuracy, precision, and recall of 94.2%,
100%, and 94.2%, respectively; the v7 weight had an accuracy,
precision, and recall of 98.1%, 100%, and 98.1%, respectively; and
the w6 weight demonstrated an accuracy, precision, and recall of
96.3%, 100%, and 96.3%, respectively. The v7 weight achieved the
highest accuracy, precision, and recall; thus, the side-view camera
model was trained with the yolov7.pt weight. For the top-view
camera, we compared the precision and recall in the first round,
and the results of the second round are illustrated in Figure 4B. The
v7x weight displayed accuracy, precision, and recall of 97.8%, 100%,
and 97.8%, respectively; the e6e weight exhibited an accuracy,
precision, and recall of 89.7%, 100%, and 89.7%, respectively; and
the w6 weight showed an accuracy, precision, and recall of 75.5%,
100%, and 75.5%, respectively. The v7x weight achieved the highest
accuracy, precision, and recall; thus, the top-view camera model was
trained with the yolov7x.pt weight.

In this study, we utilized two cameras: top and side. Two datasets
were created, each containing 1,000 images collected by two
cameras. The yolov7.pt model was employed as the base model
for training, and the training was conducted for 300 iterations. The
trained models were subsequently tested with the same test video
with a confidence threshold of 70%, and their accuracy, precision,
and recall were compared. Figure 5A shows the results for the side-
view camera with separate and combined training strategies. For the
combined training approach, the accuracy, precision, and recall were
15.1%, 99.3%, and 15.1%, respectively. In contrast, for the separate
training approach, the accuracy, precision, and recall were 99.4%,
100%, and 99.4%, respectively. Figure 5B shows the results for the
top-view camera with separate and combined training strategies and
different test videos. For the combined training approach, the
accuracy, precision, and recall were 15.8%, 22.4%, and 34.8%,
respectively. However, for the separate training approach, the
accuracy, precision, and recall were 97.9%, 100%, and 97.9%,
respectively. For both the top- and side-view cameras, the
separately trained models exhibited superior accuracy, precision,
and recall than the models trained simultaneously with data from
both cameras. Therefore, subsequent tests were conducted with
separately trained models for each camera.
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In the training iteration tests, the top- and side-view camera
models were separately trained using the e6e and w6 weights,
respectively, with 3,470 image datasets. The training was
conducted for 100, 150, 200, 250, 300, 350, 400, 450, and
500 iterations. Subsequently, the models were tested with the test

set, and their accuracy, precision, and recall were compared.
Figure 6A shows that for 100 iterations, the accuracy, precision,
and recall were 85%, 100%, and 85%, respectively. The values
improved as the number of training iterations increased up to
300; however, the values rapidly decreased at 350 iterations. As

FIGURE 4
The comparison results of the basic weights for the second round of training. (A) For the baseline comparison of the performance of the side-view
camera model, using the e6e weight, the accuracy is 94.2%, the precision is 100%, and the recall is 94.2%. With the v7 weight, the accuracy is 98.1%, the
precision is 100%, and the recall is 98.1%. With the w6 weight, the accuracy is 96.3%, the precision is 100%, and the recall is 96.3%. (B) For the baseline
comparison of the performance of the top-view camera model, using the v7x weight, the accuracy is 97.8%, precision is 100%, and recall is 97.8%.
With the e6e weight, the accuracy is 89.7%, the precision is 100%, and the recall is 89.7%. With the w6weight, the accuracy is 75.5%, the precision is 100%,
and the recall is 75.5%.
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the number of training iterations increased further, the accuracy and
recall increased; however, even at 500 iterations, the performance
did not surpass that of the model trained for 300 iterations.
Figure 6B displays the results for the top-view camera using the
same data with different training iterations. After 100 iterations, the
accuracy, precision, and recall were 55.5%, 100%, and 55.5%,
respectively. Similar to the side-view camera results, the values
increased up to 200 iterations. Notably, there was a 10% decrease
in accuracy after 250 iterations, and the accuracy and recall
fluctuated between 80% and 96% with 350, 400, 450, and
500 iterations. In conclusion, considering the stability and high
accuracy, precision, and recall values, 300 training iterations were
selected for the model in this study.

