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An aging population and an increasing incidence of cardiovascular risk factors
form the basis for a global rising prevalence of valvular heart disease (VHD).
Research to further our understanding of the pathophysiology of VHD is often
confined to the clinical setting. However, in recent years, sophisticated
computational models of the cardiovascular system have been increasingly
used to investigate a variety of VHD states. Computational modelling provides
new opportunities to gain insights into pathophysiological processes that may
otherwise be difficult, or even impossible, to attain in human or animal studies.
Simulations of co-existing cardiac pathologies, such as heart failure, atrial
fibrillation, and mixed valvular disease, have unveiled new insights that can
inform clinical research and practice. More recently, advancements have been
made in using models for making patient-specific diagnostic predictions. This
review showcases valuable insights gained from computational studies on VHD
and their clinical implications.
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1 Introduction

Valvular heart disease (VHD) is an is an evolving epidemic of an aging population,
affecting more the 10% of individuals over the age of 75 (Nkomo et al., 2006). Despite
substantial therapeutic advances, it remains a major cause of morbidity and mortality
(d’Arcy et al., 2011). Aging, improved cardiovascular survival, and increasing incidence of
risk factors such as hypertension, diabetes, and chronic kidney disease, are key drivers for
the rising global prevalence of VHD (Coffey et al., 2021). Clinical outcomes are poor when
VHD is complicated by other cardiac pathologies, such as adverse cardiac remodelling
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leading to heart failure or atrial fibrillation (Baumgartner et al., 2017;
Alassar et al., 2013; Samaras et al., 2021). As such, early detection
and optimizing treatment strategies for patients is paramount.

Investigating the haemodynamic mechanisms of VHD has
traditionally been confined to select clinical or animal studies.
Studying valvulopathy in the clinical setting has its inherent
challenges, including the limited ability to measure or manipulate
variables, the need for invasive cardiac measurements, natural
physiological intra-patient variability (for example, heart rate or
blood pressure) and interpatient heterogeneity due to biological
differences (such as age, height, and weight). Furthermore, changing
disease patterns, such as mixed andmultivalvular pathology, and co-
existing cardiac pathology such as heart failure further complicate
diagnostic evaluation and clinical decision-making.

With the increasing prevalence of VHD and the continuous
evolution of treatment options, gaining a deeper understanding of its
pathophysiology and natural progression has never been more
crucial. For this reason, expanding the armament of research
methods to investigate VHD is essential. Computational models
of the cardiovascular system are powerful tools to further our
understanding of cardiovascular physiology and disease processes
and how they may relate to novel therapies (see Figure 1). Such
models allow for the creation of detailed virtual representations of
cardiovascular structures and functions, which can be manipulated
to simulate various physiological states and conditions (Formaggia
et al., 2009). This capability provides the means to unveil key
mechanistic insights underlying cardiovascular diseases and offers
a platform for testing potential therapeutic interventions in a

controlled and reproducible manner. Furthermore, computational
models overcome the limitations posed by the invasive nature of
certain clinical measurements and the inherent variability among
patients. By enabling the simulation of a wide range of scenarios and
conditions, these models enhance our ability to predict disease
progression and treatment outcomes, ultimately informing the
development of more effective and targeted therapeutic strategies.

In the simulation of VHD, a comprehensive understanding of
the effects of valvular pathology on global cardiovascular
haemodynamics within a closed-loop model of the cardiovascular
system model can only be achieved through the application of
lumped parameter computational modelling (LPM). This method
allows for the integration of complex cardiovascular dynamics,
including the interactions between the heart chambers, valves,
and vasculature. By doing so, it provides a detailed
representation of key haemodynamic parameters, including
pressure, flow, and volume, within a simplified yet robust
framework. This approach offers invaluable insights into the
haemodynamic effects of valvular dysfunction, facilitating the
prediction of disease progression and assessing potential
therapeutic interventions. Furthermore, LPM bridges the gap
between clinical observations and theoretical predictions, thereby
improving our capacity to diagnose, manage, and treat VHD more
effectively.

In this narrative review, we aim to introduce non-experts to the
innovative field of computational cardiovascular modelling and its
emerging role in VHD research. By elucidating the fundamental
principles and showcasing illustrative examples, our goal is to foster

FIGURE 1
Overview of computational cardiovascular modelling applications in valvular heart disease research (created with BioRender.com).
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a broader appreciation and understanding of computational
modelling of VHD. In doing so, we aim to highlight the exciting
possibilities and practical applications that computational
cardiovascular modelling presents, thereby inspiring further
interest and engagement from a diverse audience.

2 Concepts in cardiovascular modelling

2.1 Mathematical modelling

Mathematical models describe a real-world process in
mathematical terms typically through a set of variables and
equations. These models are the cornerstone for fields such as
physics and engineering, describing natural phenomena such as
energy transfer, electromagnetism, and gravity. Physiology, in
contrast, is less easily reduced to mathematical equations. This is
primarily due to the complexity and variability of biological
processes which makes them inherently non-linear, multi-
disciplinary, and multi-scaled (Pathmanathan and Gray, 2018).
Nevertheless, the use of modelling has led to great advancements
in the understanding of cardiovascular physiology and the practice
of cardiology. Indeed, many of these are based on well-established
physics-based models and principles, having been either directly
applied or adapted for use in a biological context. Some notable
examples include Hagen–Poiseuille’s law for understanding the
relationship between pressure, fluidic resistance, and flow rate,
and the Bernoulli principle for describing the pressure drop

occurring with increased velocity of blood flow (Formaggia et al.,
2009; Hopkins et al., 1991; Sagawa et al., 1973).

