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Myoelectric control, the use of electromyogram (EMG) signals generated during
muscle contractions to control a system or device, is a promising input, enabling
always-available control for emerging ubiquitous computing applications.
However, its widespread use has historically been limited by the need for
user-specific machine learning models because of behavioural and
physiological differences between users. Leveraging the publicly available 612-
user EMG-EPN612 dataset, this work dispels this notion, showing that true zero-
shot cross-user myoelectric control is achievable without user-specific training.
By taking a discrete approach to classification (i.e., recognizing the entire dynamic
gesture as a single event), a classification accuracy of 93.0% for six gestures was
achieved on a set of 306 unseen users, showing that big data approaches can
enable robust cross-user myoelectric control. By organizing the results into a
series of mini-studies, this work provides an in-depth analysis of discrete cross-
user models to answer unknown questions and uncover new research directions.
In particular, this work explores the number of participants required to build
cross-user models, the impact of transfer learning for fine-tuning these models,
and the effects of under-represented end-user demographics in the training data,
among other issues. Additionally, in order to further evaluate the performance of
the developed cross-user models, a completely new dataset was created (using
the same recording device) that includes known covariate factors such as cross-
day use and limb-position variability. The results show that the large data models
can effectively generalize to new datasets and mitigate the impact of common
confounding factors that have historically limited the adoption of EMG-based
inputs.
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1 Introduction

Modern-day human-computer interaction (HCI) is rapidly evolving. Devices have
become smaller, processing power continues to increase, and technology is more
interconnected than ever before, expanding the need for and possibility of interactions
beyond traditional tethered desktop environments. This shifting paradigm towards
ubiquitous computing (Friedewald and Raabe, 2011; Weiser, 1999), where the goal is to
“[enhance] computer use by making many computers available throughout the physical
environment, while making them effectively invisible to the user” (Weiser, 1993). First
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envisioned in the late 20th century, this concept is quickly becoming
a reality with the continued emergence of novel devices like heads-
up mixed reality displays (Speicher et al., 2019), wearable
technologies (Dunne et al., 2014), and through advancements in
artificial intelligence (Li et al., 2020).

The increased prevalence of ubiquitous computing has created a
need for new interaction techniques that are reliable, convenient,
and always available. While many inputs exist and have been
adopted for such use cases, their widespread and consistent use is
currently limited. For example, computer vision does not work well
in the dark or when an individual’s hands are occluded from the
camera (e.g., behind their back or in their pocket) (Oudah et al.,
2020). Alternatively, speech-based inputs are conspicuous, lack
social acceptability, and can be hampered by environmental noise
(Li et al., 2014; Pandey et al., 2021). Correspondingly, there is a need
for an input that can work under these frequently experienced,
everyday, real-world conditions. Myoelectric control, the control of
a system using the electrical signals generated when muscles are
contracted, has been identified as one promising solution (Eddy
et al., 2023c).

The first myoelectric control systems can be traced back to the
1940s when a robotic limb that could be controlled through muscle
contractions was developed (Englehart and Hudgins, 2003). Enabled
by leveraging the surface electromyogram (EMG) signal—a direct
representation of the motor unit activations corresponding to the
level of muscle activation at a given recording site (Farina et al.,
2004)—the muscle signals created by the human body became an
enabling input with various potential applications. Researchers
quickly realized that these signals, when recorded from the
residual limb of an amputee, could be leveraged to control
prosthetic devices. Although promising, early myoelectric control
systems were not particularly robust or intuitive and were far from
capable of replicating the dexterity of a functional limb.

In the following decades, myoelectric control slowly evolved,
with its primary use case continuing to be the control of powered
prostheses (Huang et al., 2024; Chan et al., 2000; Farina et al., 2014).
A notable advancement in this history came in 2003 through the
introduction of continuous pattern recognition-based control
(Englehart and Hudgins, 2003). Instead of being limited to a
single degree of freedom (Scheme and Englehart, 2011; Hargrove
et al., 2017), pattern-recognition systems leverage multiple
electrodes distributed across several muscle sites to enable the
mapping of a wider set of gestures and device commands. With
this approach, gesture predictions are generated from short windows
of data at fixed increments (on the order of milliseconds) to
continuously make micro-adjustments to the device’s position.
This control strategy has now been made commercially available
(Infinite, 2024; COAPT, 2024; Ottobock, 2024), marking a
significant step forward in the field of prosthetics. Since then,
myoelectric prosthesis control has continued to evolve and
mature, such as through the simultaneous control of degrees of
freedom (Hahne et al., 2014; Smith et al., 2014) and through
augmentations of the human body, including targeted muscle
reinnervation and osseointegration (Farina et al., 2023).

The history of success of myoelectric control in prosthetics
ultimately led to uptake within the HCI community, where
researchers began to explore the potential of EMG for enabling
input for other (non-prosthetic) applications (Saponas et al., 2009;

2008; 2010). As opposed to the continuous control schemes used for
prosthesis control, some HCI practitioners began to explore the
recognition of gesture sequences (e.g., finger taps or snaps) that
could be mapped to discrete inputs, as these aligned better with
common inputs to a computer system like button clicks (Saponas
et al., 2009). Instead of continuously making predictions on static
contractions, these so-called discrete myoelectric control systems
make a single prediction at the end of a dynamic gesture (e.g., a
swipe of the wrist), meaning it is a many-to-one mapping between
windows of EMG data and predictions from the classifier (Eddy
et al., 2023c; Labs et al., 2024).

Regardless of the control strategy, the general exploration of
myoelectric control in HCI was further facilitated in 2014 through
the introduction of the Myo Armband by Thalmic Labs, a
commercially available and inexpensive surface-EMG wearable
device (Rawat et al., 2016; Benalcázar et al., 2017). Due to the
accessibility that this device offered, including built-in gesture
recognition, there was a period of rapid exploration and
excitement (Haque et al., 2015; Zadeh et al., 2018; Koskimäki
et al., 2017; Mulling and Sathiyanarayanan, 2015; Dai et al.,
2021). However, this initial interest eventually subsided, as the
technology, at the time, lacked the precision and robustness
required for real-world consumer use (Karolus et al., 2022; Eddy
et al., 2023c). Nevertheless, while advancements in the space slowed
down, commercial products continued to emerge (e.g., the Mudra
(Mudra, 2024) and Pison (Pison, 2024) devices), albeit none of
which have yet become widely adopted.

A common factor shared between the advancement of
myoelectric control in both communities (HCI and prosthetics)
is that it has primarily occurred through publicly funded research in
academic settings. Control schemes have been historically tested on
a limited number of participants (e.g., N < 20 users), and datasets
are frequently recorded with unique hardware and seldom publicly
released (Eddy et al., 2023c), slowing the progress of the field.
Additionally, most EMG research in both communities has
historically employed user-dependent models, wherein the model
that deciphers user intent is trained and tested based on a single
user’s data. While this may make sense for prosthesis control, where
every amputee’s residual musculature differs, this is a fundamental
limitation for general-purpose HCI applications, where consumer
devices should be as close to “plug-and-play” as possible (i.e., the
system can be donned and used without any additional calibration).
However, plug-and-play convenience has yet to be fully realized, and
users still largely have to undergo arduous and tedious data
collection every time they put on an EMG device. Additionally, if
not intentionally included in the training procedure, the resulting
models lack robustness to confounding factors such as cross-day use,
limb-position variation, and electrode shift, thus further
exacerbating online usability issues (Campbell et al., 2020). While
researchers have been able to alleviate some of these factors through
transfer learning (Campbell et al., 2021; Jiang et al., 2024; Xu et al.,
2024; Côtá-Allard et al., 2019) and domain adaptation (Zhang et al.,
2022; Eddy et al., 2023a; Campbell et al., 2024), these strategies fall
short from the ideal zero-shot case whereby no training data from
the end user is required, such as is the case for current computer-
vision based gesture recognition systems (Oudah et al., 2020).

In 2019, the largest investment in the history of myoelectric
control was made whenMeta (i.e., Facebook) acquired Ctrl Labs (the
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company then owning the intellectual property of the Myo
Armband) for reports of between $500 million to $1 billion
(Rodriguez, 2019; Statt, 2019). This came around the same time
that Ctrl Labs first revealed their technology to the research
community, enabling neuromuscular control (i.e., myoelectric
control) (Melcer et al., 2018). Recently, after nearly 5 years of
closed-door development, Ctrl Labs (now Meta) has claimed that
zero-shot cross-user myoelectric control (i.e., an EMG control
system that does not require any training data from the end
user) is possible for a variety of applications, including (1) 1D
cursor control, (2) discrete control through thumb swipes and (3)
continuous handwriting (Labs et al., 2024). Unlike the majority of
EMG research, this work was conducted by a mega-cap multi-
national company, a team of ~200 individual contributors, a closed-
source 16-channel EMG armband worn on the wrist, and data
collections consisting of thousands of participants. To the best of our
knowledge, this work represents a large step forward in the history of
myoelectric control, leaving the research community in an
exciting position.

1.1 Scope and contribution

Despite recent demonstrations suggesting that cross-user
models perform reasonably well with large amounts of data (Labs
et al., 2024; Vásconez et al., 2023; Valdivieso Caraguay et al., 2023;
Barona López et al., 2024), many questions remain unanswered.
This work thus explores cross-user myoelectric control practices for
discrete event-driven systems to uncover and guide future research
directions and highlight best practices moving forward. Leveraging
the publicly available EMG-EPN612 dataset (Benalcazar et al.,
2021), the results of this work corroborate and expand on recent
reports (Labs et al., 2024), showing that robust zero-shot discrete
cross-user myoelectric control models that require no training from
the end user are, in fact, possible. While this has been pursued over
recent years (Kim et al., 2019; Lin et al., 2023), these works have been
largely conducted on small datasets (< 50 participants) compared to
the thousands collected in (Labs et al., 2024) and the 612 participants
(here called subjects) in (Benalcazar et al., 2021). Correspondingly,
this work provides a commentary and analysis of the impact and role
of “big data” in myoelectric control (Phinyomark and Scheme,
2018). By comparing a sampling of conventional machine
learning, time series, and deep learning architectures trained to
learn the temporal structure of each gesture, this work analyzes the
current challenges of zero-shot discrete myoelectric control by
answering the following questions.

1. What are the baseline user-dependent accuracies for discrete
myoelectric control? (Section 3.1)

2. Can multi-subject cross-user models generalize to new unseen
users? (Section 3.2)

3. How does the selection of window and increment size affect
system performance? (Section 3.3)

4. How many subjects and repetitions per subject are needed for
robust zero-shot cross-user models? (Section 3.4)

5. What features and/or feature sets generalize well to discrete
cross-user models? (Section 3.5)

6. Are there bias effects when end-user demographics are under-
represented in the training set? (Section 3.6)

7. Can model robustness be improved by limiting the gesture
set? (Section 3.7)

8. Can transfer learning approaches be used to fine-tune models
to the end-user? (Section 3.8)

9. Do cross-user models translate to a completely separate
dataset (using the same device)? Additionally, are they
more resilient to common confounding factors? (Section 3.9)

10. What is the impact of confidence-based rejection on within-set
and out-of-set inputs? (Section 3.10)

2 Methods

2.1 Data acquisition

This work leverages two datasets: (1) the publicly available
EMG-EPN612 (N = 612) and a novel (2) Myo DisCo (N = 14)
dataset, both of which were recorded with the Myo Armband. No
processing was done to the raw Myo data as the device has some
simple filtering for common sources of noise. Consistency in
electrode location for both datasets was loosely enforced by
asking participants to place the device proximal to the elbow,
with the charging port facing down on the extensor muscle, to
encourage use in approximately the same position across users. The
default training position was the user sitting in a chair with their arm
bent at 90°. Participants went through a screen-guided training
session where they were shown each gesture and had a certain
amount of time allotted for eliciting each gesture (2–5s). All gestures
were discrete inputs, meaning the user started at rest, transitioned
into an active class, and returned to rest in a relatively short period
(~1–2s). In both cases, no feedback was provided to participants.

2.1.1 Dataset 1: EMG-EPN612
Originally released in 2020, the EMG-EPN612 (see Figure 1) is

a publicly available dataset consisting of 612 participants eliciting
the six gestures that were made available by the Myo Armband
(Rest, Wave In/Wrist Flexion, Wave Out/Wrist Extension, Hand
Open, Hand Close, and Double Tap/Pinch) (Benalcazar et al.,
2021). Each dynamic gesture was elicited at some point in a 5-s
data collection window, with the start and end indices being
included as metadata. These indices were used to segment the
discrete gestures from the longer 5-s recording. The ‘rest’ gesture
templates, which were 5-s recordings, were cropped before training
so that their lengths were generally consistent with those of the
other class templates. Also included alongside the raw EMG and
class labels for each gesture in this dataset was the native
continuous decision stream output by the original Myo model.
The authors of the dataset have split it into predefined training and
testing sets of 306 participants each. Although both sets included
50 repetitions of each gesture, half of the labels were not made
available for the testing set as the authors kept them private for an
internal competition. This work omits these data, meaning only
25 repetitions from the testing set were used in the following
analyses. Finally, the demographic information about the dataset
can be found in Section 3.6.
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2.1.2 Dataset 2: Discrete confounding factors
(Myo DisCo)

To further evaluate the performance of the large cross-user
models developed using the EMG-EPN612 dataset, a separate
dataset—Myo (Dis)crete (Co)nfounding Factors—with
intentionally introduced confounds was recorded. Fifteen
individuals, recruited from the local community (8 male, seven
female, between the ages of 22 and 59), participated in this novel
collection as approved by the University of New Brunswick’s
Research Ethics Board (REB 2023-140). Following a similar
protocol to that of the EMG-EPN612 dataset, twenty repetitions
of ten gestures: Hand Open, Hand Close, Wrist Flexion, Wrist
Extension, Double Tap, Finger Snap, Thumbs Up, Index Point, and
Finger Gun were recorded across two sessions occurring between
one and 7 days apart. Additionally, five repetitions of the gestures
were recorded in four additional limb positions (hand by hip, hand
above the shoulder, hand in front of the chest, and hand extended
away from the body), and ten repetitions of each gesture were
recorded at different speeds (50% faster and slower than the user’s
comfortable speed). The goal of acquiring these data was to test
generalization to a new dataset and to evaluate the effect of three
confounding factors: (1) cross-day use, (2) limb position
variability, and (3) speed, on cross-user model performance and
the impact of out-of-set inputs (i.e., other gestures). This dataset
was segmented using an automated active thresholding strategy
using the “rest” class as a baseline. A further description of this
dataset can be found in (Eddy et al., 2024b). Note that one
participant of the original N = 15 was excluded after it was
found that the armband had been oriented in the wrong
direction for their collection.