In the data quantity testing phase, the w6 weight was utilized
for 300 training iterations, and the side-view camera images were
employed as the dataset. In these experiments, datasets
containing 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, and
10,000 images were used. Subsequently, the models were tested
with the test set, and their accuracy, precision, and recall were
compared, as shown in Figure 7. For the model trained with
3,000 images, the accuracy, precision, and recall were 35.1%,
100%, and 35.1%, respectively. As the dataset size increased, the
accuracy, precision, and recall gradually increased. Notably,
starting with a 4,000 image dataset, the accuracy, precision,
and recall improved incrementally. For instance, the model
trained with 4,000 images achieved 90% accuracy, 100%
precision, and 90% recall, while the model trained with
10,000 images obtained 98.1% accuracy, 100% precision, and
98.1% recall. Based on these results, we utilized all annotated
images for training. The final model training hyperparameters,
dataset sizes and YOLO models are summarized in Table 2. Two
camera datasets both include 18,490 images trained with YOLO-
v7 for 300 iterations.

3.2 Parameter evaluation

Figure 8A shows the model training results, while Figure 8B
displays the confusion matrix generated by applying the model to
the validation set, illustrating the model’s detection results for the
training set. The model accuracy was 98.1%, and the precision and
recall both reached 100% (Figure 8C). Similarly, Figure 8D shows
the model training results, and Figure 8E presents the confusion
matrix generated by applying the model to the validation set. The
model achieved an accuracy of 98.1%, with a precision and recall of
100% (Figure 8F).

Additionally, the detection results of the final model and the
initial model with the test set are presented in Table 3. The test set
includes 3,632 coordinate points. The final model successfully
detects all 3,632 points, with the error ranging from 0.006 cm to
0.284 cm when compared to the ground truth of the test set. The
average error was 0.428 cm. In contrast, the initial model detects
only 1,329 points, exhibiting the error ranging from 0.044 cm to
10.892 cm compared to the ground truth of the test set, with an
average error of 4.46 cm. Compared to the initial model, the final
model detects 173.11% more coordinates. Furthermore, compared
to the ground truth of the test set, the final model reduces the error
range by 86.36%–97.39%, with a significant 90.5% decrease in the
average error.

3.3 Trajectory reproduction results

After model training, the detection results were organized and
merged to reconstruct the dynamic 3D trajectories. To illustrate the
dynamic paths, we present the results obtained by capturing images
at intervals of 20 s from 0.0 to 60.0 s. Figures 9A–D show the results
at 0, 20, 40, and 60 s, respectively. In these figures, the trajectory of

FIGURE 5
The accuracy, precision, and recall of the two models trained separately and jointly with the same test set were compared. (A) For the side-view
camera model, for the joint training strategy, the accuracy is 15.1%, the precision is 99.3%, and the recall is 15.1%. For the separate training strategy, the
accuracy is 99.4%, the precision is 100%, and the recall is 99.4%. (B) For the top-view camera model, for the joint training strategy, the accuracy is 15.8%,
the precision is 22.4%, and the recall is 34.8%. For the separate training strategy, the accuracy is 97.9%, the precision is 100%, and the recall is 97.9%.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Fan et al. 10.3389/fbioe.2024.1461264

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1461264


the latest 1 s is represented in deep blue, the trajectory of the latest
2–3 s is shown in light blue, and the remaining trajectories are
depicted in gray.

4 Discussion

Since its development in 2015, the YOLO series of models has
been consistently updated, with nearly one new version introduced
each year. The v7 version used in this study was proposed by Wang
et al. (2022) in July 2022. Although a new model, YOLOv6, was
released by the Chinese e-commerce group Meituan in June 2022
(Chuyi Li et al., 2022), it was not officially included in the version
comparison due to the lack of a fair comparison. Therefore,
researchers continued to apply YOLOv5 before the release of
YOLOv7. YOLOv5, released in June 2020 (ultralytics, 2020),
gained popularity due to its simple design and relatively
lightweight model structure, achieving a balance between speed
and accuracy that satisfied many users. YOLOv5 became the
preferred model for real-time object detection in most
engineering applications. Two years later, YOLOv7 was

introduced, which substantially improved the model architecture,
resulting in faster recognition and increased accuracy. The changes
in the convolution process provided more gradient diversity for
different feature maps, reducing disruptions in the residual
connections of ResNet and the connections in DenseNet.