Mathematical models of cardiac chamber contractility,
transvalvular flow, and flow through vascular compartments have
been developed and sequentially integrated to form a closed-loop
model of the cardiovascular system (see Figure 2) (Sagawa et al.,
1973; Chung et al., 1997; Ursino et al., 1994; Morris et al., 2016). This
system-based modelling approach allows for a multitude of
physiological and haemodynamic processes, and their
interdependencies, to be simultaneously represented. With this
approach, the simulation of a variety of disease states is possible.
These complex multi-compartment cardiovascular models typically
require computer-based methods to execute the model and generate
results, such is the reason they are also referred to as
computational models.

2.2 Reduced-dimensional modelling

In order to effectively model the whole heart and
cardiovascular system in unison, each component needs to be
simplified with respect to its temporal and spatial representation.
The spatial dimensionality of cardiovascular models varies
depending on their intended use and application, ranging from
zero-dimensional (0D) to three-dimensional (3D) (see Table 1)
(Morris et al., 2016). Three-dimensional models, such as those
used in computational fluid dynamics, can reveal intricate local
fluid flow patterns, such as flow vortices within the left ventricle.

FIGURE 2
Summary of sub-model components of a closed-loop cardiovascular system model and the inputs which inform their development. Illustration of
frequently used models of various cardiovascular processes that are combined to form a multi-compartmental model of a closed-loop cardiovascular
system (created with BioRender.com).
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Conversely, reduced-dimensional models eliminate spatial
dimensionality entirely (0D) or represent one (1D) or two
spatial planes (2D). Depending on the model’s purpose, this
reduction can translate to decreased computational time
without sacrificing accuracy. In reduced-dimensional models,
the mathematical representation of cardiovascular components
is often lumped together and is known as lumped-parameter
modelling - for example, the segments of the aorta may be
collectively represented as one whole compartment.

The Windkessel model, first described by German Physiologist
Otto Frank in 1899 (Frank, 1899), is the most commonly used LPM
model to simulate the flow of blood in a vessel or heart chamber.
Over the years, improvements to the Windkessel model have led to
more accurate representations of physiological pressure and flow
waveforms. In the original two-element Windkessel model,
resistance and compliance are used simulate flow through a
vessel. This evolved to the three-element Windkessel, where an
additional resistance value was included to model the impedance
imposed by the vessel itself. The effect of inertia to blood flow was
accounted for in a four-element model. Finally, the five-element
model splits compliance into two components separated by an
inertance, to create a more realistic representation of the effect of
vessel impedance and compliance (Toy et al., 1985) (see Figure 3).

LPMs forming a closed loop model of the cardiovascular system
are typically represented by an electrical or hydraulic circuit
schematic (Figure 4). The flow of blood is pressure-driven
between compartments, where a compartment comprises of
elements of resistance, compliance and inertance to blood flow.
Flow in and out of the compartments are a function of parameters,
primarily pressure and volume, of the adjacent or connecting

compartments or chambers. Ventricular and atrial contraction
are the drivers that advances the flow of blood through the
circuit; time-varying elastance functions (Sagawa et al., 1973;
Defares et al., 1963) are most commonly implemented to recreate
ventricular and atrial contraction. As the model becomes more
advanced, additional components and functions that account for
heart chamber interactions, pericardial influence, and neuro-auto-
regulatory mechanisms, such as the baroreflex, and the interaction
with the respiratory system may be included.

2.3 Current approaches to modelling heart
valves and valvular disease

Accurate modelling of heart valves and valvular diseases
is crucial for understanding and predicting the heart’s
haemodynamic behavior. Approaches to modelling heart valves is
varied in the literature and will largely depend on the intended
purpose of the cardiovascular model. This section describes the
current reduced-dimensional approaches in modelling heart valves
and valvulopathy, focusing on common mathematical
representations to describe pressure-driven flow.

The most common mathematical representation of a heart valve is
by a unidirectional flow function, commonly expressed as a diode
connected to a compliance element. Forward flow occurs as a function
of the pressure differential between the two adjoining compartments
and a resistance value assigned to the valve. In the open state, a normal
healthy valve imposesminimal or no resistance to forward transvalvular
flow, so parameters for resistance are typically very low, for example,
0.01 mmHg/L/minute (Frank and Hoppensteadt, 2002), or may

TABLE 1 Spatial dimensionality in cardiovascular modelling.

Spatial
dimension

Graphical representation Features Computational
timea

0D No spatial dimension represented
Values for pressure, volume, and directional flow are derived
for each modeled section

Seconds

1D Pressure, volume, and flow can be captured at specified
discrete intervals across the length of the vessel
Uniform velocity flow profiles are assumed

Seconds to minutes

2D Allows for simulation of velocity field profiles, including
parabolic, Womersley, and vortical flow in 2D
Simulation localized to one or several connecting vessels or
chambers. For closed-loop cardiovascular system modelling,
connection to 0D models is required

Minutes to hours

3D Primary and secondary fluid flow characteristics can be
simulated. Capacity for high temporal and spatial resolution
Simulation localized to one or several adjoining vessels or
chambers. For closed-loop cardiovascular system modelling,
connection to 0D models is required

Hours to days

aTypical computational times are presented. Computational times can vary widely depending on the complexity of the model, number and duration of simulations, data collected, software used,

type of solver and computer processing power.
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be absent altogether. The diode representation of the heart valve
is one of an ideal valve, where pressure differential mediated
opening and closure of the valve is instantaneous. Thus, the valve
exists in only two states, fully open or fully closed. As a
consequence, pressure, and flow wave-form morphologies will
often contain abrupt or non-smooth transitions, particularly at
the point of valve opening and closure.

