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Introduction: Accurate prediction of knee biomechanics during total knee
replacement (TKR) surgery is crucial for optimal outcomes. This study
investigates the application of machine learning (ML) techniques for real-time
prediction of knee joint mechanics.

Methods: A validated finite element (FE) model of the lower limb was used to
generate a dataset of knee joint kinematics, kinetics, and contact mechanics. The
models were trained on joint alignment data, ligament information, and external
boundary conditions. Several predictive algorithms were explored, including
linear regression (LRM), multilayer perceptron (MLP), bi-directional long short-
term memory (biLSTM), convolutional neural network (CNN), and transformer-
based approaches. The performance of these models was evaluated using
average normalized root mean squared error (nRMSE).

Results: The biLSTM model achieved the highest accuracy, with a significantly
lower nRMSE compared to other models. Compared to traditional FE or rigid
body dynamics models, these predictive models offered significantly faster
prediction speeds, enabling near-instantaneous insights into the TKR system’s
performance. The small size of the predictive models makes them suitable for
deployment on edge devices potentially used in operating rooms.

Discussion: These findings suggest that real-time biomechanical prediction
using biLSTM models has the potential to provide valuable feedback for
surgeons during TKR surgery. Applications of this work could be applied to
provide pre-operative guidance on optimal target implant alignment or given
the real-time prediction ability of these models, could also be used intra-
operatively after integration of patient-specific intra-op kinematic and soft-
tissue information.
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Introduction

Total knee replacement (TKR) is a surgical procedure to replace
a knee joint damaged by disease or injury with prosthetic
components. TKR is a common procedure, with over a million
performed annually in the United States (Choi and Ra, 2016).
Preclinical evaluations of TKR devices are indispensable to
ensure their reliability and effectiveness prior to patient use.
Various approaches such as in vitro experiments along with
computational modeling can be employed for this purpose. Such
preclinical studies facilitate the early detection of potential issues
regarding implant design or positioning under physiological stresses
(Maletsky and Hillberry, 2005; Willing et al., 2019; Behnam et al.,
2024). They contribute to enhancing implant design and evaluation
of the kinematics, contact mechanics, and potential longevity of the
device under various conditions.

Computational models have been used for many years to
contribute to preclinical design iterations of total knee
replacement implants (Knight et al., 2007; Baldwin et al., 2009;
Halloran et al., 2010; Harris et al., 2016; Andreassen et al., 2021; Loi
et al., 2021). Studies have focused on a variety of topics, including
implant design, surgical decisions, and subject-specific factors
(Dhaher and Kahn, 2002; Mesfar and Shirazi-Adl, 2005; Kessler
et al., 2008; Elias et al., 2010; Thompson et al., 2011; Willing and
Kim, 2011; Galloway et al., 2012). Probabilistic studies have
incorporated variation in external boundary conditions, surgical
alignments, and ligamentous changes to better capture subject-
specificity and population variability in these computational
models (Kebbach et al., 2023; Rothammer et al., 2023).
Fitzpatrick et al. (2012), Fitzpatrick et al. (2014b), Fitzpatrick
et al. (2014a) quantified the relative contributions of surgical,
design, and patient variability to the overall variability in
joint mechanics.

Although very important for preclinical development, the
typical analysis time required to run a single complex simulation
(typically in the order of ~1–12 h, depending on model complexity
and available computing resources) has limited their real-time use in
other applications, such as intra-operative, patient-specific decision
making to determine ideal implant alignment. In this setting, it is
essential to have instantaneous access to the impact of patient
ligament balance and implant alignment on estimated joint
mechanics. One recent study effectively developed a statistical
shape-function model to instantaneously predict output knee
mechanics from implant alignment and design parameters using
linear regression analysis (Gibbons et al., 2019). However, this study
focused on a simplified knee joint and did not consider patient-
specific ligamentous laxity. Given the recent advancements in
developing machine learning methods for time series applications
and predictions (Fawaz et al., 2019; Zerveas et al., 2021), as well as
rapid increases in computational capabilities; the development of
real-time predictive time series biomechanics models in becoming
increasingly viable and so is garnering interest from the
biomechanics community.