2.2 Discrete control

Discrete myoelectric control treats the entire evolution of a
dynamic gesture as one input, leading to a single gesture prediction
(or event) as the output (Eddy et al., 2023c; Labs et al., 2024). Each
discrete gesture is thus linked to a single action, similar to a button
press. For example, a swipe of the wrist may dismiss a phone call or a
double tap of the thumb and index fingers may silence an alarm.
This is fundamentally different from the continuous control
approach that has been commercialized for controlling powered
prostheses (Englehart and Hudgins, 2003). The term discrete thus
applies temporally, in that it refers to the generation of specific
outputs based on event-driven inputs, in contrast to the more
traditional decision stream of continuous outputs. In this way,
discrete control follows a many-to-one mapping, whereas
continuous control follows more of a one-to-one mapping (as in
one window of data to one output). This should not be confused with
an alternative definition, which refers to the spatial division of a
feature space into discrete categories when comparing classification-
based with more continuous regression-based approaches (Xiong
et al., 2024). In this work, three different algorithmic approaches to
achieving this discrete event-based control are explored: (1)
Majority Vote LDA (MVLDA), a conventional machine learning
approach; (2) Dynamic TimeWarping (DTW), a common distance-
based time series approach; and (3) Long Short-Term Memory
(LSTM), a popular deep-learning time series approach. Additionally,
a selection of EMG features—Root Mean Square (RMS), Mean
Absolute Value (MAV), Wavelet Energy (WENG), Mean Power
(MNP), Waveform Length (WL) — and feature sets—Hudgin’s
Time Domain (HTD) and Low Sampling 4 (LS4) — as made

FIGURE 1
The EMG-EPN612 dataset is split into training (N = 306) and testing (N = 306) sets for a total of 612 subjects. All subjects in the training group elicited
50 repetitions for a set of six gestures. Only 25 repetitions for each gesture are available in the testing set. Also shown is an example of the raw EMG (after
being cropped) for each gesture.
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available through LibEMG, are explored (Eddy et al., 2023b). Unless
otherwise specified, the RMS feature was used as the baseline for
each model. These approaches are described in more detail
as follows.

2.2.1 The Myo Armband
The Myo Armband was a previously commercially available,

low-cost, eight-channel surface-EMG device that samples at 200 Hz
(Rawat et al., 2016; Benalcázar et al., 2017). Although it has now
been discontinued, it was quite influential after its release in 2014 as
it lowered the cost and expertise needed to explore EMG-based
control (Eddy et al., 2023c). Through proprietary software, the
device enabled the recognition of five gestures: Hand Open,
Hand Close, Wave In (Flexion), Wave Out (Extension), and
Double Tap, which users could calibrate by recording a single
repetition of each in a start-up tutorial. The armband also had
an SDK with ‘on gesture callbacks’, meaning researchers could
develop EMG interfaces without machine learning or signal
processing expertise. However, many found that the built-in
gesture recognition system did not work well (Kerber et al., 2015;
Torres, 2015; Honorof, 2015), leading to negative experiences for the
uninitiated and thus poor general impressions of myoelectric
control. To the best of our knowledge, this software’s source code
has never been made publicly available, meaning that the underlying
model remains unknown. Fortunately, the EMG-EPN612 dataset
includes the continuous labels from the built-in Myo Armband
gesture recognition tuned for every user using one calibration
repetition of each gesture. To obtain a discrete output from the
continuous decision stream of the Myo, the mode of the active
predictions for a given gesture was assumed to be the single
discrete label.

2.2.2 Majority vote linear discriminant
analysis (MVLDA)

As described by (Saponas et al., 2008; Eddy et al., 2024b), the
majority vote approach to discrete gesture recognition employs the
legacy continuous classification approach but then converts the
decision stream to a single discrete label by computing the mode
of the predictions across all windows extracted from the entire
gesture template. In this work, a linear discriminant analysis (LDA)
classifier was used as the backbone for this majority vote approach,
as it is commonly used in prosthesis control as a baseline condition
for comparison (Botros et al., 2022; Duan et al., 2021). For all
analyses using theMVLDA, the window length from which classifier
decisions were made was 200 ms (40 samples) with increments
between decisions of 25 ms (5 samples), as is typical for continuous
myoelectric control (Smith et al., 2010). The length of the elicited
gesture, as determined by the start and end index metadata (see
Section 2.1.1) or by the active thresholding approach (see Section
2.1.2), dictated the length of the gesture which directly influenced
the number of windows considered by the majority vote (i.e., longer
gestures have more windows).

2.2.3 Dynamic time warping (DTW)
Dynamic time warping is a technique used to compare the

similarity between two time series while allowing for differences in
alignment and length (Sakoe and Chiba, 1978). This is beneficial for
discrete gesture recognition, as different repetitions of the gestures

will inevitably vary in length, whether inadvertently or intentionally
(see Section 3.9). For time series classification (i.e., the classification
of a sequence using a single prediction label), the one-nearest
neighbour (1NN) DTW classifier has become the baseline for
comparison, whereby the training sample with the closest DTW
distance to the input is assigned as the classifier’s output (Bagnall
et al., 2017). Similar approaches have been previously adopted in
EMG-based gesture recognition, such as for hand-writing (Li et al.,
2013; Huang et al., 2010) and wake-gesture recognition (Kumar
et al., 2021; Eddy et al., 2024a). It has also been recently shown that
DTW-based approaches can even sometimes outperform deep-
learning approaches when training user-dependent models for
recognizing nine discrete gestures (Eddy et al., 2024b). Using the
tslearn time-series implementation of DTW distance (Tavenard
et al., 2020), the 1NN DTW was adopted as a baseline for time
series approaches in this work. Based on previous work (Eddy et al.,
2024a), the root mean sqaure (RMS) feature, extracted from non-
overlapping windows of 25 ms (5 samples), was used as the input to
the classifier. These shorter window lengths and increments were
selected because the DTW can leverage the time-varying dynamics
of the EMG signal to its advantage during prediction.

2.2.4 Long short-term memory (LSTM)
To establish the impact of big data, a simple LSTM-based deep

temporal network was adopted in this work, knowing that these
results should generalize (or improve) with more complex models
and architectures. The widely adopted LSTM-based architecture
(Labs et al., 2024; Eddy et al., 2024b) was selected as it can model the
temporal dynamics of a time series, which is crucial for recognizing
discrete gestures. As described in Figure 2, the LSTM model
consisted of three LSTM layers of 128 neurons each. After
splitting the discrete gesture into non-overlapping windows of
25 ms (5 samples) and extracting the RMS feature, as done with
the DTW model, the three LSTM layers projected the N windowed
template to a single 128-dimensional point in the latent space. All
gestures were buffered with zeros to the maximum gesture size in the
dataset, but the output at the actual end of the gesture was used to
compute the loss (Eddy et al., 2024b). After passing through the
LSTM layers, the one-dimensional embeddings were passed through
three linear layers of 128, 64, and six neurons, and finally through a
sigmoid function. Instance normalization was applied between these
layers. Cross Entropy loss, an Adam optimizer, and a scheduler
(step = 5 and gamma = 0.9) with an initial learning rate of 1e-4 were
used to train the model. For the cross-user models, a batch size of
1,000 was used during training. Additionally, using a validation set
of six participants, early stopping was employed once the validation
accuracy did not increase by at least 0.1% for five epochs. For the
user-dependent models, a batch size of 200 and a validation set of
five repetitions per gesture were used during training. The early
stopping strategy was the same, except it only started after
50 training epochs had been completed. All code was developed
using PyTorch (Paszke et al., 2019).

3 Findings

This section highlights the various findings of this work,
answering the questions highlighted in Section 1.1 through a
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series of mini-studies. All statistical analyses were conducted using
the Statistical Tests for Algorithms Comparison (STAC) online
platform (Rodríguez-Fdez et al., 2015).

3.1 User-dependent models

3.1.1 Methods
This analysis was conducted to establish a conventional user-

dependent (i.e., within-user) baseline performance for a set of
discrete architectures. A user-dependent model was trained and
tested for each of the 306 testing users from the EMG-EPN612
dataset following a leave-one-repetition-out cross-validation
approach using 20 (of the 25) repetitions. The extra five
repetitions of each gesture were saved as a validation set for
training the deep learning model. Results are reported as the
average classification accuracy (%) across the 20 repetitions of
each gesture across all users. Only the 306 testing users were
included in this analysis to enable a direct comparison of results
with the later cross-user (user-independent) models described in
Section 3.2. Section 2.2 provides more information on the
training procedure for each model. A repeated measures
ANOVA with a Bonferonni-Dunn post-hoc analysis was used
to check for statistical significance (p< 0.05) between
algorithms.

3.1.2 Results
The performance of the user-dependent models is summarized

in Figure 3. Each of the tested models significantly outperformed
(p< 0.05) the built-in gesture recognition decisions output by the
Myo Armband (algorithm unknown). While the two temporal
models (LSTM and DTW) significantly outperformed the
continuous MVLDA approach when using the RMS feature,
differences were not significant when using the HTD or
LS4 feature sets.

3.1.3 Discussion
The results from this section show that user-dependent discrete

myoelectric control systems can achieve high classification accuracies
(> 97%) when using user-specific offline data. Corroborating previous
work (Eddy et al., 2024b), the simple 1-NN DTW classifier
outperformed the deep LSTM model, indicating that there may
have been insufficient within-user training data to fully leverage
the deep-temporal models. Both temporal models (i.e., DTW and
LSTM) that used the RMS of the signal as input yielded significantly
higher accuracies than the majority vote approach when using the
same feature. When more descriptive feature sets were used (e.g.,
HTD and LS4), the performance was much more comparable,
suggesting that there were enough steady-state portions in these
discrete gestures for majority-vote approaches to work. However,
in the case of more dynamic gestures, such as sign-language words or
handwriting recognition (Labs et al., 2024), these approaches may fail.
The performance of the built-in gesture recognition of the Myo
Armband (the model of which is unknown) was comparatively
quite poor, significantly under-performing all other approaches.
Therefore, it makes sense that many individuals, particularly those
who had previously used the default Myo control, believed the
technology lacked sufficient robustness for real-world use (Karolus
et al., 2022; Eddy et al., 2023c). It should be noted that while otherwise
high accuracies were achieved, these results were obtained using a
relatively constrained testing set (i.e., the user sitting in a chair with all
gestures elicited in the same limb position). This is unlikely to
represent real-world use cases where confounding covariate factors,
like cross-day use, limb position variability, and gesture elicitation
speed, will inevitably be present (see Section 3.9). Moreover, requiring
users to undergo 12.5 min of data collection (25 reps x six gestures x
5 s) every time the armband is donned to achieve such performance is
an unrealistic expectation. Consequently, although these results serve
as a promising user-dependent baseline, the rest of the paper focuses
on enabling robust cross-user discrete gesture recognition whereby no
data is required from the end user.

FIGURE 2
The LSTM-based deep network for classifying discrete gestures. The windowed gestures (with the RMS feature extracted) are passed through three
LSTM layers of 128 neurons. This temporal extraction block projects the multi-dimensional gesture template to a single point in the embedding space.
The output from this block is then passed through a classification head consisting of two linear layers of 128 and 64 neurons and a final output layer of six
neurons (corresponding to the number of unique gestures).
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3.2 Many-subject cross-user models

3.2.1 Methods
In this section, the viability of zero-shot discrete gesture

recognition using large cross-user models was explored. To do
this, all 50 repetitions from each of the 306 training users from
the EMG-EPN612 dataset were used to train a single cross-user
model. For the deep LSTM model, the training users were further
split into a 300-user training set and a 6-user validation set. As
before, all models were then evaluated using all of the data from the
306 EMG-EPN612 testing users. This case represents the zero-shot,
cross-user performance, meaning that the models had not
previously seen any data from the test users, simulating the ideal
‘plug-and-play’ scenario. Although the same MVLDA, DTW, and
LSTM approaches were evaluated as in the user-dependent case, a
limitation of DTW-based architectures is that their complexity
scales linearly with the number of templates in the training set.

In this case, there were 306 training subjects and 50 repetitions of
each gesture, meaning there were 91,800 (306 users x 50 reps x six
gestures) training templates in the dataset. Using a standard nearest-
neighbour classification approach, each new template would have to
be compared to all 91,800 templates, which is computationally
prohibitive for real-time control. Correspondingly, two alternative
solutions were explored to make cross-user DTW computationally
feasible. For the DTW (Closest) case, the closest template to all other
templates in the dataset (the one whose sum of DTW distances to all
other templates was minimum) was selected as a single
representative template for each gesture. For the DTW (Mean)
case, all templates for each gesture were interpolated to be the
same size, and then the mean template was computed. This meant
that for both cases, there were only six target templates against which
to compare (1 for each possible class). The MVLDA and LSTM
models were trained as described in Section 2.2 without algorithmic
changes other than the appropriate selection of training data. A

FIGURE 3
Top Row: The user-dependent performance (using the 306 testing subjects) for three commonly used discrete models. The classification accuracy
was computed using a leave one-repetition out cross-validation approach on the 20 repetitions of each gesture. (A) Shows the performance of the built-
in gesture prediction of the Myo that was calibrated with one repetition of each gesture. Above each boxplot is the mean and standard deviation. (B)
Shows the performance when using a majority vote over the traditional continuous classification approach for three sets of features—root mean
square (RMS), Hugins’ time domain feature set (HTD) and low sampling 4 (LS4) feature set. (C) Shows the performance of the two sequence modelling
approaches—long short-term memory (LSTM) and dynamic time warping (DTW). Bottom Row: (D) The t-SNE feature space for a single subject for
individual windows of 200ms with 100 ms increments, computed with the LS4 feature set. (E) The t-SNE (t-distributed Stochastic Neighbor Embedding)
feature space of the output embedding of the LSTM model.
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repeated measures ANOVA with a Bonferonni-Dunn post-hoc
analysis was used to check for statistical significance (p< 0.05)
between algorithms.