Valve models that are created based on the principle of the
conservation of mass and energy, allow for the simulation of non-
linear resistance, and provide an accurate portrayal of the
relationship between orifice area and pressure gradient. In a
1985 study, Donovan modeled the aortic valve with non-linear
resistance, in which flow through the valve was a function of the

density of the fluid, an ascribed discharge coefficient, the diameter of
the opening orifice, and the volumetric flow rate (Donovan and
Sauer, 1985). In the past 20 years, advancements have been made in
modelling the dynamic nature of valve opening and closure. A
model incorporating a dynamic mitral valve opening area was
developed by Szabó et al. (Szabo et al., 2004). In their study, a
linear second-order differential equation described valve area
opening as a function of changes to pressure and flow where
viscous and inertial forces are represented as constants. The
authors demonstrated physiologically accurate transmitral flow
waveforms for a normal valve and a mechanical prosthetic valve.
Korakianitis and Shi described a dynamic valve model based on
differential equations incorporating the effect of pressure, flow, and

FIGURE 3
(A) Classic two-element Windkessel model; (B) three-element Windkessel model; (C) four-element Windkessel model and (D) five-element
Windkessel model. R is peripheral resistance, ZC is characteristic impedance, L is inertance, C is arterial compliance and C1 + C2 = arterial compliance in
the five-element model. (Figure adapted from Zhou et al. (2019)).

FIGURE 4
Circuit diagram of a closed-loop cardiovascular systemmodel (created with circuit-diagram.org). Abbreviations: AV, aortic valve; LA, left atrium; LV,
left ventricle; MV, mitral valve; PV, pulmonary valve; RA, right atrium; RV, right ventricle; TV, tricuspid valve.
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friction on the opening and closing of valve leaflets (Korakianitis and
Shi, 2006a; Korakianitis and Shi, 2006b). Valve orifice area is
determined by leaflet angular displacement, represented by a
cosine function, which is dependent on the pressure exerted on
the leaflets. The frictional effects imposed by the leaflet on blood flow
are assumed to be proportional to the leaflet’s angular velocity.
Herein, the modelling of valvular stenosis can be performed by
limiting the maximal opening angle of the leaflets. Likewise,
regurgitation can be modeled by increasing the minimum valve
closing angle, thereby leaving clearance for flow reversal during
diastole (Korakianitis and Shi, 2006a). However, a study that used
this approach to simulate valvulopathy according to disease grading
(Scarsoglio et al., 2016), produced haemodynamics measures that
varied in their agreement with the severity ranges indicated by
clinical guidelines. In aortic stenosis (AS), the transvalvular mean
pressure gradient is a standard measure of grading severity,
primarily determined by the aortic valve area and transvalvular
flow rate. Typically, a mean pressure gradient of less than 20 mmHg
indicates mild AS, 20–40 mmHg indicates moderate AS, and greater
than 40 mmHg indicates severe AS (Baumgartner et al., 2009). In
this study, increasing AS severity was achieved through creating
valve areas of 2.0 cm2 (mild), 1.2 cm2 (moderate), and 0.9 cm2

(severe), which yielded mean pressure gradient gradients of 26, 54,
and 87 mmHg, respectively. These values are higher than what
would be expected clinically for these valve areas. Conversely, the
simulation of mitral stenosis (MS) produced MPGs that aligned well
with clinical guidelines. However, in the simulation of mitral
regurgitation (MR), modeled regurgitant orifice areas for mild
and moderate MR resulted in regurgitant volumes of 34 and
64 mL, respectively, which corresponds to moderate and severe
MR according to clinical guidelines (Lancellotti et al., 2010).

Recently, the simulation of valvulopathy has been performed
using an object-oriented modelling approach (Šeman et al., 2023).
Here, the modelling of physical systems in an in silico environment is
achieved using equation-based elements andmathematical operations
that represent a physical component (The MathWorks, 2022). These
components are usually presented as a graphical or textual icon and
can be connected to each other to form the system under design
(Kulhánek et al., 2014). Modelling-based environments such as
Modelica (Ježek et al., 2017; Moza et al., 2017) and Simscape-
Matlab (de Canete et al., 2013; King et al., 2018; Rosalia et al.,
2021; King et al., 2019) have been previously used to model a
closed-loop cardiovascular system. In the Simscape environment,
component valves comprise of mathematical equations based on
the continuity of mass and energy that describe valve function and
the pressure and flow dynamics of fluid through the valve (King et al.,
2019; The MathWorks Inc, 2020). Within these environments, a vast
range of physical properties of components can be specified, including
the dimensions of compliant pipes, opening and regurgitant orifice
areas for valves, and fluid viscosity and density (The MathWorks
Inc, 2020).