We chose YOLOv7 as the primary model for this study based on
our target characteristics. For zebrafish, which are small with fast
movements, precise recognition is preferred over a lightweight
model. This precision is crucial for obtaining accurate
coordinates for trajectory reconstruction. Additionally, zebrafish
movements in water present challenging scenarios for manual
recognition, demanding more intricate and sophisticated
detection methods.

The application of YOLOv7 in zebrafish tracking is both
innovative and beneficial compared to previous methods.
YOLOv7 offers improved detection accuracy and faster
processing speeds, enabling quick and precise handling of many
high-resolution images. This feature is well suited for specific
application needs in zebrafish monitoring. By leveraging
YOLOv7, we achieve significant advancements in both accuracy
and efficiency, marking a substantial innovation in the field of

FIGURE 6
The model performance with different numbers of training iterations. (A) The side-view camera and (B) top-view camera models were trained for
100, 150, 200, 250, 300, 350, 400, 450, and 500 iterations. Subsequently, the models were separately tested with the test set, and their accuracy,
precision, and recall were compared.
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aquatic organism tracking. This approach provides a new level of
precision and speed, which were previously unattainable with
traditional methods.

Moreover, by selecting an appropriate model and dataset,
computer vision approaches can address scenarios that cannot be
recognized by the human eye. To optimize model performance, we
conducted a series of tests to evaluate the model parameters to
ensure their effectiveness.

In the selection of the initial YOLOv7 model, we trained all the
weights and then chose the optimal weights based on the model
performance with the test set. Under the same training conditions,
we compared the accuracy, recall, and precision of the models with
the validation set. In the second round of training for the side-view

camera, all three weights (e6, v7, w6) achieved a minimum of 94.2%
accuracy, 100% recall, and 94.2% precision (Figure 4A), indicating
that YOLOv7 is highly suitable for this research.

The training data for this study were collected simultaneously by
two cameras. The images collected by both cameras were merged,
annotated, and using for training a single model. While the model
could learn features from both perspectives concurrently, mutual
interference led to decreased model accuracy. We observed this in
our research, as the accuracies of the top-view and side-view camera
models were only 15.8% and 15.1%, respectively (Figure 5A). An
alternative approach involved annotating the images collected by
each camera separately, resulting in distinct models for the top- and
side-view cameras. This method allowed the model to focus on

FIGURE 7
Comparison of themodel performancewith different datasets. Using images collected by the side-view camera as the dataset, we employed varying
numbers of images, specifically 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, and 10,000 images, for model training. Subsequently, the models were
individually tested with the test set, and their accuracy, precision, and recall were compared.

TABLE 2 The parameters used for final model training.

Weight Number of epochs Number of images in dataset

Side-view camera YOLO-v7 300 18,490

Top-viewcamera YOLO-v7x 300 18,490

The side-view camera model dataset consists of a total of 18,490 images, and training was conducted using YOLO-v7 for 300 iterations. Additionally, the side-view camera model dataset

includes 18,490 images, and the model was trained with YOLO-v7x for 300 iterations.
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learning features from each individual camera, thereby enhancing
accuracy. Our tests validated this finding, with training accuracies of
97.9% (top-view camera) and 99.4% (side-view camera)
(Figures 5A, B).

In general, an increase in the number of training cycles provides
the model with more opportunities to learn the training data rather
than general features. However, this may lead to overfitting, where
the model performs well with the training data but poorly with test
data. The potential for overfitting increases as the number of
training epochs increases, resulting in decreased model
generalizability. In our study, the model demonstrated optimal
performance after 300 training cycles (accuracy of 96.3%)
(Figure 6A). Further increasing the number of cycles tended to
lead to overfitting, as the model trained for 500 cycles exhibited an
accuracy of only 75.5% (Figure 6B). This indicates that additional
training cycles did not improve the model’s performance with the
validation set compared to that of the model trained for 300 cycles.

Training deep learning models requires substantial sample data.
Increasing data diversity enhances the model’s generalizability,
reduces overfitting, and improves handling of new, unseen data.
More data also stabilizes the training process, smoothing gradient
descent, and improving model performance and accuracy. In our
study, experiments with different dataset sizes revealed that the
model accuracy increased with increasing amount of data (Figure 7),
indicating that the model learned more patterns and features when
larger datasets were used.