3.2.2 Results
Figure 4 summarizes the cross-user performance for all models.

The LSTM significantly (p< 0.05) outperformed the MVLDA
approaches by 23.9%, 18.4%, and 17.4% when using the RMS,
HTD, and LS4 features. Additionally, although the DTW
performed well for the user-dependent case, the modified
strategies did not scale well for cross-user models. In this case,
the LSTM significantly outperformed (p< 0.05) the DTW (Closest)
and DTW (Mean) approaches by 18.2% and 18.9%, respectively. The
effect of the feature sets on the performance of the MVLDA models
was similar to the user-dependent case (6.5% difference for the
LS4 set here, compared to the 4.4% difference in the user-dependent
case). Finally, Figure 4D shows a t-SNE projection of the

distributions of the features extracted from the windowed data.
The high degree of overlap between gestures in this ‘continuous’
feature space may explain the mediocre performance of the majority
vote approaches when scaled to cross-user models. In contrast, the
t-SNE projection of the embedding space from the LSTM model
(Figure 4E) shows much better separability.

3.2.3 Discussion
The standard for discrete myoelectric control was arguably

established in 2008 by Saponas et al. when they showed the
majority vote approach applied to a continuous decision stream
for recognizing discrete finger taps (Saponas et al., 2008). Although
this approach and the idea of muscle-computer interfaces seemed
promising at the time, classification performance was shown to
significantly deteriorate (~57%) when testing on unseen users
(Saponas et al., 2008). Even with many more subjects (N = 300),
the results from this work corroborate that majority vote-based

FIGURE 4
Top Row: The zero-shot cross-user classification accuracy when training with the 300 training subjects and testing on the 306 testing subjects for
three different types of models. (A) The cross-user MVLDA model trained on the RMS, HTD, and LS4 features. (B) The DTW (closest) model used the
template for each gesture with theminimumdistance to all other templates. The DTW (Mean)model used themean gesture templates across users as the
target template. (C) The cross-user LSTM model. Above each boxplot is the mean and standard deviation where * and ∧ indicate significant
differences (p<0.05) to all other algorithms andMVLDA (RMS), respectively. Bottom Row: (D) The t-SNE-projected feature space for individual windows
of the RMS feature. (E) The t-SNE-projected feature space of the output embedding of the cross-user LSTM model. Note that ‘Feature 1’ and ‘Feature 2’
refer to the first two dimensions of the t-SNE embedding.
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approaches based on the continuous decision stream of a stationary
classifier do not scale well for cross-user models.

Although DTW-based approaches worked well for user-
dependent models, the results from this work suggest that they
also do not scale well for cross-user models, albeit with a few caveats.
This work applied two simple attempts to generalize DTW to the
cross-user case, and performance improvements are likely still
possible. In particular, given the performance of DTW in Section
3.1, exploring template blending approaches or multi-template
implementation improvements may lead to better cross-user
DTW-based models, and is an interesting area for future
research. Nevertheless, these results suggest there is enough
variability between user templates (whether for physiological or
behavioural reasons) that they cannot effectively be described by a
single representative template.

The deep-LSTM model significantly outperformed the other
approaches, with classification accuracies of 93.0%. This
performance improvement is likely driven by two factors: (1)
deep learning models benefit from more data, such as in the case
of the EMG-EPN612 dataset, and (2) LSTMs inherently model the
temporal evolution of each gesture, meaning that its onset, offset,
and everything in-between, help define the embedding space.
Compared to the majority vote approach based on the
continuous decision stream, the LSTM learns each gesture’s
temporal structure, which is likely more similar across
participants (compared to individual out-of-context windows),
thus leading to improved performance. Additionally, unlike
DTW, neural networks are capable of modelling multi-modal
distributions without a linear increase in computation time,
enabling them to learn and model behavioural and physiological
differences in user data while maintaining quick inference times for
real-time control. An example of the multi-modal nature of the
LSTM can be seen by the two disjointed clusters (yellow and green)
in Figure 4E. Future work should explore what leads to such an effect
and whether these clusters are driven by common user behaviours
that are different between the groups.

3.3 Effect of window and increment length

3.3.1 Methods
This analysis aimed to understand the impact of different

window lengths and increments (i.e., the temporal resolution of
the gesture template) on cross-user classification performance. The
classification accuracies for combinations of a set of window lengths
between 5 and 77 samples (25 ms and 385 ms) and increment sizes
between 1 and 77 samples (5 ms and 385 ms) were calculated. The
77-sample upper limit was selected based on the shortest gesture
template in the dataset. For all combinations of window lengths and
increments, the maximum number of windows that could be fit
using those parameters were extracted from each gesture template.
For example, a gesture template that was 100 samples long would
yield three windows when the window length and increment are
77 and 10 samples, respectively. The training and testing sets were
split as highlighted in Section 3.2. A depiction of the temporal
profiles (i.e., the RMS values extracted from a sequence of windows)
of a representative discrete gesture (hand open) is shown in Figure 5
for a selection of different window and increment lengths.

3.3.2 Results
As shown in Figure 6A, the MVLDA approach benefits from

increased window lengths as they improve the RMS estimate (the
signal is assumed to be stationary within each window). This is seen
in the lower portion of the heatmap (larger window lengths), where
the highest classification accuracies were obtained. It is worth noting
that the combination of longer window lengths and increments
begins to degrade performance. This is because there begins to be
very few windows from which to compute the majority vote and, for
the shortest gestures, only a single window (from the early portion of
the sequence) may be extracted. In contrast, the deep LSTM model
(see Figure 6B) benefited from shorter windows and increments as
this enabled it to better model the temporal dynamics of each
gesture. Correspondingly, the upper left-hand side of the
heatmap (small window lengths and increments) shows the
highest classification accuracies. The best window and increment
size combinations were: (1) window length = 77 samples and
window increment = 25 samples for the MVLDA (74.6%) and
(2) window length = 5 samples and window increment =
5 samples (93.0%) for the LSTM. A Shapiro-Wilk test for
normality (W � 0.99, p< 0.0001) showed that the length of the
gestures (i.e., the speed with which they are elicited) in the training
and testing sets are roughly equal and normally distributed (see
Figure 6C), with the average gesture length being 1.3 s.

3.3.3 Discussion
Although the impact of window length and increment have been

widely explored for continuous myoelectric control (Smith et al.,
2010), their role in predicting temporally-driven discrete EMG-
based gestures has received less attention. Generally, the results
found here suggest that the stationary models, which do not model
the temporal evolution of the gesture, benefit from longer windows
from which more smoothed estimates of the RMS could be
extracted. In contrast, the LSTM model benefited from shorter
windows and increments, providing less smoothed estimates of
RMS and higher resolution in the sequence of features that it
models. This is an important reminder that care should be taken
when making design decisions in discrete control based on
knowledge from the broader continuous myoelectric control
literature. Future work should evaluate the impact of window
length and increment selection when using devices with higher
sampling rates that can conceivably provide higher temporal
resolution (the Myo device samples at only 200Hz, whereas EMG
is typically known to contain frequency information up to 500 Hz
(Eddy et al., 2023c)).

A secondary outcome of this analysis was the evaluation of the
average gesture lengths across participants. Intuitively, the speed at
which gestures were elicited (no temporal guidance or feedback
was provided) followed a normal distribution, with an average
length of 1.3 s. Ultimately, this has implications for the design of
interactive systems that may use the models trained using this
dataset. For example, a scrolling application may have a relatively
low bandwidth if the system can only enable one input every
second. If the user wishes to scroll faster, this could be problematic
since classification performance degrades when gestures are
elicited at faster speeds (see Section 3.9) (Eddy et al., 2024b).
Another consideration is those users who fall on either end of the
normal distribution, as their performance may be more susceptible
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FIGURE 6
(A) The impact of thewindow length and increment on the performance of theMVLDAwith the RMS feature and (B) LSTM discrete approaches. Each
box corresponds to the classification accuracy when trained on the 306 training users and tested on the 306 testing users. The window length and
increment values correspond to the number of EMG samples (1 sample at 200 Hz = 5 ms). (C) Shows the distribution of gesture lengths (i.e., number of
samples). of each gesture across all training and testing subjects.

FIGURE 5
A visualization of the effects of different window lengths and increments applied to the same gesture. (A) Shows the raw EMG for a representative
dynamic gesture from the dataset. (B) Shows the extracted RMS of the windowed gesture for a variety of window lengths (Len) and increments (Inc).
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to generalization errors (see Section 3.6) using such cross-user
models (e.g., individuals with less mobility or hand dexterity)
(Eddy et al., 2024b). Future work should explore how to
become resilient to discrete gestures elicited at different speeds,
either through data aggregation in the original dataset, transfer
learning, or data augmentations.

3.4 Effect of number of subjects and
repetitions

3.4.1 Methods
This analysis explored the impact of the number of subjects

in the training set and the number of repetitions per subject.
Based on the previous results (see Section 3.2, 3.3), this and
subsequent sections perform the zero-shot cross-user
classification using only the LSTM model. Two tests were
explored: (1) when training with permutations of
1–300 subjects and testing on 306 subjects (N = 300) and (2)
when training with permutations of 1–500 subjects and testing
on 100 subjects (N = 500). For both cases, the subjects used for
training were randomly chosen from the pool of available
subjects. Due to the variability introduced by this
randomization, this process was repeated 10 times for each
case (e.g., for the 100-subject case, 10 random groups of
100 subjects were used for training) and the results are
reported as the average accuracy across the 10 folds (e.g.,
each box in the heat map shown in Figure 7). Once the
10 random groups of subjects were chosen, they were held
constant while evaluating the impact of the number of
gestures included. The testing cohorts for each of the tests
remained constant across all cases and folds. Note that for
the N = 500 test, the maximum number of repetitions used was
25 due to the reduced number of repetitions provided for the
test subjects in the dataset.

3.4.2 Results
For the N = 300 case (Figure 7A), the cross-user accuracy first

surpassed 90% at 150 subjects (with 30 repetitions per gesture), a
much higher subject count than what is typically collected for
EMG-based gesture recognition research. From a data
perspective, this corresponds to, at minimum, 37.5 h
(150 subjects x 30 reps x six gestures x 5 s) of active data
recording, or 15 min per user. The accuracy then surpassed
the 92% threshold at 250 subjects with 30 repetitions
(i.e., 67.5 h), nearly double the amount of data for a 2%
improvement. Even so, the results suggest that additional
subjects and repetitions may continue to improve
performance, potentially beyond the highest achieved accuracy
of ~93%. For the N = 500 case (Figure 7B), the accuracy achieved
the 90% threshold at 400 subjects with 25 repetitions (i.e., 83.3 h
of data). This differed slightly from the N = 300 case, but this may
be due to small differences in the size of the pool of test subjects
from which to draw, or perhaps more importantly, because the
testing set contained a disproportionate number of participants
(over half) from underrepresented groups in the training set (see
Section 3.6). Nevertheless, while the maximum accuracy achieved
was 91.1%, the accuracy does not appear to have plateaued,

indicating that more subjects may continue to improve
performance.

3.4.3 Discussion
Myoelectric control research has historically adopted

relatively low numbers of participants due to the experimental
burden associated with recruiting and collecting data from many
subjects. For example, in Saponas’ early work, one of the first to
establish cross-user models as a challenge in HCI, the data from
13 participants and 50 repetitions were used for testing the
possibility of zero-shot models (Saponas et al., 2008). Even if
all these subjects were used for training, using similar numbers in
this work would have yielded a cross-user performance of 75.7%
(see Figure 7A). Even with more recent neural networks, when
leveraging data from 11 subjects, cross-user continuous
myoelectric control performance was found to be only 68%,
compared to 92.3% when using transfer learning approaches
(Xu et al., 2024). Similarly, in the work by Campbell et al., it
was shown that when leveraging ten subjects and 16 reps of ten
gestures, naive cross-user models achieved accuracies below 50%
(Campbell et al., 2021). These three examples highlight that it has
to date been unfeasible to achieve true zero-shot cross-user
models with low subject counts. In this work, cross-user
models above 90% accuracy were only made possible once
150 subjects and 30 repetitions per gesture were used for
training. Recent work by Ctrl Labs suggests that there may be
benefit to including as many as 4,800 users when training zero-
shot cross-user discrete models for recognizing thumb swipes
(~7% error rate) (Labs et al., 2024). This is drastically more
subjects than current standardized and openly-available datasets
such as the 43-participant multi-day wrist/forearm dataset
recently released by Pradhan et al. (Pradhan et al., 2022) and
the commonly used Nina Pro DB1 and DB2 datasets consisting of
27 and 40 subjects, respectively (Atzori et al., 2015; 2014).
Furthermore, a lack of standardized hardware and data
collection practices has thus far precluded effective pooling of
data across studies. Generally, these results suggest that the
challenge in enabling robust cross-user EMG has not been
algorithmic alone, but that there has been a general lack of
data, supporting the collection and release of large datasets as
a crucial future research direction (Phinyomark and
Scheme, 2018).