3 Modelling-based research in valvular
heart disease

Computational modelling has enormous potential to
significantly advance the understanding, diagnosis, and treatment

of VHD. A key strength of cardiovascular modelling research is the
ability to investigate specific conditions with great controllability
and reproducibility, including the acquisition of precise data for a
wide variety of parameters. This allows for tailored simulation of
clinical scenarios and precise quantitation of the effects of variables
of interest.

This section of the review showcases studies that utilized
lumped-parameter computational models of the cardiovascular
system to unveil clinical insights into VHD. High-dimensional
modelling studies, including structural finite element analysis,
computational fluid dynamics, and fluid–structure interaction,
will not be discussed and have been previously outlined
elsewhere (Toma et al., 2022). A summary of key modelling-
based VHD studies is presented in Table 2.

3.1 Haemodynamic insights into the
progression of valvular heart disease

VHD is inherently progressive in nature. Valvular stenosis or
regurgitation disrupts normal haemodynamics, resulting in
increased cardiac pressures and workload. Over time, this can
lead to ventricular dysfunction, and the development of
symptoms such as shortness of breath, fatigue, chest pain, and
syncope. These symptoms significantly impact quality of life
and often indicate the necessity for medical or surgical
intervention for the alleviation of symptoms and prevention of
further deterioration.

Understanding the variables that underpin disease
progression is crucial for assessing the severity and potential
outcomes of VHD. In silico experimentation using cardiovascular
models allows for the investigation of VHD under highly
controlled and repeatable conditions. With this approach, the
continuum of valvular stenosis and regurgitation can be
simulated, and a wide array of haemodynamics can be
measured with high precision.

In a study by Garcia and colleagues (Garcia et al., 2006), AS with
increasing severity was simulated using a LPM, and the relationship
between aortic valve area and left ventricular (LV) stroke work was
quantified. In their study, LV stroke work was shown to remain
relatively stable in the ranges of mild and moderately severe AS. As
the aortic valve area reduced below <1.0 cm2, small decreases in
effective orifice area induced drastic increases in LV stroke work.
Indeed, this orifice area corresponds to the approximate turning
point in which patients experience the onset of symptoms and
mortality risk rises significantly (Mehrotra et al., 2018). In the same
study, the authors showed increasing grades of hypertension
resulted in a quasi-linear increase in LV stroke work (Garcia
et al., 2006). As such, hypertension was highlighted as a
potentially important contributor to the discordance commonly
seen between patients’ imaging derived AS severity, their onset of
symptoms, and the extent of symptoms.

The presence of impaired coronary flow reserve in patients
with severe AS is associated with an increased risk of myocardial
ischemia symptoms, LV dysfunction, and sudden death. (Michail
et al., 2018). To investigate the complex interplay between
coronary flow reserve and AS, a sophisticated LPM of the
cardiovascular system that incorporated coronary inflow was
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employed to simulate progressive AS (Garcia et al., 1985).
Simulated coronary flow waveforms were found to be
comparable to those reported in the literature for healthy
valves and AS. The results revealed a discernible correlation
between the progressive AS severity and a decrease in
coronary flow reserve. At valve areas of 1.0 cm2 and below

coronary flow reserve decreased markedly. For example,
compared to no AS with a valve area of 4.0 cm2, valve areas of
1.0 cm2 and 0.5 cm2 were associated with approximate 25 and
50 percent reductions in coronary flow reserve, respectively. The
reductions in coronary flow reserve were explained in large part
by i) a decrease in coronary perfusion pressure leading to reduced

TABLE 2 Key themes in modelling-based valvular heart disease research.

Theme Study focus

Haemodynamic consequences of valvulopathy • Haemodynamic effect of altered loading conditions in AS (Garcia et al., 2006; Keshavarz-Motamed et al., 2014; Popovic
et al., 2005; Ben-Assa et al., 2019) and MR (Šeman et al., 2023; Inuzuka et al., 2016)

• Characterization of transvalvular flow and pressure changes in AS (Šeman et al., 2023; Garcia et al., 2006;
Keshavarz-Motamed et al., 2014; Ben-Assa et al., 2019; Syomin et al., 2019; Laubscher et al., 2022), AR (Syomin et al.,
2019), MS (Syomin et al., 2019), MR (Šeman et al., 2023; Syomin et al., 2019), TR (Hemalatha et al., 2010) and PR
(Hemalatha et al., 2010)

• Haemodynamic changes associated with acute and chronic MR (Ripoli et al., 1998)

• Evaluation of left ventricular remodelling in response to AS, AR, and MR (Maksuti et al., 1985)

• Mechanism of impaired coronary flow reserve in AS (Garcia et al., 1985)

• Arrhythmogenic effect of AS,AR,MS and MR (Pearce and Kim, 2022)

Interaction with co-existing cardiovascular
pathology

• Haemodynamics of AS (Šeman et al., 2023; Popovic et al., 2005), and MR (Šeman et al., 2023; Inuzuka et al., 2016) with
co-existing heart failure

• Impact of concomitant MR on AS (Šeman et al., 2023)

• Haemodynamic impact of AR, AS, MR, MS in the setting of atrial fibrillation (Scarsoglio et al., 2016)

• Effect of atrioventricular valve regurgitation in congenital single ventricle (Pant et al., 2018; Schiavazzi et al., 2017)

Patient-specific clinical prediction • Patient-specific diagnostic and clinical prediction tool for quantifying cardiovascular haemodynamics and key heart
function metrics (Keshavarz-Motamed, 2020; Baiocchi et al., 2021)