Mansour et al. investigated the accuracy of several predictive
techniques on the ability to predict joint moments at the ankle, knee
and hip joint during sit-to-stand (Mansour et al., 2023). These
machine learning and linear regression models allow for real-time
prediction of knee joint biomechanics that can help inform pre-

operative and intra-operative decision making for an idealized
individual approach (Dossett et al., 2024).

The objective of this study was to investigate time series
prediction techniques for implanted knee joint biomechanics
with varied surgical alignments, loading, and collateral ligament
conditions. Inputs to the predictive tools included 7 implant
alignment parameters and 7 external boundary and loading
conditions, while 39 TKR-implanted lower limb parameters were
predicted (kinematics, kinetics, contact mechanics, muscle forces,
and ligament tensions). The methods evaluated ranged from simple
linear regression modeling (LRM) to more complex machine
learning (ML) techniques: multilayer perceptron (MLP), bi-
directional long-short term memory (biLSTM), convolutional
neural network (CNN), and transformer based approaches.
Identification of a reliable predictive method may have
applications in efficient pre-clinical testing, design optimization,
and intra-operative decision-making.

Methods

Summary

Prediction techniques were explored through a dataset of knee
joint biomechanics generated via a previously published finite
element musculoskeletal lower limb model (Fitzpatrick et al.,
2014a). This model applies external boundary conditions at the
hip, ankle and quadriceps/hamstrings muscles to estimate dynamic
joint level loads, contact mechanics, and kinematics. External
loading conditions and surgical alignments were systematically
varied to generate a database of linked model inputs and outputs
from 1,500 simulations (Figure 1). Machine learning and linear
regression models were used to instantaneously estimate the
kinematic, kinetic, and contact mechanics output of the lower
limb model based on the boundary conditions and
surgical alignment.

Lower limb model

The dynamic finite element analysis used in this study was based
on a previously published lower limb model (Fitzpatrick et al.,
2014a). Briefly, the model includes the main bones of the lower
limb, TKR implants (a contemporary cruciate-retaining (CR) fixed-
bearing (FB) TKR), and key muscles and ligaments. The quadriceps
and hamstrings are represented with four muscle bundles. Actuators
apply external boundary conditions to replicate measured joint level
loading from the Orthoload telemetric implant patients for activities
of interest (Bergmann et al., 2014). Knee flexion is managed by
balancing vertical hip and quadriceps muscle forces, guided by a PID
controller. The model was developed in a parameterized manner so
that three key sources of variation could be efficiently modified to
generate new model instances: external boundary conditions,
surgical alignment parameters, and ligament properties.

In prior work, the development of the external boundary
conditions for nine patients from the Orthoload database was
detailed (Maag et al., 2024). Principal component analysis (PCA)
was utilized to create new physiologically plausible boundary
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conditions, maintaining the inherent loading interdependencies of
the original external boundary conditions. The PCA inputs
consisted of actuator load profiles for each patient during a deep
knee bend (DKB) activity cycle. We selected the DKB activity for this
study due to its demanding loading and the significant kinematic
variability observed in the nine Orthoload patients (Maag et al.,
2024). This approach allowed us to expand from the initial set of
nine patient-specific models to create new model instances with
varied loading conditions. By randomly varying the principal
components (PCs) within ±1.5 standard deviations (stdev), we
generated 200 unique loading conditions (Figure 2), ensuring
substantial variability while maintaining a feasible number for
completion.