Due to the challenges of collecting large datasets, researchers
have turned toward few-shot and transfer learning approaches
whereby the backbone of the model leverages other users’ data,
and the end model is fine-tuned to the end user (Jiang et al., 2024;
Xu et al., 2024; Côtá-Allard et al., 2019). While these approaches
can reduce some of the training burden associated with
myoelectric control, they are not necessarily ideal for the
widespread adoption of EMG. For example, it is unlikely that
consumers will be inclined to provide training gestures every
time they don their EMG device, when competing technologies
do not require it. Correspondingly, for the future success of this
technology outside of prosthesis control, the EMG community
should further explore zero-shot models that work without any
training data from the end user (i.e., plug-and-play) or that only
require a single, one-time calibration session (not unlike touch or
face ID on smartphones).
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FIGURE 7
The impact of the number of subjects in the training set and the number of repetitions per subject included for each gesture. Each box shows the
average accuracy across ten folds of a random subset of training subjects. (A) Represents the case when drawing from the 300 training subjects and
testing on the 306 testing subjects. (B) Represents the case when using up to 500 subjects for training (drawn from a combination of the preassigned
training and testing sets) and 100 subjects for testing.
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3.5 Feature selection

3.5.1 Methods
Developing and evaluating handcrafted and deep-learned features

has been studied exhaustively in continuous myoelectric control
(Phinyomark et al., 2009; 2012; Hudgins et al., 1993; Samuel et al.,
2018). Generally, however, these features and feature sets have been
optimized for the largely static contractions commonly used to control
powered prostheses. Offline studies using user-dependent models have
been able to make marginal improvements by introducing increasingly
complex feature sets (Khushaba et al., 2022). However, there has been
comparatively little exploration of feature selection for cross-user models,
and none in the context of discrete myoelectric control. This section
evaluates the performance of five common features and two feature sets to
better understand the impact of feature selection on discrete cross-user
myoelectric control, as demonstrated using the LSTM model. The
training and testing sets were split as highlighted in Section 3.2.1. The
HTD feature set (Hudgins et al., 1993) was selected as it is often used as a
baseline for myoelectric control research, and the LS4 feature set
(Phinyomark et al., 2018) as it was designed specifically for low
sampling rate devices (such as the Myo). The Friedman aligned-ranks
statistical test with Holm correction was used to check for statistical
differences (p< 0.05) between features and feature sets.

3.5.2 Results
The classification accuracies for all features and feature sets are shown

in Figure 8. All had similar performance, achieving accuracies within 1%
of each other (between 92.2% and 93.1%). Although some differences
were significant, their effect sizes, asmeasured byCohen’sD,were all small
(d< 0.2); RMS-MNP (d � 0.09), RMS-MAV (d � 0.08), HTD-MNP
(d � 0.10), HTD-MAV (d � 0.09), and WENG-MNP (d � 0.09).

3.5.3 Discussion
Only small differences (< 1%) were found between all features

and feature sets. This lack of difference, when combined with the
superiority of the temporal models as discussed in Section 3.2,
suggests that the temporal profile of the gesture is driving the
majority of the cross-user classification performance. With the

inclusion of the temporal dynamics and small inter-subject
differences in behaviours and physiology, it seems that the highly
descriptive features usually used to describe differences between
individual static windows of EMG (within which the signal is
assumed to be stationary) provide little benefit and, in some
cases, can even hurt performance. Based on these results, the
continued engineering of complex handcrafted features may not
be required for discrete myoelectric control and, instead, focus may
more appropriately placed on deep approaches for modeling the
profile (e.g., transformers (Vaswani et al., 2017) or distortion loss
with shape and time (Le Guen and Thome, 2019)).

3.6 Effect of bias in the training data

3.6.1 Methods
As previously highlighted, cross-user myoelectric control

models have been difficult to achieve partially due to
physiological and behavioural differences between individuals.
While this work shows that cross-user models are possible when
including enough participants, the impact of these differences on
model training is still not fully understood. In particular, it was
hypothesized that imbalances in the sources of such differences in
the training set might lead to biased systems (i.e., systems that favour
one physiology or set of behaviours) (Leavy, 2018; Mehrabi et al.,
2021). Using the metadata provided by the EMG-EPN612 dataset,
this section evaluates the role of two physiological differences on
system bias: (1) participant gender (man/woman as reported in the
dataset) and (2) handedness (left/right). Additionally, a behavioural
difference, gesture elicitation speed, is also evaluated. Such factors
have seldom been evaluated in myoelectric control, as most research
has explored user-dependent cases where these issues are absent.
Through these analyses, this section provides additional insights
into the importance of acquiring representative training data for
ensuring equitable myoelectric control systems that perform well for
all users.

The same zero-shot cross-user LSTM model, trained with the
306 training subjects as described in Section 3.2.1, was used to

FIGURE 8
The effect of feature set on zero-shot cross-user performance using the LSTMmodel. (A) Shows individual features: Root Mean Square (RMS), Mean
Absolute Value (MAV), Wavelet Energy (WENG), Mean Power (MNP), and WL (Waveform Length). (B) Shows two common feature sets: Hudgins’ Time
Domain Features (HTD) and Low Sampling 4 (LS4). All features and feature sets are available through LibEMG (Eddy et al., 2023b). Above each boxplot is
the mean and standard deviation where * and ∧ indicate significant differences (p<0.05) to the MNP and MAV features.
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evaluate these effects. The testing set, however, was split based on
each of the evaluated categories. Note that the distribution of
gender and handedness was found to be consistent across the
testing and training sets. The average gesture length for each
participant (excluding no movement) was also computed and
split into five groups (empirically, based on a histogram).
Unpaired t-tests were used to test for significant differences
based on gender and handedness. A Friedman test with Holm
correction was used to test for significant differences between
gesture lengths.

3.6.2 Results
The results suggest that the proportions of gender (man/

woman) and handedness (right/left) were 66%–34% and 96%–4%
splits, respectively, highlighting a strong bias toward men and right-
handed individuals (see Figure 9). These ratios were consistent
across the predefined training and testing sets established by the
EMG-EPN612 authors. As exemplified by the significantly higher
(p< 0.05) accuracies for men and right-handed users, this bias
played a significant factor in defining the system’s performance for
each group. It is interesting to note that the difference in
performance based on handedness was substantially larger, as
was the imbalance in the training set.

As highlighted in Section 3.3, the length of gestures followed a
normal distribution, with the average length being 1.3s. It thus
makes sense that the majority of the distribution for the average
gesture lengths for participants fell into bins one (0.9s–1.3s), two
(1.3s–1.6s), and three (1.6s–1.9s). The distribution of gesture
lengths, as shown in Figure 9, however, shows an unequal
distribution of these bins across training and testing. For

example, there were fewer shorter gestures (0.6s–0.9s) in the
testing set than in the training set. Although significant
differences were not found between bins, large differences were
found between gesture lengths (up to 11.7% when comparing
gestures between 0.9s and 1.3s and those > 1.9s).

3.6.3 Discussion
The EMG-EPN612 dataset did not have an equal

representation of gender or handedness, which led to
significantly worse performance (p< 0.05) when the model was
tested on women and left-handed users. First, this suggests that
there may be physiological differences in the signal patterns
elicited by these groups that should be explored further in
subsequent research. More importantly, however, this poses real
concerns, including ethical ones, as underrepresented user groups
would perform significantly worse when using the system.
Similarly, the model performed worse for slower gestures,
which could also be a general accessibility issue. For example,
individuals with limited mobility (who may benefit most from
novel interaction modalities) may take longer than the average of
1.3s to elicit a gesture. It is, therefore, crucial when collecting big
datasets in the future that there is an appropriate representation of
physiological differences (such as gender and handedness) and
behavioural differences (such as gesture elicitation speed). This
becomes particularly important when using data from more
participants (e.g., the 6,400 collected by Ctrl Labs (Labs et al.,
2024)), as these biases (such as the gender bias (Leavy, 2018)) could
be exacerbated if there remains bias within the training set.
Correspondingly, this area deserves increased research
attention, and many other physical (e.g., age, ethnicity, and

FIGURE 9
(A) The distribution of men and women in the training and testing sets (top) and the accuracy of the cross-user model when evaluating each
category from the testing set independently (bottom). (B) The distribution of right and left-handed users in the training and testing sets (top) and the
accuracy of the cross-user model when evaluating each category from the testing set independently (bottom). (C) The distribution of average gesture
lengths per user in the training and testing sets (top) and the accuracy of the cross-user model when evaluating each category from the testing set
independently (bottom).
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mobility issues) and behavioural factors (e.g., contraction intensity
and tempo) should be explored in the context of cross-user EMG
models. Combining data from all types of potential users (as
further discussed in Section 4) may be crucial for robust and
equitable cross-user EMG models; however, the extent to which is
currently unknown.

3.7 Effect of gesture selection

3.7.1 Methods
Although much of the recent literature has endeavoured to

expand the number of classes or degrees of freedom that can be
predicted by myoelectric control (Atzori et al., 2015; Geng et al.,
2016), this increased difficulty ultimately increases the potential
for mistakes, working against fears about the robustness of EMG.
Conversely, many interactions in HCI could be enabled by a
relatively small, but appropriately designed gesture set. For
example, scrolling in mixed reality might require three (scroll
up, scroll down, and selection) whereas answering or dismissing a
phone call might require only two. One compelling opportunity for
exploration is thus the selection of gesture set to achieve highly
resilient and robust classifiers for such applications in HCI. This
section correspondingly explores the zero-shot cross-user LSTM
model performance when adopting a variety of gesture subsets. All
techniques for model training remained the same for all
combinations (see Section 3.2), except that the unused gestures
were simply omitted from the training and testing sets. A repeated
measures ANOVA with a Bonferonni-Dunn post-hoc analysis was
used to check for statistical significance (p < 0.05) between
algorithms.

3.7.2 Results
The classification accuracies for all notable subsets of gestures

are shown in Figure 10. Intuitively, reducing the number of gestures
tended to improve classification accuracy. In particular, gesture sets
2 (Rest, Open, Close), 3 (Rest, Flexion, and Extension), and 5 (Rest,
Flexion, Extension, and Double Tap) yielded significantly better
performance (p< 0.05) than when using all gestures, achieving zero-
shot accuracies of > 96.5%, and as high as 98.2%.

3.7.3 Discussion
As exemplified by the commercially available ‘double tap’

gesture on the Apple Watch1, emerging HCI applications may
benefit from fewer but very robust input gestures. These
interactions can then be designed appropriately around the
limited input space (e.g., depending on the context, a double
tap could scroll through a menu, answer a phone call, or make a
selection). The results from this section show that increased
accuracy (up to 5.2%) can be achieved by limiting the input
space. One possibility is thus to run models trained on a subset of
gestures for certain interactions. For example, when a phone call
is detected the model trained with gesture set 3 (flexion (answer),
and extension (decline)) could be activated. Although this must

be further explored in terms of intuitiveness and usability in
future user-in-the-loop interaction studies, moving away from
recognizing a large subset of gestures may enable the robust use of
EMG inputs in such consumer use cases. Additionally, it is
possible that the input space could be augmented through
compound gestures (e.g., two quick swipes), elicitation speed
(e.g., slow vs. fast swipe), or contraction intensity (i.e., soft and
hard double taps). Future work should, therefore, explore how
interactive systems can better use smaller sets of EMG-
enabled gestures.

3.8 Effect of transfer learning

3.8.1 Methods
This section evaluates the effect of transfer learning from large

cross-user models (i.e., tuning the cross-user LSTM model) with
samples from the end user. Two different approaches were
explored: a traditional approach, and a contrastive approach. For
both approaches, the three LSTM layers (see Figure 2) were frozen
during transfer learning, meaning that only the final linear layers of
the network were updated. The two methods, however, differ in their
fundamental objective. The traditional approach aimed to tune the
network to accommodate the new user’s data, meaning the
embedding space could change significantly to accomplish this.
The contrastive approach, instead, aimed to project the new user’s
data into the original embedding space wherein the original centroids
(i.e., anchors) did not change. Both networks were tuned for
400 epochs with an initial learning rate of 1e-2 and a scheduler
(step size = 25 and gamma = 0.9), leading to quick transfer times
(< 1 min with an NVIDIA RTX 3080). As a baseline for comparison,
user-dependent models were also trained as described in Section 2.2.
Following the previous exploration in Section 3.6, the effect of transfer
learning onmodel bias was also explored. Finally, the dataset was split
into ten repetitions for transfer (or training), 14 repetitions for testing,
and a single repetition was held out for validation. The two transfer
learning approaches are further described below.

3.8.1.1 Traditional Transfer Learning
This approach updated the final linear layers of the network

using cross-entropy loss with the new gesture templates.

3.8.1.2 Contrastive Transfer Learning
This approach aimed to minimize the distance between new

samples and the centroids established in the cross-user embedding
space by using a loss function loosely inspired from Triplet loss
(Hermans et al., 2017), as shown in Equation 1. Correspondingly,
the final linear layers were tuned to project gestures for new users
close to the cross-user centroids in the original embedding space. A
k-nearest-neighbour classifier was then trained (where k = the
number of repetitions per gesture) to make predictions in the
new embedding space (with the new gesture templates).

Loss � ∑
N

i�1
dist gi, ci( ) (1)

where i is the index of the new gesture template,N is the number of
new gesture templates, gi is the embedding of the new gesture template,1 https://www.apple.com/watch/
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ci is one of the six centroids from the cross-user embedding space that
corresponds to the label of gi, and dist is the euclidean distance.

3.8.2 Results
Figure 11 shows the performance of the two transfer learning

approaches. For the user-dependent case (Figure 11A), performance did
not reach the zero-shot baseline until seven repetitions were used to
train the model. This meant that 3.5 min (7 reps x six gestures x 5 s) of
active data collection were required from users before they had
performance similar to that of the cross-user model (for which they
did not provide any data). While both transfer learning approaches
improved the average accuracy (Figure 11B), the contrastive approach
generally outperformed the standard approach across all numbers of
repetitions. Additionally, both approaches were approaching the 97.9%
leave-one-repetition-out user-dependent baseline established in Section
3.1 with half of the needed repetitions. It is also interesting to note that
the contrastive transfer approach brings up the absolute bottom end
from 43.9% with no transfer to 59.5% with one rep, 70.2% with two
reps, and 78.6% with ten reps. This means that the transfer learning
approaches were able to help outlier users who had physiological or
behavioural differences when eliciting the gestures. Similarly, when
applying the contrastive transfer approach, the accuracy of both genders
converged at around eight repetitions (Figure 11C). While the
accuracies for left and right-handed users did not fully converge
(Figure 11D), they became closer. These results indicate that transfer
learning approaches can (1) improve the overall accuracy and (2)
alleviate some of the effects of biases in the training set.