• Patient-specific modelling of stroke work pre- and post-transcatheter aortic valve replacement and its correlation to
quality-of-life (Ben-Assa et al., 2019)

• Patient-specific modelling of coronary artery haemodynamics pre- and post-transcatheter aortic valve replacement
(Garber et al., 2023)

• Prediction of invasive haemodynamic metrics in a patient with congenital single ventricle and atrioventricular valve
regurgitation (Schiavazzi et al., 2017)

Diagnostic advancements • Validation of novel index, normalized stroke work, to assess the haemodynamic load imposed on the left ventricle in
patients with AS (Keshavarz-Motamed et al., 2014)

• Role of myocardial performance index in the setting of MR under different loading conditions (Inuzuka et al., 2016)

• The use of left ventricular stroke work and vascular impedance as metrics to improve the characterization of patients
with AS (Ben-Assa et al., 2019)

• Value of assessing pulmonary vein flow in the echocardiographic assessment of MR severity (Grimes et al., 1995)

• Quantitation of the impact of MR on haemodynamic indices of AS severity (Šeman et al., 2023)

Simulation of therapeutic strategies • Aortic valve bypass for the treatment of severe AS (Benevento et al., 2015)

• The haemodynamic benefit of gradual versus abrupt correction of MR and TR (Walmsley et al., 2019)

• Effects of sodium nitroprusside in aortic stenosis associated with severe heart failure (Popovic et al., 2005)

• Optimal timing of correction of atrioventricular valve regurgitation during staged reconstructive surgery of congenital
single ventricle (Pant et al., 2018)

• Effectiveness of pulsatile and continuous LVAD therapy in the setting of AR or MR (Kim et al., 2016)

• Impact of TR on the haemodynamic effects of RVAD treatment (Punnoose et al., 2012)

• Haemodynamic Impact of venoarterial extra corporeal membrane oxygenation in the setting of AR (Zhu et al., 2024)

Abbreviations: AR, aortic regurgitation; AS, aortic stenosis; MR, mitral regurgitation; MS, mitral stenosis; PR, pulmonary regurgitation; TR, tricuspid regurgitation; RVAD, right ventricular

assist device; LVAD, left ventricular assist device.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Šeman et al. 10.3389/fbioe.2024.1462542

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1462542


myocardial supply, ii) decreased diastolic duration, and iii)
increased myocardial metabolic demand associated with
increased LV workload. Given the adverse outcomes associated
with a very low coronary flow reserve, the authors expressed that
their findings provide some support in favor of raising the level of
indication for aortic valve replacement in asymptomatic cases of
very severe AS (Vmax ≥ 5 m/s or mean transaortic pressure
gradient ≥60 mmHg), which at the time of publication was a
class 2b indication (Bonow et al., 2008), and has since increased
to a class 2a indication (Otto et al., 2020).

3.2 Impact of co-existing
cardiovascular disease

In patients with VHD, the presence of co-existing cardiac
diseases, such as heart failure or atrial fibrillation are frequently
found. Despite extensive study, pathophysiologic interactions
between valvulopathy and co-existing cardiac disease remain
incompletely defined. Modelling-based studies enable the
investigation of the contributory role of additional cardiac
pathologies in the continuum of specific valvulopathy, and vice

FIGURE 5
Simulated impact of concomitant mitral regurgitation on left ventricle and aortic pressures waves and mean pressure gradient for aortic stenosis
(aortic valve area = 1.0 cm2).21 (A) = Isolated aortic stenosis, (B) = Aortic stenosis with mild mitral regurgitation, (C) = Aortic stenosis with moderate mitral
regurgitation, and (D) = Aortic stenosis with severe mitral regurgitation. MPG indicates transaortic mean pressure gradient; PAo, aortic pressure; and PLV,
left ventricular pressure.
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versa, thus facilitating a more comprehensive understanding of the
complex interplay of the key factors at play.

Mixed and multiple valvular diseases are also a frequent
occurrence in clinical practice, however, there are limited studies
investigating the adverse haemodynamics of such states and its
implications on clinical outcomes. The impact of concomitant MR
on AS haemodynamics was investigated using a LPM and
echocardiographic data from a large cohort of patients with AS
(Šeman et al., 2023). Figure 5 shows simulated LV and aortic
pressure waveforms and for progressively worsening MR (mild,
moderate, and severe) in the setting of severe AS with an aortic valve
area 1.0 cm2. For severe AS, simulations showed that compared to
isolated AS, the presence of mild, moderate, and severe MR was
associated with transaortic mean pressure gradient reductions of
10%, 29%, and 40%, respectively. These results when then used to
calculate an adjusted mean pressure gradient in a cohort of
1427 patients with severe AS, based on MR severity. The authors
found that co-existing MR, even if mild, was a significant
contributor to echocardiographic discordance between aortic
valve area and mean pressure gradient. And of patients with low-
gradient AS and concomitant MR, half would reclassify as high-

gradient AS based on their adjusted-mean pressure gradient. The
authors highlighted the risk of underestimating AS severity in
patient with concomitant MR and discussed the potential benefits
of an adjusted mean pressure gradient, based on careful MR
quantitation. This approach could be especially important for
patients demonstrating echocardiographic discordance or
borderline severe AS, as it may provide a more accurate
assessment of the true AS severity in the presence of
confounding MR.