Input parameters

Surgical alignment is a key patient-specific factor in determining
TKR outcomes. The surgical alignments of interest were varus-
valgus (VV) angle, hip-knee-ankle (HKA) angle, posterior slope
(PS), and femoral, IE (FIE) rotation. VV angle and HKA were
evaluated from −1° (valgus) to 5° (varus), PS from 3° to 7°, and FIE
alignment from 0° to 5° (internal) (Figure 1, Table 1). The condition
of the collateral ligaments was incorporated through a ±10%
variation in slack length for the medial collateral ligament (MCL)
and lateral collateral ligament (LCL). Additionally, the insert
thicknesses utilized were 5 mm, 8 mm, and 11 mm (with
appropriate collateral ligament response) to understand the
effects of under/over stuffing the joint space (Table 1). All these
parameters are used as inputs to the lower limb model as well as,
subsequently, inputs to the prediction methods.

In-order to create an appropriate number of trials as inputs into
the lower limb model, Latin hypercube sampling (LHS) was used.
Given the computational expense required for the model, a full
parametric approach (e.g., Monte Carlo simulation) would not be

practical, so LHS was selected to properly probe the entire design
space with a reasonable number of trials. Based on our previous
work, we found that Latin Hypercube sampling at 10% of Monte
Carlo simulations provides comparable coverage of the design space
(Fitzpatrick et al., 2012). Using the defined ranges (Table 1), the LHS
algorithm was used to create 500 trials. These 500 trials combined
the surgical parameter variation and the 200 loading conditions
created from the PCA on the external boundary conditions. The
500 trials were then replicated for the three joint levels/insert
thicknesses, creating a total of 1,500 input trials for this DKB
activity. The selected surgical parameters and external boundary
conditions were combined into inputs for the lower limb model.
Combining the alignments and boundary condition created a
14 parameter input file, including joint level, VV angle, HKA
angle, PS, FIE rotation, MCL condition and LCL condition. The
boundary conditions consisted of the AP actuator, IE actuator,
compressive load actuator, varus-valgus actuator, hip AP
actuator, pelvis rotation actuator and flexion. A custom-made
python script updated the model with each trial’s surgical
parameters and boundary conditions and extracted all the
kinematics, kinetics and contact mechanics. Simulations ran for
approximately 5–6 h using a single core on an Intel XEON Silver
4,116 @ 2.1 GHz with 256 GB of RAM. The outputs combined into
39 total parameters. The 39 parameters consisted of (number of
parameters): Grood and Suntay (G&S) kinematics (6) (Grood and
Suntay, 1983), G&S kinetics (6), MCL tension, LCL tension, ALS
tension, PFL tension, PCL tension, quadriceps load, hamstrings
load, medial contact area, lateral contact area, medial center of
pressure location (3), medial center of pressure force (3), lateral
center of pressure location (3), lateral center of pressure force (3),
medial contact pressure peak, medial average contact pressure,
medial 90th percentile contact pressure, lateral contact pressure
peak, lateral average contact pressure, and lateral 90th percentile
contact pressure. Sample output distributions for kinematic and
kinetic parameters are shown in Figure 3.

FIGURE 1
(A) Finite element lower limbmodel; (B) coronal implant alignment (HKA and varus-valgus angle); (C) sagittal implant alignment (femoral, IE rotation
and posterior slope).
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Data and model preparation

From the 1,500 FE trials, a total of 13 trials were deemed to have un-
realistic outcomes (e.g., subluxation) and were discarded, which left
1,487 samples for training/fitting of the prediction methods. Activity
cycles were sampled at 181 time increments per trial to allow for
adequate resolution. In preparation for training, the inputs and outputs
were normalized using the z-score technique (Fei et al., 2021). The