By comparing different test models, we can identify suitable
hyperparameters for target recognition, significantly enhancing
results (Table 3). We compared the performance of the initial
and final models using a test set of 3,632 coordinates. The final
model recognized 173.11% more coordinates than the initial model.
Compared to the ground truth, the final model’s maximum,
minimum, and average errors were reduced by 97.39%, 86.36%,
and 90.5%, respectively. These results demonstrate that the model,

FIGURE 8
Training results of the final model used in this study. (A) The training results for the side-view camera model, with the accuracy approaching 100%,
recall approaching 100%, and averagemAP accuracy approaching 100% for each training iteration with an IoU threshold greater than 0.5. Additionally, the
average mAP accuracy for IoU thresholds ranging from 0.5 to 0.95 approaches 100%. (B) The confusion matrix generated after applying themodel to the
validation set. (C) The accuracy of the side-view camera model is 98.1%, the precision is 100%, and the recall is 98.1%. (D) The training results of the
top-view camera model, showing an accuracy approaching 100%, a recall approaching 99.75%, and an average mAP accuracy approaching 99.8% for
each training iteration with an IoU threshold greater than 0.5. The averagemAP accuracy for IoU thresholds ranging from 0.5 to 0.95 approaches 98%. (E)
The confusion matrix generated after applying the model to the validation set. (F) The accuracy of the top-view camera model is 98.1%, the precision is
100%, and the recall is 98.1%.

TABLE 3 Performance comparison of the initial and final models.

value Coordinates Maximum difference Minimum difference Average difference

Sources and
comparisons

Test data 3,632 — — —

Initial model 1,329 10.892 cm 0.044 cm 4.467 cm

Final model 3,632 0.284 cm 0.006 cm 0.428 cm

Difference +173.11% −97.39% −86.36% −90.5%

Based on the test set with 3,632 coordinates, the initial model detected 1,329 coordinates, with errors ranging from 0.044 cm to 10.892 cm. The average error was 4.46 cm. The final model, on the

other hand, detected all 3,632 coordinates, with errors ranging from 0.006 cm to 0.284 cm. The average error for the final model was 0.428 cm. Compared to the initial model, the final model

identified 173.11% more coordinates. The error range decreased by 86.36%–97.39%, and the average error was reduced by 90.5%.

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Fan et al. 10.3389/fbioe.2024.1461264

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1461264


after parameter adjustments, has greatly improved accuracy and
generalizability.

As shown in Figure 10A, when zebrafish swim to the edge of the
fish tank, reflections can occur, which may lead to challenging
detection scenarios. Inefficient models may misinterpret the
reflection as zebrafish (Figure 10B), leading to erroneous results.
Through iterative experiments with initial weights, training cycles,
and data volumes as hyperparameters, the model’s performance was
assessed to determine the most suitable parameters for training. The
model was subsequently validated using a test set to evaluate its
accuracy, precision, and recall, ensuring the goodness of fit of the
selected parameters. The trained model accurately identified the
correct zebrafish (Figure 10C). Furthermore, in situations where
zebrafish move rapidly, they appear blurred in images
(Figure 10D). Without appropriate parameter tuning during model
training, significant deviations from the original object may occur. For
instance, edge residues can bemisinterpreted as zebrafish while failing
to recognize the actual zebrafish (Figure 10E). However, by adjusting
hyperparameters such as the number of training cycles, data volume,
data type, and weights, the model successfully identified zebrafish
even in high-speed motion scenarios (Figure 10F).

In this study, we successfully utilized target position
identification and timestamp approaches to reconstruct the 3D
movement trajectories of zebrafish, demonstrating the potential

of deep learning in automating zebrafish trajectory tracking. This
method allows accurate tracing of zebrafish motion trajectories,
providing valuable data and insights. This approach can enhance
our understanding of zebrafish behavior and ecological habits,
crucial in both laboratory and field research. This method has
broad applicability (Liu et al., 2023; Wu et al., 2023), improving
our understanding of neuroscience and behavior, and contributing
to drug development, environmental toxicity assessment, genetic
research, and brain-computer interface technology. Zebrafish’s
simple nervous system makes them ideal for analyzing neural
networks and related behaviors, aiding in understanding human
neurological diseases. Rapid screening and evaluation of drugs
through trajectory tracking improve drug development efficiency
and reduce the need for animal experiments. This method is also
useful for assessing environmental toxins’ impact on ecosystems,
promoting environmental protection and risk assessment. The
genetic similarity between zebrafish and humans provides
valuable information for genetic research and supports brain-
computer interface technology development, potentially aiding
neurological disease treatments.