3.3 Improved diagnostic evaluation

Mathematical modelling has recently made inroads as tool for
optimizing the diagnostic evaluation of VHD. An example of such a
study is the paper by Keshavarz-Motamed et al., which introduced a
new metric for evaluating AS severity ‘normalized stroke work’
(Keshavarz-Motamed et al., 2014), This index is calculated by
dividing the estimated LV stroke work by the stroke volume and
represents the global haemodynamic load faced by the LV to eject a
unit volume of blood (see Figure 6). In the study, a LPM was

FIGURE 6
Schematic of left ventricular stroke work and normalized-stroke work in aortic stenosis. AS, aortic stenosis, LV, left ventricle; N-SW, normalized-
stroke work. (Figure taken from Keshavarz-Motamed et al. (2014)).
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informed by patient-specific data from cardiac imaging to estimate
their normalized stroke work. The authors found normalized stroke
work to be highly correlative to effective orifice area and largely
independent from variations in flow rate. The authors highlighted
the potential diagnostic and prognostic value of this novel index if
added to current standard indices of AS severity, for the evaluation
of low-flow AS states, where the determination of severity is
challenging.

Inuzuka and colleagues modeled the effect of heart failure and
MR on the myocardial performance index (MPI) (Inuzuka et al.,
2016). Also known as the Tei index, the MPI is a doppler-derived
measure for global ventricular function which is calculated using
isovolumic and ejection times. In the simulated progression of heart
failure and MR, the authors showed paradoxical improvements in
the MPI with worsening disease. The combination of volume
overload, reduced arterial compliance, and restricted LV filling,
led to a marked overestimation of LV performance, despite
reduced LV contractility and elevated end-diastolic pressure. The
authors highlighted due consideration of these haemodynamic
confounders when using the MPI as a measure of cardiac
function in clinical assessment.

3.4 Education and training

Over the last 2 decades, there has been a gradual emergence of
cardiovascular modelling tools for educational purposes. These
models, which have strong foundations in demonstrating normal
physiological processes to users, have evolved to simulate a variety of
different cardiac pathologies, including VHD. Cardiovascular
models such as Harvi-Online (Burkhoff and Schleicher),
CircAdapt (Arts et al., 2005), and CVSim (Heldt et al., 2010)
have emerged that allow users to simulate a variety of different
cardiac pathologies, including VHD, and visualize an array of
cardiovascular haemodynamics in real time. These educational
tools provide an interactive platform for learning the key
principles of cardiovascular physiology and pathophysiology,
which may be limited to acquire in other media, such as
textbooks. For students, educators, and clinicians to take full
advantage of these tools in the future, it is important to make
them easily accessible and user-friendly.

3.5 Pre-clinical investigation and hypothesis
generation

Cardiovascular modelling has been used to study the complex
behavior of the cardiovascular system under different conditions
and interventions, which would otherwise be very challenging or
prohibitive to perform on animals or humans. Additionally,
modelling can help clinical researchers design more efficient and
effective experimental protocols, and to identify the most crucial
variables to investigate. The role of novel surgical techniques and
exploring strategies for optimally delivering mechanical circulatory
support to patients with VHD are just some of the areas being
explored with modelling approaches.

For patients with severe AS in whom valve replacement is
contraindicated, the use of aortic valve bypass is previously

proposed surgical procedure surgical procedure for the relief of
left ventricular outflow tract obstruction (Gammie et al., 2008). An
effective double outlet ventricle is created, whereby the LV outflow
conduit is connected to the descending aorta (Figure 7). In
simulations of severe AS, aortic valve bypass resulted in
significant reductions in LV stroke work, transvalvular pressure
gradient, and LV end-diastolic pressures (Benevento et al., 2015).
These results indicate aortic valve bypass to be a potentially viable
solution for patients with severe AS and who are contraindicated to
both surgical or transcatheter aortic valve replacement.

Deterioration of LV function post mitral valve surgery for
chronic MR is a common complication that portends worse
clinical outcomes (Quintana et al., 2014). Walmsley et al.
hypothesized that the abrupt change to ventricular loading
conditions following valve replacement is a key contributor to
postoperative ventricular dysfunction (Walmsley et al., 2019). To
investigate this hypothesis, the authors used a cardiovascular model
to compare the effects of abrupt and gradual correction of mitral and
tricuspid regurgitation on cardiac function. Results showed that
simulated surgical correction of tricuspid regurgitation (TR) and
MR resulted in a sudden spike of ventricular stress that could
exacerbate post-operative myocardial depression. On the other
hand, no spike was observed in the simulation of gradual
correction of TR and MR. The authors proposed a potential
future role for strategies that gradually correct valve
regurgitation, to reduce ventricular overload and facilitate gradual
reverse remodelling.

The impact of aortic and mitral valve regurgitation on the
pumping efficacy of a left ventricular assist device (VAD) with
the pulsatile or continuous flow was the subject of a simulation study
by Kim and colleagues (Kim et al., 2016). The authors found that
pulsatile VAD treatment delivered the highest pumping efficacy in
cases of MR compared to continuous flow, owing to a greater overall
afterload reduction achieved through pulsatile treatment.
Additionally, even with the development of MR during VAD
treatment, mean arterial blood pressure and cardiac output
remained constant, regardless of the MR severity. Meanwhile, for
severe AR, improvements in cardiac output and mechanical load
reduction were only marginal for both pulsatile and continuous
LVAD treatment. In a similar study, potential implications of TR on
the efficacy of a right-sided VAD was investigated (Punnoose et al.,
2012). The authors showed the presence of TR did not significantly
affect VAD performance, nor did the VAD significantly impact the
severity of TR. Interestingly, the authors noted that in the case of
severe pulmonary hypertension and where the VAD draws blood
from the right atrium, significant TR may be advantageous; this
configuration increases the potential for the right ventricle to retain
some native pulsatility, reducing flow stagnation and clot
development.