prediction techniques selected were the LRM and 4 ML techniques:
MLP, biLSTM, CNN, and transformer based. The LRMwas selected for
its speed, simplicity and to determine if ML based approaches are
necessary for this situation. The LRM was created using the fitlm
function within MATLAB, using the quadratic option. The data was
discretized into 39 by 181 models, to mimic the 39 output variables and
181 time increments of the data. This effectively created 7,059 univariate
regression models. The default QR decomposition was used in fitting
the least squares problem. The biLSTM was selected for its ability to
map both the forward and reverse directions of a time series. LSTM
layers are specialized recurrent neural network (RNN) layers that are
capable of learning long-term dependencies, especially in long
sequences (Sak et al., 2014). A biLSTM is a variant of the LSTM
whereas there are two LSTM layers one that learns in the forward
direction and the other that learns in the reverse direction. The biLSTM
model was constructed from a masking layer four LSTM layers with a
width of 181 nodes, and a relu activation layer. This was ordered as
masking layer, LSTM (forward), LSTM (reverse), relu activation, LSTM
(forward), LSTM (reverse), then terminating in a linear activation layer
for regression. Resulting in approximately 937 thousand learnable
parameters. Each LSTM forward/reverse pair is what makes the
biLSTM its namesake. MLP was chosen as the baseline ML

FIGURE 2
Input actuator distribution, shaded indicate ± 1.0 standard deviation from the mean (wrt to the tibia, +Anterior (Ankle extending); +Internal; +Varus;
−Compressive); AP force is created from a torque at the ankle; Varus-Valgus Torque is created via an M-L force at the ankle.

TABLE 1 Alignment and condition input parameters.

Input parameter Range

Varus-Valgus (VV) angle −1° (Varus) - 5° (Valgus)

Hip-Knee-Ankle angle (HKA) −1° (Varus) - 5° (Valgus)

Posterior slope (PS) 3°–7°

Femoral internal external (FIE) rotation 0°–5° (internal)

Insert thickness 5 mm, 8 mm, 11 mm

MCL slack length ±10%

LCL slack length ±10%
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technique as it consisted entirely of full-connected and activation layers.
Depth and width was selected to mimic that of the biLSTM. The MLP
was constructed using a masking layer, dense layers of 181 width, and a
relu activation layer. Similarly to the biLSTM, the layers were ordered as
masking layer, two dense layers, relu activation layer, two dense layers,
then terminating in a linear activation layer for regression. This resulted
in approximately 108 thousand learnable parameters. Both the MLP
and biLSTM were implemented through a custom python script using
the TensorFlow module. The CNN and Transformer based approaches
were implemented through the tsai module for python (Oguiza, 2023).
The tsai module is a module built on pytorch that is aimed at making
time series machines learning easier to manage. The CNN is an
adaptation of the model named InceptionTime that instead of doing
classification tasks does regression tasks (Fawaz et al., 2019). This model
uses the inception-v4 architecture but for time series, using 1D
convolutional layers with residual connections. A depth of 12 layers
and a width of 32 was used for this basis of this model. This model has
approximately 164million learnable parameters. The transformer based

framework is an adaption of Zerveas et al. to work in a regression based
problem (Zerveas et al., 2021). This is a multivariate regression model
with positional encoding, 16 attention heads, with awidth of 128 hidden
nodes and a depth of three layers, resulting in approximately
164 million learnable parameters.

First, the data was shuffled and split randomly into train,
validation, and test sets at ratios of 85%, 10% and 5%,
respectively. Training, validation and test set distributions were
selected based on standard ML practices: it is common place for
the data to be split as 70%–90% train, 5%–30% validation, and 5%–
15% test (Shahrabadi et al., 2024). This equated to 1,264 samples in
the train group, 149 samples in the validation group and 74 samples
in the test group. The test group will be used to evaluate the models
after the training process is complete. The LRM was fit to only data
from the training set to ensure all approaches only had access to the
same data. This created a set of linear regression coefficients which
were used to predict outcomes in the test dataset. The test set was
predicted and the normalized root mean squared error (nRMSE)

FIGURE 3
Kinematic and Kinetic output parameter distribution, shaded ±1 distribution (wrt to the tibia, −Medial, +Anterior; +Internal; +Varus; −Compressive).