3.8.3 Discussion
This analysis shows that transfer learning is promising for fine-

tuning cross-user models, achieving similar performance to that
achieved by the cross-user model in Section 3 with half of the
repetitions. It is also possible that, unlike the user-dependent case,
the models that have been transferred will be more resilient to
confounding factors (see Section 3.9) as these data may have been

included in the larger model. The resilience of these transferred
models, however, remains to be evaluated in online user-in-the-loop
evaluations. One possibility for these approaches would be to
leverage them for an initial ‘out-of-the-box’ calibration (similar
to the Face ID and fingerprint setup leveraged on mobile
devices) or to give users the ability to fine-tune their model (such
as with eye calibration for heads-up displays). Alternatively, future
work could explore unsupervised adaptive approaches that
continuously fine-tune model performance over time without the
need for direct calibration (Campbell et al., 2024).

One major benefit of transfer learning was that it improved the
bottom end (i.e., outlier participants) by nearly 16%. This could
make a substantial difference in equity for individuals who may not
be able to use the cross-user model due to factors like limited
mobility, thus making these models more accessible. Additionally,
these approaches reduced the disparity between underrepresented
demographics, including women and left-handed users. These
results highlight that even in the case of big-data-enabled zero-
shot models, transfer learning may still be beneficial, particularly for
improving the model’s accessibility.

3.9 Generalization to a new dataset with
confounding factors

3.9.1 Methods
This section used the separately recorded dataset described in

Section 2.1.2 to evaluate the generalizability of the cross-user model
trained on the EMG-EPN612 dataset to other datasets recorded with
the same hardware. While this dataset was also recorded with the
Myo Armband, the data collection protocols and segmentation
strategies employed were different (Eddy et al., 2024b). In
particular, this dataset was recorded as part of another study
without knowledge of the EMG-EPN612 protocol. This
dataset also includes a set of confounding factors that were not

FIGURE 10
The effect of gesture set selection on the zero-shot cross-user LSTM model performance. The gesture subsets shown, from left to right, were: (1)
Rest, Flexion, Extension, Open, Close, Double Tap, (2) Rest, Open, Close, (3) Rest, Flexion, Extension, (4) Rest, Open, Close, Double Tap, (5) Rest, Flexion,
Extension, Double Tap, and (6) Rest, Open, Close, Flexion, Extension. Above each boxplot is themean and standard deviation where * indicates significant
differences (p<0.05) with gesture set 1.
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intentionally introduced in the EMG-EPN612 dataset to evaluate
the robustness of the cross-user model to more representative
real-world inputs, including (1) gestures elicited across two
different days between one and 7 days apart (which
necessarily includes removing and re-donning the device), (2)
gestures elicited at different speeds (slow, moderate, and fast),
and (3) gestures elicited in different limb positions. The limb
positions evaluated were: (default) upper arm at side, elbow bent
at 90°pointed forward along the sagittal axis, (2) upper arm at
side, elbow bent at 90°pointed away from the body along the
frontal axis, (3) upper arm at side, elbow bent at 90°in front of
the body along the frontal axis, (4) arm fully extended toward
the ground, and (5) upper arm relaxed, with elbow full flexed at
~180°. The Friedman aligned-ranks statistical test with Holm
correction was used to check for statistical differences (p< 0.05)
between the baseline conditions (day 1 and day 2) and
the confounds.

3.9.2 Results
The results of the analysis on the separate dataset can be found

in Figure 12. The baseline performance of the cross-user model on
day one was in line (~93%) with the accuracy achieved using the
same model with the held-out testing set from the EMG-EPN612
dataset (see Section 3.2). This implies that the cross-user model was
equally robust to data collected from a separate study, in a different

country, with different data collection protocols. Interestingly,
performance actually improved by nearly 3% on day two,
indicating there may have been some learning effect even though
no feedback was provided to users. It is possible that, with feedback,
these accuracies may continue to improve as the user adapts to the
zero-shot model. The results also show that the speed confounding
factor significantly degrades (p < 0.05) classification accuracy,
particularly for the slow-speed case. This further reinforces
the results from Section 3.6, where outliers on the slower end
of the normal distribution curve had the worst performance.
Compared to the default speeds elicited on days one and two, the
accuracy of the slow speed condition degraded by 8.4% (d � 0.84)
and 10.8% (d � 1.12), indicating a large effect (d > 0.8) as
measured by Cohen’s d. Note that the large standard deviation
is likely because of varied user behaviours that arose while
subjectively choosing the slow speed condition. Finally, the
limb position confound was not found to significantly affect
classification accuracy except in position three (elbow at
90°with the hand along the frontal axis) when compared to
the day two accuracy. Note that the accuracy in position three
is still above the 93% cross-user accuracy achieved when using
the EMG-EPN612 testing set. However, although no significant
difference was found for positions 4 and 5, Figure 12C suggests
that some participants may have been affected, as denoted by the
wider range of in their lower quartiles.

FIGURE 11
The effect of end-user calibration (i.e., transfer learning) on performance. Shadows indicate standard error. (A) Shows the user-dependent
performancewhen training amodel from scratch using 1-10 repetitions of each gesture. (B) Shows a traditional transfer learning approachwhere the final
linear layers of the cross-user model were tuned to the gestures of the new gesture using Cross Entropy loss and a contrastive transfer learning approach
where the loss function minimizes the distance between new gestures and the centroids of the cross-user model. (C, D) Show the performance of
contrastive transfer learning when splitting results by gender (C) and handedness (D).
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3.9.3 Discussion
The results from this analysis highlight two significant findings

that may have major implications for the future of myoelectric control.
First, large cross-user models can generalize to completely different
datasets with different collection protocols and segmentation strategies
(recorded nearly 5 years apart), when the same hardware is used. Future
work should explore the ability to transfer pre-trained cross-user
models to new hardware devices, as the Myo Armband has since
been discontinued. Secondly, the results show that cross-user models
can alleviate many of the confounding factors that have historically
limited myoelectric control. For example, while previous work has
shown that user-dependentmodels are susceptible to confounds like the
limb position effect (Campbell et al., 2020; Fougner et al., 2011; Eddy
et al., 2024b), and cross-day use (Jiang et al., 2022; Eddy et al., 2024b),
the cross-user model was resilient to both of these factors without them
even being intentionally introduced into the dataset. This implies that
there was enough variation across the 306 training participants that the
model could generalize to these unseen conditions. This further
emphasizes that many of the challenges associated with myoelectric
control (at least discrete myoelectric control), including usability issues
caused by confounding factors, can be alleviated when there is enough
data. However, this model was still susceptible to gestures elicited at
slower speeds. Correspondingly, future big-data EMG research should
consider intentionally introducing some confounds (like speed) into
their data collection protocols to further improve the generalizability of
these cross-user models. Moreover, future work should evaluate the
impact of other confounding factors in the context of cross-usermodels,
such as electrode shift, contraction intensity, muscle fatigue, and
environmental noise (Campbell et al., 2020).

3.10 Confidence-based rejection

3.10.1 Methods
Despite the promising zero-shot cross-user performance seen so

far, all tested gestures have been part of a closed-set (consistent with

those used to train the model). In many real-world applications, the
set of possible gestures will be larger than the set used to train the
model, leading to unknown behaviours and erroneous (i.e., false)
activations. One often used technique to deal with these so-called
out-of-set inputs in myoelectric control is rejection (Robertson et al.,
2019; Scheme et al., 2013). Generally, this is done by comparing the
confidence or probability output associated with the classifier’s
decision with a predefined threshold, below which activation
decisions are rejected and ignored. The idea of this approach is
that it is better to do nothing (and ignore an input) than to elicit an
incorrect action. This could be particularly beneficial in the discrete
space, whereby an incorrect decision could result in an action that
requires increased time for correction and degrades user confidence
in the interface (e.g., a user may accidentally end a phone call or
make an erroneous menu selection). Therefore, this section
evaluates probability-based rejection for both the within-set case
(i.e., rejecting known gestures that may be incorrect due to low
certainty) and the out-of-set case (i.e., rejecting gestures that are
unknown to the classifier). By using the probability of the classifier
(i.e., confidence) associated with each prediction (i.e., in this case,
the output from the final softmax layer), the impact of rejection for
discrete myoelectric control is explored. The cross-user model was
trained as described in Section 3.2, using all of the data from the
306 training subjects. The EMG-EPN612 test set was used to
evaluate the closed-set rejection performance. For a given set of
rejection thresholds, the percentage of rejected gestures from this
closed-set was computed, as well as the new accuracy of the model
when omitting these data. The twenty repetitions of each of the
gestures that were unique to the Myo DisCo dataset (i.e., index
extension, thumbs up, finger snap, and finger gun) were used to
evaluate the out-of-set performance of the model.

3.10.2 Results
As shown in the log-scaled Figure 13A; Figure 14A, the

confidence profile of the cross-user model was highly skewed
towards extremely high confidence for both the within-set and

FIGURE 12
The performance of the cross-user LSTM model when tested using data from a completely different dataset. (A) Shows the model’s performance
when tested with gestures elicited across 2 days (the same subjects, between one and 7 days apart). (B) Shows the performance of themodel when tested
on gestures elicited at two different speeds (i.e., slow and fast). (C) Shows themodel’s performance when tested on gestures elicited in four different limb
positions. Above each boxplot are the mean and standard deviation where * indicates significant differences (p<0.05) from the day 2 baseline.
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out-of-set gestures. In particular, for the within-set case, 97.3% of
gestures were predicted with > 99.9% confidence. Similarly, for the
out-of-set case, 85% of the erroneous gestures were predicted with
> 99.9% confidence. Nevertheless, rejection improved
classification accuracy for the within-set case while keeping
rejection rates low. For example, using a rejection threshold of
99.99%, the performance of the remaining decisions improved
from 92.6% to 94.5% while introducing a rejection rate of only
4.4% (see Figure 13). However, for the out-of-set case, the classifier
could only reject 23.0% of the unknown gestures when using the
same rejection rate, indicating that dealing with out-of-set inputs
still poses a significant challenge for these models.

3.10.3 Discussion
During the real-world use of a discrete myoelectric control

system, users will inevitably make mistakes or elicit inadvertent
gestures that could lead to false activations. The results of this
preliminary investigation of rejection suggest that even in the case of
cross-user models, the confidence distribution of the classifier

remains extremely high. Nevertheless, adding a rejection
threshold can improve classification performance for the within-
set gestures at the expense of a relatively small rejection rate
(i.e., rejecting in-set gestures). This tradeoff between true
positives and false negatives in online control tasks is an
interesting area for future research (Lafreniere et al., 2021).

More importantly, however, the results from this analysis introduce
out-of-set rejection as a significant research challenge that still needs to
be addressed for discretemyoelectric control. These gestures, along with
other patterns of EMG inadvertently generated during activities of daily
living (ADLs), will inevitably lead to false activations of system
commands. With the current levels of false activation due to out-of-
set inputs, an individual out for a run may inadvertently answer an
incoming phone call or a teleoperation operator could send an
erroneous command to a robot, both of which may have adverse
implications. It is worth noting, however, that the out-of-set gestures
evaluated in this work were intentionally prompted gestures that were
simply not included during training. In real-world applications, patterns
of unintended contractions may be more subtle, and by consequence,

FIGURE 13
Impact of rejection on the closed-set performance of the zero-shot cross-user LSTM model. (A) A histogram of the classifier confidence outputs
associated with all testing decisions.Note that the y-axis is log-scaled. (B) The rejection rate versus classification accuracy for a set of rejection thresholds
(each point/label) for the cross-user LSTM model.

FIGURE 14
Impact of rejection on unseen, out-of-set gestures when using the zero-shot cross-user LSTM model. The unused gestures from the Myo DisCo
dataset (finger gun, finger snap, thumbs up, and point) were used to evaluate the out-of-set performance of the model. (A) A histogram of the classifier
confidence outputs associated with all out-of-set testing decisions.Note that the y-axis is log-scaled. (B) The rejection rate of the out-of-set gestures for
different rejection thresholds.
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possibly more rejectable. Furthermore, a user may learn to avoid
intentional out-of-set gestures, so further online interaction research
is required to fully understand the impact of these false activations. The
adoption of highly separable wake gestures (akin to common voice
prompts, such as “Hey Google”) may also alleviate some of these issues
(Kumar et al., 2021; Eddy et al., 2024a), although this may represent a
missed opportunity for subtle, always-available ubiquitous input. Even
in the recent white paper by Ctrl Labs (Labs et al., 2024), this issue of
out-of-set input was not addressed, as all of the control tasks occurred
for dedicated tasks. Correspondingly, exploring techniques to improve
confidence distributions, such as open set (Bendale and Boult, 2016;
Geng et al., 2020) and outlier detection techniques (Zhao et al., 2019), to
enable the rejection of incorrect gestures, unknown gestures, and ADLs,
is a crucial direction for future research.

4 Discussion

4.1 Outlook on zero-shot approaches

Despite the physiological and behavioural differences that have
historically led to myoelectric model deterioration, this exploration
demonstrates that myoelectric gesture recognition, enabled through
simple temporal deep networks, can achieve > 93% performance on
unseen users with a large enough dataset. Similar outcomes have
recently emerged in other works (Labs et al., 2024), yet this is the first
work to comprehensively break down the performance of zero-shot
myoelectric gesture recognition models by pattern recognition
architecture, training cohort size by both reps and subjects,
temporal resolution, feature extraction, and dataset
demographics. These outcomes generally support the claim that
large datasets are a realistic path to population-level models for
myoelectric control of unimpaired subjects. It is likely that more
complex deep networks (e.g., transformers (Zabihi et al., 2023))
could yield improved performance over the simpler LSTM-based
network explored in this work, highlighting an interesting area for
future research.

Moreover, the results show that the zero-shot discrete cross-user
model could be generalized to a completely different dataset with a
variety of confounding factors. Not only did the model perform well
on this dataset (which was recorded nearly 5 years later), but the
cross-user model effectively eliminated the impact of two common
confounding factors (limb position variability and cross-day use).
The only caveat was that the dataset was collected with the same type
of hardware (the Myo Armband), and the armband was oriented in
approximately the same configuration for all participants. These
results prove that such models can generalize to new use cases and
more challenging datasets (Myo DisCo), further highlighting their
promise for real-world control. In the future, these pre-trained
models could be made publicly available, meaning that anyone
with the specified hardware will be able to use them “out-of-the-
box”. This could greatly expedite the progression of EMG-based
HCI research as authors could easily test against and build off
previous research. It is our intention to make these models publicly
available in the next major version release of our open-source EMG
processing and interaction library, LibEMG (Eddy et al., 2023b).