We acknowledge the limitation of using a single zebrafish in our
study, which may affect the generalizability of our results. This
constraint could potentially impact the robustness and applicability
of our findings across different contexts. To address this issue, we

FIGURE 9
The trajectories connected on the 3-axis coordinates representing the restored aquarium dimensions. The trajectories for the most recent 1 s are
depicted in deep blue, those for the most recent 2–3 s are shown in light blue, and the remaining trajectories are shown in gray. In the upper right corner,
the cumulative distance traveled and the instantaneous velocity are presented. (A) Represents the state at 0 s. (B) Represents the state at 20 s. (C)
Represents the state at 40 s. (D) Represents the state at 60 s.
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suggest future research to expand the dataset to include a broader range
of subjects. This would enhance the validity of the conclusions and
provide more comprehensive insights into the studied phenomena.

At the same time we believe it is important to extend this
approach to accommodate multiple subjects simultaneously. To
address this, Future research should build upon the existing
methods to develop additional identification techniques that
address more complex computational issues, such as resolving
overlapping trajectories and multi-object tracking. We propose
exploring advanced tracking techniques and enhancing our
dataset to support multi-object tracking in future research.
Overall, this research is highly important for promoting the
advancement of medical and environmental science, as well as
improving human health and quality of life.

5 Conclusion

3D trajectory tracking for zebrafish is crucial in the field of
biomedical research. In zebrafish studies, the motion trajectories,
behaviors, and physiological responses of zebrafish must be
determined to understand the mechanisms of diseases such as
neurological disorders, heart diseases, and cancer. Compared to

3D trajectory tracking methods, traditional manual observation and
2D trajectory tracking techniques are insufficient for accurate
motion trajectory and behavioral analyses for zebrafish. This
limitation can potentially lead to inaccurate results in
experiments. This study introduces a novel approach for 3D
zebrafish trajectory tracking utilizing a dataset of 36,980 images
to reconstruct the coordinates of 18,490 zebrafish. Through iterative
comparison experiments, optimal weight hyperparameters were
determined, achieving an accuracy, precision, and recall of 98.1%,
100%, and 98.1%, respectively. The highest accuracy, precision, and
recall during training iteration comparisons were 96.3%, 100%, and
96.3%, respectively. During dataset size testing, the highest accuracy,
precision, and recall were 98.5%, 100%, and 98.5%, respectively.

The final model for the side-view camera, trained 300 times
using the v7 weight, achieved 98.1% accuracy, 100% precision, and
98.1% recall. The final top-view camera model, trained with the v7x
weight, achieved 98.7% accuracy, 100% precision, and 98.7% recall.
With respect to the test set including 3,632 3D coordinates, the final
model identified 173.11% more coordinates than the initial model.
When calculating the error between the identified and ground truth
coordinates in the test set, compared with that of the initial model,
the error range of the final model was reduced by 86.36%–97.39%,
with the average error reduced by 90.5%. Future applications of this

FIGURE 10
Common situations leading to potential misidentification of zebrafish. (A) Zebrafish swimming at the edge of an aquarium, which often leads to
reflections that can reduce detection performance. (B) A poorly performing model may misinterpret reflections as actual zebrafish, leading to erroneous
results. (C) Through iterative experiments with different initial weights, numbers of training iterations, and dataset sizes as hyperparameters, the model’s
performance is assessed to determine the most suitable parameters for training. The performance of the proposed model was subsequently
validated using a test set to confirm the performance with the chosen parameters, ensuring that the trained model accurately identified the zebrafish. (D)
Zebrafish appearing blurry in imageswhenmoving at high speeds. (E)Without using appropriate parameters to train themodel, significant deviations from
the original object may occur. (F) A model trained after parameter adjustments can successfully identify zebrafish even when they are moving at
high speeds.
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method for various aspects of zebrafish research, such as speed
comparisons, hotspot detection, and related behavioral patterns
expressed through movement, are anticipated. This approach will
enable researchers to better understand zebrafish behaviors and
physiological responses, thereby enhancing experimental efficiency
and research quality. Overall, the proposed zebrafish trajectory
tracking method is a powerful tool for in-depth exploration of
behavior, neuroscience and disease, with positive impacts on
innovation and development in related fields.
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