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Maag et al. 10.3389/fbioe.2024.1461768

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1461768


was calculated. Each ML model was trained using a learning rate of
1 × 10−5 using an Adam optimizer and a batch size of 12 (Kingma
and Ba, 2014). Batch sizing was optimized for memory usage while
learning rate was perturbed until the loss curve was appropriate.
Training was terminated once the validation set loss (mean absolute
error (MAE)) was no longer reducing (early stopping) or
10,000 epochs was reached. All models were trained on a
NVIDIA A6000 chipset. Upon completion of the training, the
model switched to inference and used to predict on the test
group. The nRMSE was calculated for each of the samples in test
group per themodel. The average nRMSE for each of the models was
used to concluded which of the models more accurately predicted

the outputs. Model average nRMSE for each sample in the test group
were then compared using the Tukey method with 95% confidence.
Additional hyper-parameters were not fully optimized for
the models.

Results

Training

Time to train the models varied by technique. The MLP took the
least amount of time at approximately 3.5 h, the biLSTM took

FIGURE 4
Predicted Kinematics of a test sample with the average nRMSE (biLSTM); (Trans-Transformer); (wrt to the tibia, −Medial, +Anterior; +Internal;
+Varus; −Compressive).

FIGURE 5
Predicted Kinetics of a test sample with the average nRMSE (biLSTM); (Trans-Transformer); (wrt to the tibia, −Medial, +Anterior; +Internal; +Varus;
−Compressive).
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approximately 18 h, while the CNN and transformers took over 24 h
(all using a NVIDIA A6000 chipset). Comparatively, the LRM
“training” process was much faster than any of the ML
techniques at approximately 5 min using one core on a modest
CPU. Inference time for all techniques were minimal without any
notable time difference.

Variable prediction

The kinematics had an average nRMSE of 1.30, 1.15, 0.52, 0.83,
and 0.88; and the kinetics had an average nRMSE of 1.00, 0.98, 0.38,
0.63, and 0.71 for the LRM, MLP, biLSTM, CNN, and transformer,

respectively (Figures 4, 5). The biLSTM was more than 50% more
accurate than the other prediction techniques in all kinematics and
kinetics. The biLSTM had limited deviation on an average test
sample only accumulating nRMSE of 0.138 and 0.243 in the IE
rotation and lateral contact area respectively (Figure 6).

The techniques all estimated the tension of PCL, LCL, and MCL
accurately, but the ALS estimates were the least accurate among the
ligament tensions (Figure 7). The ALS had the highest nRMSE of all
the predicted variables, with an average nRMSE of 30.72.
Comparatively, the average nRMSE of the PCL, MCL, and LCL
was 5.30, 5.73, and 12.49, respectively. In comparison of the
prediction technique, the biLSTM outperformed all of techniques
in predicting ligamentous loads by at least 50%.

FIGURE 6
Comparative plot of biLSTM to the FEModel, focusing on key variables of interest. Representative patient of the test cohort, any deviations shown are
not systemic (wrt to the tibia, +Anterior; +Internal; +Varus; 90th percentile- 90th percentile contact Pressure).
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Model performance

The highest overall accuracy of the models was the biLSTMwith
an average nRMSE of 3.4 (Figure 8). This was a reduction in nRMSE
of 55.8%, 53.8%, 36.8%, and 41.1% over the LRM, MLP, CNN, and
Transformer, respectively. Differences in the nRMSE were analyzed
for statistical significance using a tukey pairwise comparison with
95% confidence intervals—the LRM and MLP as well as the CNN
and transformer comparison showed no statistical difference. The
performance of each model to predict the individual outputs of the
model was calculated by summing the nRMSE of each test sample
per variable (Figure 9).

Discussion

This study explored analytical and ML models to
instantaneously estimate knee joint biomechanics from a FE
lower limb model. The models input joint alignment and
ligament data, and external boundary conditions to output
kinematics, kinetics and contact mechanics. The models tested in

this study were LRM, MLP, biLSTM, CNN and transformer based.
The biLSTM was the most accurate model as measured by average
nRMSE, and it was significantly lower than the other three models
according to the Tukey method with 95% confidence intervals.
These models can obviously infer much faster than an FE model
or a rigid body dynamics solution, allowing for almost immediate
insight into the TKR system. Moreover, the models were all
relatively small, which reduced memory and computation
requirements. This small size makes them suitable for edge
devices similar to those used in the operating room. These kinds
of approaches could eventually enable real-time feedback for patient
alignment and ligament balancing.