Despite strong overall performance when averaged across the
cohort, imbalances in the EMG-EPN612 dataset led to training

biases, resulting in left-handed users, women, and those performing
slower gestures performing worse than more represented groups.
The exact cause of this performance difference is currently unclear.
Is it because insufficient representative information was available
from the underrepresented groups? In this case, strategically
recruiting these groups to reach satisfactory levels could be a
valid solution. Alternatively, is it possible that the abundance of
patterns from the normative group overpowered the information
from the underrepresented groups? In this case, regularization
approaches to retain the information learned for
underrepresented groups could be a valid solution. Further, it
could be valuable to pinpoint the sources of variability of
underrepresented groups through exploratory approaches, like
past myoelectric studies using Guided Gradient-weighted Class
Activation Mapping (Côté-Allard et al., 2020) or Mapper
(Campbell et al., 2019), to avoid relying on information that
highlights group differences. Unbalanced datasets are a general
issue for deep learning that have led to weaknesses or biases
being propagated unknowingly and, as such, should be a subject
of future cross-user myoelectric studies.

4.2 Outlook on transfer learning approaches

This work has demonstrated zero-shot “plug-and-play”
capabilities, where the end-user could immediately perform
control actions without any additional training protocol;
however, algorithmic solutions to personalize to the end-user
have historically benefited model performance. A comparison
between the user-dependent and user-independent LSTM models
still shows a margin of error between these two cases (~98% versus
~93%), where a user-dependent model may yield better control in
highly constrained use cases. It is conceivable, however, that if such
models were used in the real world, the performance would degrade
significantly due to confounds such as electrode shift, limb position
variability, and gesture elicitation speed (Eddy et al., 2024b), that
appear to be alleviated by the variability in the training data of the
cross-user models. Furthermore, transfer learning consistently
outperformed user-dependent models when the end-user training
burden was kept constant (~97% vs~95% for ten end-user reps).
This establishes that transfer learning may be the gold-standard
approach for constructing end-user models, especially given that
most protocols contain only a few repetitions, aligning with when its
benefits are most profound (Phinyomark and Scheme, 2018). Future
work should continue to explore the differences between cross-user
discrete models with and without transfer in online control tasks.

To the author’s knowledge, this was the first study exploring transfer
learning, particularly for discrete gesture recognition. Continuous
gesture recognition research, however, has explored various
algorithmic approaches for transfer learning, namely, student-teacher
distillation, adaptive normalization approaches, and model search
approaches. For instance, a two-stage student-teacher distillation,
Dual-Step Domain Adaptation Network (DSDAN), operates by
alternating between training a teacher that embeds gestures of many
subjects into the same region and distilling teacher-supplied end-user
pseudo-labels into a student network, which ultimately adapts to the
end-user via an online unsupervised process (Lin et al., 2023). Another
approach, adaptive instance normalization, has been used as the
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fine-tuning approach of the adaptive domain adversarial neural network,
whereby the weights of the neural network are shared by all subjects, but
the parameters associated with normalization in the network are user-
specific. This substitution of normalization parameters allows for the
model weights to become user-agnostic during the zero-shot training,
and transfer to a new end-user only requires learning their set of
normalization parameters using small amounts of supervised data
(Campbell et al., 2021). In contrast, supportive convolutional neural
networks (Kim et al., 2019) assume a large number of pre-trained
classifiers are available of which a subset should provide reasonable zero-
shot performance on a trial of end-user data. From this subset,
independent fine-tuning of weights is performed with the same trial
of end-user data, after which the mode of these fine-tuned classifiers are
used for subsequent predictions. Further work is warranted, looking into
the efficacy of such transfer learning approaches on discrete gesture
recognition with large datasets.

4.3 Outlook on online discrete gesture
recognition

Historically, EMG researchers have acknowledged that there is
only a moderate correlation between offline metrics (like
classification accuracy) and user-in-the-loop continuous
myoelectric control (Lock et al., 2005; Campbell et al., 2024;
Nawfel et al., 2021). Ultimately, many varying user behaviours
(e.g., modulation of contractions to get the desired output) result in
vastly different patterns than the relatively static and consistent
gestures collected during screen-guided training. Additionally,
these systems are quite susceptible to confounding factors as
they are often highly tuned to recognize specific characteristics
from individual windows of data (Scheme and Englehart, 2011).
When the signal characteristics change even slightly (e.g., the
armband is slightly shifted or a source of noise is introduced),
large errors begin to arise. As a result, continuous gesture
recognition benefits greatly from obtaining patterns produced
from user-in-the-loop settings for adaptation (Woodward and
Hargrove, 2019), which could be seen as another fine-tuning
procedure beyond collecting end-user data through screen-
guided training. This means that, at the moment, continuous
myoelectric control has an extensive training burden associated
with achieving robust online performance which has hindered the
perception of EMG-based inputs (Campbell et al., 2024;
Szymaniak et al., 2022; Huang et al., 2024).

Compared to continuous control, however, it is likely that offline
metrics like classification accuracy will be more tied to online
performance for event-driven discrete myoelectric control systems
such as those explored in this work. This is partly because discrete
inputs do not allow users tomodulate their contractions until after the
entirety of a gesture has been elicited. This means that users can only
moderate their gestures after feedback at the end of the gesture
(i.e., the event was or was not triggered), leading to potentially less
varied behaviours. Moreover, when recognizing an entire gesture
template consisting of multiple windows, there becomes more data
to make informed decisions than in the continuous control case.
These additional data, combined with an imposed temporal structure,
may be responsible for the high recognition accuracies achieved in this
work. Nevertheless, it is crucial that the cross-user models developed

here (and any in the future) be tested in online control tasks. This
becomes particularly interesting for cross-user models as users will
tend to modulate their behaviours to accommodate the model rather
than the model accommodating the user’s behaviours (as is common
for user-dependent myoelectric control). Additionally, future work
should directly explore the correlation between offline metrics and
user-in-the-loop control for discrete myoelectric control systems. For
example, users may rush gestures in contexts that promote urgency
(e.g., cancelling an alarm in public), leading to pattern changes.
Finally, a factor that may hinder online control for discrete
systems that has not been an issue for continuous control of
prostheses is the presence of activities of daily living (patterns of
contractions elicited by users that unintentionally resemble target
gestures while doing other activities) (Chang et al., 2020). As
highlighted in this work, the cross-user models are still quite
susceptible to false activations when presented with out-of-set
gestures, which would inhibit a user’s ability to engage in other
tasks. To improve the usability of discrete systems, future work
should thus explore techniques to enable discrete myoelectric
control in everyday settings where inadvertent (non-intentional)
system inputs will be inevitable.

4.4 A coming together for recording
large datasets

Although much progress has been made for EMG-based control
over the previous decades, there remains an ongoing challenge
limiting the true progression of the technology: a lack of large
multi-user datasets. Due to non-standardized hardware and data
collection protocols, many researchers endeavour to collect study-
specific datasets that either never get publicly released or cannot be
pooled with other pre-recorded data. In particular, other than the
612 user dataset used in this study (Benalcazar et al., 2021), and the
private collection done by Ctrl Labs (Labs et al., 2024), very few
large ( > 100 user) EMG datasets have been recorded, and almost
none are publicly available. This is contrary to other machine
learning fields, whereby large datasets have become commonplace.
For example, ImageNet contains 3.2 million images (Deng et al.,
2009), People’s Speech includes 30,000 h of annotated speech data
(Galvez et al., 2021), and the MNIST dataset contains
70,000 annotated images of handwritten digits (Deng, 2012).
These large open-source datasets can be attributed to the rapid
advancement of computer vision and speech recognition, which
are both now commercialized in many devices we use daily.
Moving forward, the EMG community must begin finding ways
to curate large datasets, as has been done in other machine learning
communities. One technique to enable this is publishing data
collection protocols whereby authors can contribute to larger
data repositories. Open-source tools like LibEMG could
facilitate this process (Eddy et al., 2023b). Alternatively, a
potential research direction could be to find ways to allow the
pooling of data from different collection protocols and hardware.
Regardless, as a community, we must come together to create these
large datasets as they could have significant benefits beyond
general-purpose EMG, potentially also improving the
robustness of myoelectric control for powered
prosthetics, and more.
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5 Conclusion

For a long time, myoelectric control has been fraught with
challenges that have limited its use outside of powered
prostheses. This work shows that many of these issues, including
the inter-subject differences and susceptibility to confounding
factors like limb position variability and cross-day use, can
largely be eliminated when training large multi-user models for
discrete control (> 300 users). In particular, the results suggest that
zero-shot discrete cross-user models can achieve classification
accuracies of up to ~93% for recognizing six discrete gestures
from a set of 306 unseen testing users. While these results
highlight the potential promise of myoelectric control as a
general-purpose ubiquitous input, this work highlights many
future challenges and research directions that must be explored
before its eventual success and widespread adoption.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving humans were approved by the University
of New Brunswick Research Ethics Board. The studies were
conducted in accordance with the local legislation and
institutional requirements. The participants provided their
written informed consent to participate in this study.

Author contributions

EE: Writing–review and editing, Writing–original draft,
Methodology, Investigation, Formal Analysis, Conceptualization.
EC: Writing–review and editing, Writing–original draft,

Methodology, Conceptualization. SB: Writing–review and editing,
Supervision, Conceptualization. ES: Writing–review and editing,
Writing–original draft, Supervision, Methodology,
Conceptualization.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was generously supported by the Natural Sciences and Engineering
Research Council of Canada through the Discovery Grants and
Postgraduate Scholarships programs.

Acknowledgments

The authors would like to acknowledge the important
contributions of the authors of the EMG-EPN612 dataset
(Benalcazar et al., 2021); Marco E. Benalcazar, Lorena Barona,
Leonardo Valdivieso, Xavier Aguas, and Jonathan Zea, without
which this work would not have been possible.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A.-G. M., Elsig, S., et al.
(2014). Electromyography data for non-invasive naturally-controlled robotic hand
prostheses. Sci. Data 1, 140053. doi:10.1038/sdata.2014.53

Atzori, M., Gijsberts, A., Kuzborskij, I., Elsig, S., Mittaz Hager, A.-G., Deriaz, O.,
et al. (2015). Characterization of a benchmark database for myoelectric movement
classification. IEEE Trans. Neural Syst. Rehabilitation Eng. 23, 73–83. doi:10.1109/
TNSRE.2014.2328495

Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. (2017). The great time
series classification bake off: a review and experimental evaluation of recent
algorithmic advances. Data Min. Knowl. Discov. 31, 606–660. doi:10.1007/
s10618-016-0483-9

Barona López, L. I., Ferri, F. M., Zea, J., Ángel, L. V. C., and Benalcázar, M. E. (2024).
CNN-LSTM and post-processing for EMG-based hand gesture recognition. Intelligent
Syst. Appl. 22, 200352. doi:10.1016/j.iswa.2024.200352

Benalcazar, M. E., Barona, L., Valdivieso, L., Aguas, X., and Zea, J. (2021). EMG-EPN-
612 dataset. doi:10.5281/zenodo.4421500

Benalcázar, M. E., Jaramillo, A. G., Zea, J. A., Páez, A., and Andaluz, V. H. (2017).
“Hand gesture recognition using machine learning and the myo armband,” in 2017 25th
European signal processing conference (EUSIPCO), 1040–1044. doi:10.23919/EUSIPCO.
2017.8081366

Bendale, A., and Boult, T. E. (2016). “Towards open set deep networks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
1563–1572.

Botros, F. S., Phinyomark, A., and Scheme, E. J. (2022). Electromyography-based
gesture recognition: is it time to change focus from the forearm to the wrist? IEEE Trans.
Industrial Inf. 18, 174–184. doi:10.1109/TII.2020.3041618

Campbell, E., Eddy, E., Bateman, S., Côté-Allard, U., and Scheme, E. (2024). Context-
informed incremental learning improves both the performance and resilience of
myoelectric control. J. NeuroEngineering Rehabilitation 21, 70. doi:10.1186/s12984-
024-01355-4

Campbell, E., Phinyomark, A., Al-Timemy, A. H., Khushaba, R. N., Petri, G., and
Scheme, E. (2019). “Differences in EMG feature space between able-bodied and
amputee subjects for myoelectric control,” in 2019 9th international IEEE/EMBS
conference on neural engineering (NER) (IEEE), 33–36.

Campbell, E., Phinyomark, A., and Scheme, E. (2020). Current trends and
confounding factors in myoelectric control: limb position and contraction intensity.
Sensors 20, 1613. doi:10.3390/s20061613

Campbell, E., Phinyomark, A., and Scheme, E. (2021). Deep cross-user models reduce
the training burden in myoelectric control. Front. Neurosci. 15, 657958. doi:10.3389/
fnins.2021.657958

Frontiers in Bioengineering and Biotechnology frontiersin.org22

Eddy et al. 10.3389/fbioe.2024.1463377

https://doi.org/10.1038/sdata.2014.53
https://doi.org/10.1109/TNSRE.2014.2328495
https://doi.org/10.1109/TNSRE.2014.2328495
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1016/j.iswa.2024.200352
https://doi.org/10.5281/zenodo.4421500
https://doi.org/10.23919/EUSIPCO.2017.8081366
https://doi.org/10.23919/EUSIPCO.2017.8081366
https://doi.org/10.1109/TII.2020.3041618
https://doi.org/10.1186/s12984-024-01355-4
https://doi.org/10.1186/s12984-024-01355-4
https://doi.org/10.3390/s20061613
https://doi.org/10.3389/fnins.2021.657958
https://doi.org/10.3389/fnins.2021.657958
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1463377


Chan, F., Yang, Y.-S., Lam, F., Zhang, Y.-T., and Parker, P. (2000). Fuzzy EMG
classification for prosthesis control. IEEE Trans. Rehabilitation Eng. 8, 305–311. doi:10.
1109/86.867872

Chang, J., Phinyomark, A., Bateman, S., and Scheme, E. (2020). “Wearable EMG-
based gesture recognition systems during activities of daily living: an exploratory study,”
in 2020 42nd annual international conference of the IEEE engineering in medicine and
biology society (EMBC), 3448–3451. doi:10.1109/EMBC44109.2020.9176615

COAPT (2024). Coapt. Available at: https://coaptengineering.com/.