3.6 Precision medicine and patient-specific
prediction

There is a growing interest in developing patient-specific models
of cardiovascular disease that can be used to improve diagnosis and
tailor treatment strategies for individuals. Already, such clinical tools
are beginning to emerge (Keshavarz-Motamed et al., 2014;
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Keshavarz-Motamed, 2020). Keshavarz-Motamed adapted a
previously studied lumped parameter model for the basis for an
innovative imaged-based patient-specific diagnostic, monitoring,
and predictive tool (called C3VI-CMF) (Keshavarz-Motamed,

2020). The model included valvular updates to facilitate
additional valve pathologies, including mitral valve disease, thus
allowing for the simulation of mixed valvular disease. The C3VI-
CMF tool was validated against cardiac catheterization data from a

FIGURE 7
Schematic representation of the lumped parameter model used to simulate left-sided heart in presence of aortic stenosis and/or left ventricular-
aortic conduit. (Figure adapted from Benevento et al. (2015)).
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cohort of patients with complex valvular disease. The tool uses a
selection of key parameters obtained from the patient’s
echocardiogram to inform the model, which generates accurate
predictions of heart function metrics, such as for patients pre-
and post-valvular intervention. Figure 8 illustrates the use of the
C3VI in a patient pre and post transcatheter aortic valve
replacement (TAVR). In the future, such precision medicine
tools could allow for simulating the patient-specific effects of
different combinations of drug therapies, the timing and type of
surgical strategy, and the response to mechanical circulatory
support. Additionally, in patients with early or late disease,
predictions for long-term progression without treatment could
be predicted.

4 Limitations of modelling-based
research of valvular heart disease

Mathematical models are simplified representations of
complex processes, and as such, there are inherent
limitations in their attempt to capture all the complexities of
reality. Models of the cardiovascular system and cardiac
pathology are limited by the experimental or clinical data,
which are used to parameterize the equations that describe
the processes being studied. Models are typically developed
with parameters informed by literature data, population
averages, and animal studies, to first create a healthy generic
cardiovascular state (Garber et al., 2021). For the simulation of
cardiac pathology, the model is then adapted and calibrated
based on obtainable data, which is often limited. As an example,

estimating the compliances and resistances in vessels is
challenging in both clinical settings and animal experiments
(Shimizu et al., 2018). This challenge is only compounded by the
need to estimate these values for specific cardiac disease states.
As a result, it is often necessary to make certain assumptions
about these values at the beginning of the simulation, and then
calibrate them to physiologically appropriate values for the
disease state modeled. Typically, an archetypal representation
of a specific disease or physiological state is sought. In this
regard, the model is not meant to capture the vastness of
individual variations in normal physiology nor the
heterogeneity of pathological states. Despite this, patient-
specific modelling approaches have been developed, in which
a patient’s individual clinical and imaging data are used to
inform model parameterization and patient-specific
simulation results are generated (Keshavarz-Motamed, 2020;
Garber et al., 2021).

Every modelling-based study has its own specific limitations,
which are often closely related to the validity of the model being
used. Validity is defined as the extent to which a model fulfils the
intended objectives for which it was formulated (Leaning et al.,
2016). Thus, the impact of any model deficiencies, on the validity
of the model and the simulation results are dependent on the
model’s intended purpose and context of use (Pathmanathan and
Gray, 2018). Among modeling-based VHD studies reviewed, the
approaches to validating specific valvulopathy have varied. These
include qualitative or quantitative comparisons of pressure or
flow waveforms from clinical or literature data (Keshavarz-
Motamed et al., 2014; Benevento et al., 2015; Hemalatha et al.,
2010), or by comparing to key echocardiographic indices for a

FIGURE 8
Predicted haemodynamics in a C3VI patient from baseline to 90 days post-transcatheter aortic valve replacement (TAVR). Pre-TAVR: severe aortic
stenosis (effective orifice area (EOA) = 0.5 cm2); mild aortic regurgitation (AR); moderate to severe mitral regurgitation (MR); moderate to severe
concentric hypertrophy; LV ejection fraction, 50%; arterial pressures, 115/40 mmHg; forward LV stroke volume, 54 mL. Post-TAVR: aortic valve (EOA =
1.6 cm2); mild tomoderate AR;moderate to severeMR; hypertension, moderate to severe concentric hypertrophy; LV ejection fraction, 60%, arterial
pressures, 140/45 mmHg; forward LV stroke volume, 53 mL. (Figure adapted from Keshavarz-Motamed (2020)).
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specific valvulopathy according to severity ranges outlined in
clinical guidelines (Šeman et al., 2023; Punnoose et al., 2012;
Mynard et al., 2012; Fresiello et al., 2015). The methods for
cardiovascular model validation differ significantly and have
been discussed in detail elsewhere (Pathmanathan and Gray,
2018; Leaning et al., 2016).