The prediction techniques used in the study had different levels
of complexity. It was expected that more complexity would result in
better prediction of the output variables, but this was not the case.
Complexity is not always a measure of the learnable parameters in a
model, in the case of the CNN and transformer based models the
complexity differences are based on their construction and branding
architecture. The biLSTM, which has a medium level of complexity,
performed the best in predicting the output variables. It is possible
this could have been improved by optimizing the hyper-parameters

FIGURE 7
Ligamentous load for average nRMSE sample from the test group (biLSTM); (Trans-Transformer).
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of each technique for this specific scenario, but this was not the focus
of this proof-of-concept study. The models already exhibit good
performance, so hyper-parameter optimization was not pursued due
to the effort required and the minimal potential improvements in
performance. The CNN and transformer, which were more
complex, may not have been necessary for this system as, the
CNN and transformer tend to focus on detail rather than
generalizing as the biLSTM does. This can be seen in their
output, which has more noise and follows the sharper changes in
some of the data (Figures 4, 5).

The activity predicted in this study was the DKB, and it was
chosen as it has a large variability in the output kinetics, kinematics
and contact mechanics (Figure 3). It was assumed that this level of

variability would provide a level of complexity of that would
properly test the predictive models. While all the models were
able to predict relatively well within this activity, it is unknown
how well this would translate to other activities. However, given the
level accuracy of the models for the DKB activity it is expected that
these models would do well at predicting other activities as well.
Future studies will investigate the predictive power of these models
with other activities.

This study shows promise for estimating joint-level TKR
mechanics instantaneously for future application in the
operating room. Given the quality of real-time predictions, as
all the techniques represent the dynamic mechanical system
fairly well, the finite element model and any associated
inaccuracy remains as the primary limitation in moving
forward. The focus of this study was to quantify how well this
ML approach could represent the results from an FE model.
Although sufficient breath and volume of in vivo data was not
available, as such data does become more commonplace, we can
apply the same methodology to capture the in vivo behavior. In
this study, adapting the lower limb to best fit a patient through
geometry, properties, and loading conditions were not addressed.
Development and validation of this complete process for
estimation of joint mechanics will be required and remains a
significant hurdle. Once complete, a more comprehensive pre-
run simulation database may be developed.

The utilization of a finite element model of the lower limb as a
data generation tool for training various predictive models,
including the notably effective biLSTM model, underscores the
potential of these technologies in optimizing surgical outcomes.
The ability to provide real-time feedback during total knee
replacement surgeries could enhance surgical decision-making,
leading to improved patient outcomes. We think this real-time
data could enhance alignment optimization to achieve ideal
kinematics and kinetics, minimize micromotion in cementless
TKR, and reduce fixation stresses in cemented TKR. For
instance, optimizing implant I-E rotation and A-P position could
help maintain natural knee joint movements, thereby reducing soft

FIGURE 8
Average nRMSE of the test groups with increasing complexity.
Error bars = ±1SD; CNN and Transformer (p = 0.86) as well as MLP and
LRM (p = 0.91) were not statistically different.

FIGURE 9
Total nRMSE of predicted variables; variables are ranked in highest nRMSE (right) down to the lowest nRMSE (left). Dark Red denotes higher nRMSE
with dark blue being the lowest. Cont-(Contact), Pres-(Pressure), 90th-(90th Percentile).
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tissue strain in the implanted joint. This study’s findings advocate
for the integration of advanced machine learning techniques into
clinical practices, while emphasizing the need for further research to
overcome current limitations and enhance model generalizability.
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