Côtá-Allard, U., Fall, C. L., Drouin, A., Campeau-Lecours, A., Gosselin, C., Glette, K.,
et al. (2019). Deep learning for electromyographic hand gesture signal classification
using transfer learning. IEEE Trans. Neural Syst. Rehabilitation Eng. 27, 760–771.
doi:10.1109/TNSRE.2019.2896269

Côté-Allard, U., Campbell, E., Phinyomark, A., Laviolette, F., Gosselin, B., and Scheme, E.
(2020). Interpreting deep learning features for myoelectric control: a comparison with
handcrafted features. Front. Bioeng. Biotechnol. 8, 158. doi:10.3389/fbioe.2020.00158

Dai, Q., Li, X., Geng, W., Jin, W., and Liang, X. (2021). “CAPG-MYO: a muscle-
computer interface supporting user-defined gesture recognition,” in Proceedings of the
9th international conference on computer and communications management (New York,
NY, USA: ICCCM ’21), 52–58. doi:10.1145/3479162.3479170

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “ImageNet: a
large-scale hierarchical image database,” in 2009 IEEE conference on computer vision
and pattern recognition, 248–255. doi:10.1109/CVPR.2009.5206848

Deng, L. (2012). The MNIST database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Process. Mag. 29, 141–142. doi:10.1109/
msp.2012.2211477

Duan, F., Ren, X., and Yang, Y. (2021). A gesture recognition system based on time
domain features and linear discriminant analysis. IEEE Trans. Cognitive Dev. Syst. 13,
200–208. doi:10.1109/TCDS.2018.2884942

Dunne, L. E., Profita, H., Zeagler, C., Clawson, J., Gilliland, S., Do, E. Y.-L., et al.
(2014). “The social comfort of wearable technology and gestural interaction,” in 2014
36th annual international conference of the (IEEE Engineering in Medicine and Biology
Society), 4159–4162. doi:10.1109/EMBC.2014.6944540

Eddy, E., Campbell, E., Bateman, S., and Scheme, E. (2023a). “Leveraging task-specific
context to improve unsupervised adaptation for myoelectric control,” in 2023 IEEE
international conference on systems, man, and cybernetics (SMC), 4661–4666. doi:10.
1109/SMC53992.2023.10394393

Eddy, E., Campbell, E., Bateman, S., and Scheme, E. (2024a). On-demand myoelectric
control using wake gestures to eliminate false activations during activities of daily living.
arXiv Prepr. arXiv:2402, 10050.

Eddy, E., Campbell, E., Bateman, S., and Scheme, E. (2024b). Understanding the
influence of confounding factors in myoelectric control for discrete gesture recognition.
J. Neural Eng. 21, 036015. doi:10.1088/1741-2552/ad4915

Eddy, E., Campbell, E., Phinyomark, A., Bateman, S., and Scheme, E. (2023b).
LibEMG: an open source library to facilitate the exploration of myoelectric control.
IEEE Access 11, 87380–87397. doi:10.1109/ACCESS.2023.3304544

Eddy, E., Scheme, E. J., and Bateman, S. (2023c) “A framework and call to action for
the future development of EMG-based input in HCI,” in Proceedings of the 2023 CHI
conference on human factors in computing systems, 23. New York, NY, USA: Association
for Computing Machinery, 1–23. doi:10.1145/3544548.3580962

Englehart, K., and Hudgins, B. (2003). A robust, real-time control scheme for
multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50, 848–854. doi:10.
1109/TBME.2003.813539

Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., et al. (2014).
The extraction of neural information from the surface EMG for the control of upper-
limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst.
Rehabilitation Eng. 22, 797–809. doi:10.1109/TNSRE.2014.2305111

Farina, D., Merletti, R., and Enoka, R. M. (2004). The extraction of neural strategies
from the surface EMG. J. Appl. physiology 96, 1486–1495. doi:10.1152/japplphysiol.
01070.2003

Farina, D., Vujaklija, I., Brånemark, R., Bull, A. M., Dietl, H., Graimann, B., et al.
(2023). Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed.
Eng. 7, 473–485. doi:10.1038/s41551-021-00732-x

Fougner, A., Scheme, E., Chan, A. D. C., Englehart, K., and Stavdahl, Ã. (2011).
Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans.
Neural Syst. Rehabilitation Eng. 19, 644–651. doi:10.1109/TNSRE.2011.2163529

Friedewald, M., and Raabe, O. (2011). Ubiquitous computing: an overview of
technology impacts. Telematics Inf. 28, 55–65. doi:10.1016/j.tele.2010.09.001

Galvez, D., Diamos, G., Ciro, J., Cerón, J. F., Achorn, K., Gopi, A., et al. (2021). The
people’s speech: a large-scale diverse English speech recognition dataset for commercial
usage. Corr. abs/2111, 09344.

Geng, C., Huang, S.-j., and Chen, S. (2020). Recent advances in open set recognition: a
survey. IEEE Trans. pattern analysis Mach. Intell. 43, 3614–3631. doi:10.1109/tpami.
2020.2981604

Geng, W., Du, Y., Jin, W., Wei, W., Hu, Y., and Li, J. (2016). Gesture recognition by
instantaneous surface EMG images. Sci. Rep. 6, 36571. doi:10.1038/srep36571

Hahne, J. M., BieÃŸmann, F., Jiang, N., Rehbaum, H., Farina, D., Meinecke, F. C.,
et al. (2014). Linear and nonlinear regression techniques for simultaneous and
proportional myoelectric control. IEEE Trans. Neural Syst. Rehabilitation Eng. 22,
269–279. doi:10.1109/TNSRE.2014.2305520

Haque, F., Nancel, M., and Vogel, D. (2015). “Myopoint: pointing and clicking using
forearm mounted electromyography and inertial motion sensors,” in Proceedings of the
33rd annual ACM conference on human factors in computing systems (New York, NY,
USA: Association for Computing Machinery), 15, 3653–3656. doi:10.1145/2702123.
2702133

Hargrove, L. J., Miller, L. A., Turner, K., and Kuiken, T. A. (2017). Myoelectric pattern
recognition outperforms direct control for transhumeral amputees with targeted muscle
reinnervation: a randomized clinical trial. Sci. Rep. 7, 13840. doi:10.1038/s41598-017-
14386-w

Hermans, A., Beyer, L., and Leibe, B. (2017). In defense of the triplet loss for person
re-identification. Corr. abs/1703, 07737.

Honorof, M. (2015). Myo gesture control armband review. Available at: https://www.
tomsguide.com/us/myo-gesture-control-armband,review-2870.html.

Huang, G., Zhang, D., Zheng, X., and Zhu, X. (2010). “An EMG-based handwriting
recognition through dynamic time warping,” in 2010 annual international conference of
the IEEE engineering in medicine and biology, 4902–4905. doi:10.1109/IEMBS.2010.
5627246

Huang, H. H., Hargrove, L. J., Ortiz-Catalan, M., and Sensinger, J. W. (2024).
Integrating upper-limb prostheses with the human body: technology advances,
readiness, and roles in human–prosthesis interaction. Annu. Rev. Biomed. Eng. 26,
503–528. doi:10.1146/annurev-bioeng-110222-095816

Hudgins, B., Parker, P., and Scott, R. (1993). A new strategy for multifunction
myoelectric control. IEEE Trans. Biomed. Eng. 40, 82–94. doi:10.1109/10.204774

Infinite (2024). Infinite biomedical technologies. Available at: https://www.i-
biomed.com/.

Jiang, X., Liu, X., Fan, J., Dai, C., Clancy, E. A., and Chen,W. (2022). Random channel
masks for regularization of least squares-based finger EMG-force modeling to improve
cross-day performance. IEEE Trans. Neural Syst. Rehabilitation Eng. 30, 2157–2167.
doi:10.1109/TNSRE.2022.3194246

Jiang, X., Ma, C., and Nazarpour, K. (2024). One-shot random forest model
calibration for hand gesture decoding. J. Neural Eng. 21, 016006. doi:10.1088/1741-
2552/ad1786

Karolus, J., Thanheiser, S., Peterson, D., Viot, N., Kosch, T., Schmidt, A., et al. (2022).
Imprecise but fun: playful interaction using electromyography. Proc. ACM Hum.-
Comput. Interact. 6, 1–21. doi:10.1145/3546725

Kerber, F., Lessel, P., and Krüger, A. (2015). “Same-side hand interactions with arm-
placed devices using EMG,” in Proceedings of the 33rd annual ACM conference extended
abstracts on human factors in computing systems (New York, NY, USA: Association for
Computing Machinery), 1367–1372. doi:10.1145/2702613.2732895

Khushaba, R. N., Al-Timemy, A. H., Samuel, O. W., and Scheme, E. J. (2022).
Myoelectric control with fixed convolution-based time-domain feature extraction:
exploring the spatio–temporal interaction. IEEE Trans. Human-Machine Syst. 52,
1247–1257. doi:10.1109/THMS.2022.3146053

Kim, K.-T., Guan, C., and Lee, S.-W. (2019). A subject-transfer framework based on
single-trial EMG analysis using convolutional neural networks. IEEE Trans. Neural Syst.
Rehabilitation Eng. 28, 94–103. doi:10.1109/tnsre.2019.2946625

Koskimäki, H., Siirtola, P., and Röning, J. (2017). “Myogym: introducing an open gym
data set for activity recognition collected using myo armband,” in Proceedings of the
2017 ACM international joint conference on pervasive and ubiquitous computing and
proceedings of the 2017 ACM international symposium on wearable computers (New
York, NY, USA: Association for Computing Machinery), 537–546. doi:10.1145/
3123024.3124400

Kumar, P., Phinyomark, A., and Scheme, E. (2021). “Verification-based design of a
robust EMG wake word,” in 2021 43rd annual international conference of the IEEE
engineering in medicine and biology society (EMBC) (IEEE), 638–642.

Labs, C., Sussillo, D., Kaifosh, P., and Reardon, T. (2024). A generic noninvasive neuromotor
interface for human-computer interaction. bioRxiv. doi:10.1101/2024.02.23.581779

Lafreniere, B. R., Jonker, T., Santosa, S., Parent, M., Glueck, M., Grossman, T., et al.
(2021). “False positives vs. false negatives: the effects of recovery time and cognitive
costs on input error preference,” in The 34th annual ACM symposium on user interface
software and technology (New York, NY, USA: Association for Computing Machinery),
54–68. doi:10.1145/3472749.3474735

Leavy, S. (2018). “Gender bias in artificial intelligence: the need for diversity and
gender theory in machine learning,” in Proceedings of the 1st international workshop on
gender equality in software engineering (New York, NY, USA: Association for
Computing Machinery), 14–16. doi:10.1145/3195570.3195580

Le Guen, V., and Thome, N. (2019). Shape and time distortion loss for training deep
time series forecasting models. Adv. neural Inf. Process. Syst. 32.

Li, C., Ma, Z., Yao, L., and Zhang, D. (2013). “Improvements on EMG-based
handwriting recognition with DTW algorithm,” in 2013 35th annual international
conference of the IEEE engineering in medicine and biology society (EMBC), 2144–2147.
doi:10.1109/EMBC.2013.6609958

Frontiers in Bioengineering and Biotechnology frontiersin.org23

Eddy et al. 10.3389/fbioe.2024.1463377

https://doi.org/10.1109/86.867872
https://doi.org/10.1109/86.867872
https://doi.org/10.1109/EMBC44109.2020.9176615
https://coaptengineering.com/
https://doi.org/10.1109/TNSRE.2019.2896269
https://doi.org/10.3389/fbioe.2020.00158
https://doi.org/10.1145/3479162.3479170
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/msp.2012.2211477
https://doi.org/10.1109/msp.2012.2211477
https://doi.org/10.1109/TCDS.2018.2884942
https://doi.org/10.1109/EMBC.2014.6944540
https://doi.org/10.1109/SMC53992.2023.10394393
https://doi.org/10.1109/SMC53992.2023.10394393
https://doi.org/10.1088/1741-2552/ad4915
https://doi.org/10.1109/ACCESS.2023.3304544
https://doi.org/10.1145/3544548.3580962
https://doi.org/10.1109/TBME.2003.813539
https://doi.org/10.1109/TBME.2003.813539
https://doi.org/10.1109/TNSRE.2014.2305111
https://doi.org/10.1152/japplphysiol.01070.2003
https://doi.org/10.1152/japplphysiol.01070.2003
https://doi.org/10.1038/s41551-021-00732-x
https://doi.org/10.1109/TNSRE.2011.2163529
https://doi.org/10.1016/j.tele.2010.09.001
https://doi.org/10.1109/tpami.2020.2981604
https://doi.org/10.1109/tpami.2020.2981604
https://doi.org/10.1038/srep36571
https://doi.org/10.1109/TNSRE.2014.2305520
https://doi.org/10.1145/2702123.2702133
https://doi.org/10.1145/2702123.2702133
https://doi.org/10.1038/s41598-017-14386-w
https://doi.org/10.1038/s41598-017-14386-w
https://www.tomsguide.com/us/myo-gesture-control-armband,review-2870.html
https://www.tomsguide.com/us/myo-gesture-control-armband,review-2870.html
https://doi.org/10.1109/IEMBS.2010.5627246
https://doi.org/10.1109/IEMBS.2010.5627246
https://doi.org/10.1146/annurev-bioeng-110222-095816
https://doi.org/10.1109/10.204774
https://www.i-biomed.com/
https://www.i-biomed.com/
https://doi.org/10.1109/TNSRE.2022.3194246
https://doi.org/10.1088/1741-2552/ad1786
https://doi.org/10.1088/1741-2552/ad1786
https://doi.org/10.1145/3546725
https://doi.org/10.1145/2702613.2732895
https://doi.org/10.1109/THMS.2022.3146053
https://doi.org/10.1109/tnsre.2019.2946625
https://doi.org/10.1145/3123024.3124400
https://doi.org/10.1145/3123024.3124400
https://doi.org/10.1101/2024.02.23.581779
https://doi.org/10.1145/3472749.3474735
https://doi.org/10.1145/3195570.3195580
https://doi.org/10.1109/EMBC.2013.6609958
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1463377


Li, J., Deng, L., Gong, Y., and Haeb-Umbach, R. (2014). An overview of noise-robust
automatic speech recognition. IEEE/ACM Trans. Audio, Speech, Lang. Process. 22,
745–777. doi:10.1109/TASLP.2014.2304637

Li, Y., Kumar, R., Lasecki, W. S., and Hilliges, O. (2020). “Artificial intelligence for
HCI: a modern approach,” in Extended abstracts of the 2020 CHI conference on human
factors in computing systems (New York, NY, USA: Association for Computing
Machinery), 1–8. doi:10.1145/3334480.3375147

Lin, X., Zhang, X., Zhang, X., Chen, X., and Chen, X. (2023). DSDAN: Dual-step
domain adaptation network based on bidirectional knowledge distillation for cross-user
myoelectric pattern recognition. IEEE Sensors J. 23, 26765–26775. doi:10.1109/jsen.
2023.3305619

Lock, B., Englehart, K., and Hudgins, B. (2005). Real-time myoelectric control in a
virtual environment to relate usability vs. accuracy. Myoelectric Symp. (Citeseer),
122–127.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021). A survey
on bias and fairness in machine learning. ACM Comput. Surv. 54, 1–35. doi:10.1145/
3457607

Melcer, E. F., Astolfi, M. T., Remaley, M., Berenzweig, A., and Giurgica-Tiron, T.
(2018). “CTRL-Labs: hand activity estimation and real-time control from
neuromuscular signals,” in Extended abstracts of the 2018 CHI conference on human
factors in computing systems (New York, NY, USA: Association for Computing
Machinery), 1–4. doi:10.1145/3170427.3186520

Mudra (2024). Mudra band. Available at: https://mudra-band.com/.