5 Future directions

As computational cardiovascular modelling continues to
advance in tandem with increasing computational capabilities,
simulation-based tools are set to become indispensable in both
research and clinical practice. To fully harness their potential, it

TABLE 3 Research directions in computational modelling of valvular heart disease.

Themes Key Directions

Combining resaearch methods • Artificial intelligence and machine learning

• In-vitro, in-vivo, and clinical study design optimization

• Additional data analysis and interpretation through simulation

• Linking models with clinical outcome data

• Streamlined processes for imaging and haemodynamic data acquisition

Pre-clinical research • Testbed for new therapies and interventional strategies

• Optimizing existing treatment approaches

• Device development

• Hypothesis generation

Diagnostic advancements • Developing new metrics for risk and severity assessment

• Improved quantitation of key haemodynamics

• Imputing missing or unobtainable measures

• Integration with clinical, diagnostic, and imaging software

• Reconciling clinical and imaging discordance

Multiscale models • Cellular metabolism and tissue function

• Electrophysiology and arrhythmias

• Respiration and gas exchange

• Cardiac remodelling

• Multiple and mixed cardiac pathologies

• Non-cardiac disease, e.g., chronic lung disease

Education and training • Physiology and medical students

• Cardiac imaging training

• Clinical study design

• Haemodynamic simulator for clinical simulation training

• Integration with clinical simulation trainers, e.g., mannequins

Access and usability • Improved user interfaces for use by non-experts

• Accessible stand-alone software packages or online-apps

• Instructional and trouble-shooting resources

• Tailored tools for clinicians, students, educators, and researchers

• Streamlined data integration

Precision medicine and patient-specific modelling • Integration of data from clinical records, imaging, and diagnostic databases

• Personalized clinical prediction and assessment

• Treatment planning and optimization

• Mechanical circulatory support control
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is imperative to foster interdisciplinary collaboration, thereby
enhancing the availability and accessibility of these tools.

Key areas in cardiovascular modelling that are poised to make
significant advancements are shown in Table 3. These
advancements, driven by technological innovations and
interdisciplinary research, promise to significantly improve our
ability to model complex disease phenotypes and make patient-
specific predictions. By integrating computational modelling with
other research methodologies—such as in vitro experiments, in vivo
studies, and clinical data—researchers can achieve a more
comprehensive and nuanced understanding of disease
progression. This multifaceted approach is crucial for unveiling
mechanistic insights and developing effective personalized or
precision medicine strategies.

The progression of cardiovascular disease is complex and involves
interactions at multiple scales, frommolecular and cellular processes to
organ system interactions. Multiscale modelling involves integrating
multiple different mathematical models allowing for the representation
of multiple different phenomena across different measurable domains
of time, space, and/or function (Walpole et al., 2013). Currently, there is
a vast and promising scope for the expansion of multiscale models of
VHD. At the cellular and tissue level, multiscale cardiovascular models
allow for the simulation of the chronic cardiac remodelling changes that
occur in response to worsening valvulopathy (Arts et al., 2005; Li et al.,
1997; Maksuti et al., 1985). Significant progress has already been made
to couple complex cardiac electrophysiological models with a lumped-
parameter model for closed-loop cardiovascular simulation (Heldt
et al., 2010; Regazzoni et al., 2022). This coupling forms the
foundation for more comprehensive investigations into arrhythmias,
conduction disorders, and pacing therapies. Indeed, multiscale models
have value in the simulation of multiple andmixed disease states, where
progression is driven by multiple interdependent factors.

There have been increasing efforts in clinical research to better
examine the clinical heterogeneity within patient disease groups and
identify subgroups of patients who share similar characteristics. For
clinicians assessing patients with multiple cardiac pathologies, it is
inherently difficult to discern the relative pathological consequences of
a valvulopathy, over an arrhythmia, such as atrial fibrillation, and/or
heart failure with reduced or preserved ejection fraction (Scarsoglio
et al., 2016). This has implications for monitoring disease progression
or response to therapy to any one pathology, in particular for patients
deemed to be borderline indicated for valve replacement strategies.
Indeed, it is not uncommon that such co-morbid patients to fail to
derive symptomatic or mortality benefits from valvular intervention
(Puri et al., 2016). The lack of benefit in these patients highlights the
need for more personalized approaches that consider the interplay of
multiple disease processes. Modelling provides the opportunity to
quantify the contributory effect of coexisting diseases (both cardiac
and non-cardiac) on symptom manifestation, disease progression,
and response to therapy. Translated to the patient’s bedside, such
knowledge can allow clinicians to make more informed decisions on
treatment strategies and prognosis.

6 Conclusion

Computational modelling of the cardiovascular system has
emerged as a powerful tool that allows detailed examination into

the pathophysiology of VHD allowing for consolidation of existing
knowledge and highlighting of knowledge gaps. Models facilitate
hypothesis generation and allow for the exploration of novel ideas in
the pre-clinical context. More recently, advancements have been
made to link models to patient-specific data, to gain mechanistic
insights and clinical predictions tailored to an individual patient.
Ultimately, such patient-specific modelling approaches could be
used in the clinical setting as an adjunct for patient diagnostic
evaluation, prognostication, and the tailoring of treatment strategies.
To date, the contribution of VHD modelling research has been
predominantly in the realm of basic science. Opportunities for
clinical translation are vast and are likely to be realized in the
near future.
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