Mulling, T., and Sathiyanarayanan, M. (2015). “Characteristics of hand gesture
navigation: a case study using a wearable device (myo),” in Proceedings of the
2015 British HCI conference (New York, NY, USA: Association for Computing
Machinery), 283–284. doi:10.1145/2783446.2783612

Nawfel, J., Englehart, K., and Scheme, E. (2021). A multi-variate approach to
predicting myoelectric control usability. IEEE Trans. Neural Syst. Rehabilitation Eng.
29, 1312–1327. doi:10.1109/TNSRE.2021.3094324

Ottobock (2024). Ottobock. Available at: https://www.ottobock.com/.

Oudah, M., Al-Naji, A., and Chahl, J. (2020). Hand gesture recognition based on
computer vision: a review of techniques. J. Imaging 6, 73. doi:10.3390/
jimaging6080073

Pandey, L., Hasan, K., and Arif, A. S. (2021). “Acceptability of speech and silent
speech input methods in private and public,” in Proceedings of the 2021 CHI conference
on human factors in computing systems (New York, NY, USA: Association for
Computing Machinery). CHI ’21. doi:10.1145/3411764.3445430

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch: an imperative style, high-performance deep learning library. Corr. abs/1912,
01703.

Phinyomark, A., Khushaba, R., and Scheme, E. (2018). Feature extraction and
selection for myoelectric control based on wearable EMG sensors. Sensors 18, 1615.
doi:10.3390/s18051615

Phinyomark, A., Limsakul, C., and Phukpattaranont, P. (2009). A novel feature
extraction for robust EMG pattern recognition, 3973. CoRR abs/0912.

Phinyomark, A., Phukpattaranont, P., and Limsakul, C. (2012). Feature reduction and
selection for EMG signal classification. Expert Syst. Appl. 39, 7420–7431. doi:10.1016/j.
eswa.2012.01.102

Phinyomark, A., and Scheme, E. (2018). EMG pattern recognition in the era of big
data and deep learning. Big Data Cognitive Comput. 2, 21. doi:10.3390/bdcc2030021

Pison (2024). Pison. Available at: https://pison.com/.

Pradhan, A., He, J., and Jiang, N. (2022). Multi-day dataset of forearm and wrist
electromyogram for hand gesture recognition and biometrics. Sci. Data 9, 733. doi:10.
1038/s41597-022-01836-y

Rawat, S., Vats, S., and Kumar, P. (2016). “Evaluating and exploring the myo
armband,” in 2016 international conference system modeling and advancement in
research trends (SMART), 115–120. doi:10.1109/SYSMART.2016.7894501

Robertson, J. W., Englehart, K. B., and Scheme, E. J. (2019). Effects of confidence-
based rejection on usability and error in pattern recognition-based myoelectric control.
IEEE J. Biomed. Health Inf. 23, 2002–2008. doi:10.1109/JBHI.2018.2878907

Rodriguez, S. (2019). Facebook agrees to acquire brain-computing start-up CTRL-
labs. CNBC. Available at: https://www.cnbc.com/2019/09/23/facebook-announces-
acquisition-of-brain-computing-start-up-ctrl-labs.html.

Rodríguez-Fdez, I., Canosa, A., Mucientes, M., and Bugarín, A. (2015). “STAC: a web
platform for the comparison of algorithms using statistical tests,” in Proceedings of the
2015 IEEE international conference on fuzzy systems (FUZZ-IEEE).

Sakoe, H., and Chiba, S. (1978). Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans. Acoust. Speech, Signal Process. 26, 43–49. doi:10.
1109/TASSP.1978.1163055

Samuel, O. W., Zhou, H., Li, X., Wang, H., Zhang, H., Sangaiah, A. K., et al. (2018).
Pattern recognition of electromyography signals based on novel time domain features
for amputees’ limb motion classification. Comput. and Electr. Eng. 67, 646–655. doi:10.
1016/j.compeleceng.2017.04.003

Saponas, T. S., Tan, D. S., Morris, D., and Balakrishnan, R. (2008). “Demonstrating
the feasibility of using forearm electromyography for muscle-computer interfaces,” in
Proceedings of the SIGCHI conference on human factors in computing systems (New
York, NY, USA: Association for Computing Machinery), CHI ’08), 515–524. doi:10.
1145/1357054.1357138

Saponas, T. S., Tan, D. S., Morris, D., Balakrishnan, R., Turner, J., and Landay, J. A.
(2009). “Enabling always-available input with muscle-computer interfaces,” in
Proceedings of the 22nd annual ACM symposium on user interface software and
technology (New York, NY, USA: Association for Computing Machinery), 09,
167–176. doi:10.1145/1622176.1622208

Saponas, T. S., Tan, D. S., Morris, D., Turner, J., and Landay, J. A. (2010). “Making
muscle-computer interfaces more practical,” in Proceedings of the SIGCHI conference on
human factors in computing systems (New York, NY, USA: Association for Computing
Machinery), 10, 851–854. doi:10.1145/1753326.1753451

Scheme, E., and Englehart, K. (2011). Electromyogram pattern recognition for control
of powered upper-limb prostheses: state of the art and challenges for clinical use.
J. Rehabilitation Res. and Dev. 48, 643. doi:10.1682/jrrd.2010.09.0177

Scheme, E. J., Hudgins, B. S., and Englehart, K. B. (2013). Confidence-based rejection
for improved pattern recognition myoelectric control. IEEE Trans. Biomed. Eng. 60,
1563–1570. doi:10.1109/TBME.2013.2238939

Smith, L. H., Hargrove, L. J., Lock, B. A., and Kuiken, T. A. (2010). Determining the
optimal window length for pattern recognition-based myoelectric control: balancing the
competing effects of classification error and controller delay. IEEE Trans. neural Syst.
rehabilitation Eng. 19, 186–192. doi:10.1109/tnsre.2010.2100828

Smith, L. H., Kuiken, T. A., and Hargrove, L. J. (2014). Real-time simultaneous and
proportional myoelectric control using intramuscular EMG. J. neural Eng. 11, 066013.
doi:10.1088/1741-2560/11/6/066013

Speicher, M., Hall, B. D., and Nebeling, M. (2019). “What is mixed reality?,” in Proceedings
of the 2019 CHI conference on human factors in computing systems (New York, NY, USA:
Association for Computing Machinery), 19, 1–15. doi:10.1145/3290605.3300767

Statt, N. (2019). Facebook acquires neural interface startup CTRL-Labs for its mind-
reading wristband. Verge 2019. Available at: https://www.theverge.com/2019/9/23/
20881032/facebook-ctrl-labs-acquisition-neural-interface-armband-ar-vr-deal.

Szymaniak, K., Krasoulis, A., and Nazarpour, K. (2022). Recalibration of myoelectric control
with active learning. Front. Neurorobotics 16, 1061201. doi:10.3389/fnbot.2022.1061201

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., et al. (2020).
Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 21, 1–6.

Torres, T. (2015). Myo gesture control armband review. PCMag.Available at: https://
www.pcmag.com/reviews/myo-gesture-control-armband.

Valdivieso Caraguay, Ã. L., Vásconez, J. P., Barona López, L. I., and Benalcázar, M. E.
(2023). Recognition of hand gestures based on EMG signals with deep and double-deep
q-networks. Sensors 23, 3905. doi:10.3390/s23083905

Vásconez, J. P., Barona López, L. I., Ángel, L. V. C., and Benalcázar, M. E. (2023). A
comparison of EMG-based hand gesture recognition systems based on supervised and
reinforcement learning. Eng. Appl. Artif. Intell. 123, 106327. doi:10.1016/j.engappai.2023.106327

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. Adv. neural Inf. Process. Syst. 30.

Weiser, M. (1993). Some computer science issues in ubiquitous computing. Commun.
ACM 36, 75–84. doi:10.1145/159544.159617

Weiser, M. (1999). The computer for the 21st century. ACM Sigmob. Mob. Comput.
Commun. Rev. 3, 3–11. doi:10.1145/329124.329126

Woodward, R. B., and Hargrove, L. J. (2019). Adapting myoelectric control in real-
time using a virtual environment. J. neuroengineering rehabilitation 16, 11–12. doi:10.
1186/s12984-019-0480-5

Xiong, D., Zhang, D., Chu, Y., Zhao, Y., and Zhao, X. (2024). Intuitive human-robot-
environment interaction with EMG signals: a review. IEEE/CAA J. Automatica Sinica
11, 1075–1091. doi:10.1109/JAS.2024.124329

Xu, M., Chen, X., Ruan, Y., and Zhang, X. (2024). Cross-user electromyography pattern
recognition based on a novel spatial-temporal graph convolutional network. IEEE Trans.
Neural Syst. Rehabilitation Eng. 32, 72–82. doi:10.1109/TNSRE.2023.3342050

Zabihi, S., Rahimian, E., Asif, A., and Mohammadi, A. (2023). TraHGR: transformer
for hand gesture recognition via electromyography. IEEE Trans. Neural Syst.
Rehabilitation Eng. 31, 4211–4224. doi:10.1109/TNSRE.2023.3324252

Zadeh, A. S., Calitz, A. P., and Greyling, J. H. (2018). “Evaluating a biosensor-based
interface to recognize hand-finger gestures using a myo armband,” in Proceedings of the
annual conference of the South African institute of computer scientists and information
technologists (New York, NY, USA: Association for Computing Machinery), 18,
229–238. doi:10.1145/3278681.3278709

Zhang, X., Zhang, X., Wu, L., Li, C., Chen, X., and Chen, X. (2022). Domain
adaptation with self-guided adaptive sampling strategy: feature alignment for cross-
user myoelectric pattern recognition. IEEE Trans. Neural Syst. Rehabilitation Eng. 30,
1374–1383. doi:10.1109/TNSRE.2022.3173946

Zhao, Y., Nasrullah, Z., and Li, Z. (2019). Pyod: a python toolbox for scalable outlier
detection. J. Mach. Learn. Res. 20, 1–7.

Frontiers in Bioengineering and Biotechnology frontiersin.org24

Eddy et al. 10.3389/fbioe.2024.1463377

https://doi.org/10.1109/TASLP.2014.2304637
https://doi.org/10.1145/3334480.3375147
https://doi.org/10.1109/jsen.2023.3305619
https://doi.org/10.1109/jsen.2023.3305619
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3170427.3186520
https://mudra-band.com/
https://doi.org/10.1145/2783446.2783612
https://doi.org/10.1109/TNSRE.2021.3094324
https://www.ottobock.com/
https://doi.org/10.3390/jimaging6080073
https://doi.org/10.3390/jimaging6080073
https://doi.org/10.1145/3411764.3445430
https://doi.org/10.3390/s18051615
https://doi.org/10.1016/j.eswa.2012.01.102
https://doi.org/10.1016/j.eswa.2012.01.102
https://doi.org/10.3390/bdcc2030021
https://pison.com/
https://doi.org/10.1038/s41597-022-01836-y
https://doi.org/10.1038/s41597-022-01836-y
https://doi.org/10.1109/SYSMART.2016.7894501
https://doi.org/10.1109/JBHI.2018.2878907
https://www.cnbc.com/2019/09/23/facebook-announces-acquisition-of-brain-computing-start-up-ctrl-labs.html
https://www.cnbc.com/2019/09/23/facebook-announces-acquisition-of-brain-computing-start-up-ctrl-labs.html
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1016/j.compeleceng.2017.04.003
https://doi.org/10.1016/j.compeleceng.2017.04.003
https://doi.org/10.1145/1357054.1357138
https://doi.org/10.1145/1357054.1357138
https://doi.org/10.1145/1622176.1622208
https://doi.org/10.1145/1753326.1753451
https://doi.org/10.1682/jrrd.2010.09.0177
https://doi.org/10.1109/TBME.2013.2238939
https://doi.org/10.1109/tnsre.2010.2100828
https://doi.org/10.1088/1741-2560/11/6/066013
https://doi.org/10.1145/3290605.3300767
https://www.theverge.com/2019/9/23/20881032/facebook-ctrl-labs-acquisition-neural-interface-armband-ar-vr-deal
https://www.theverge.com/2019/9/23/20881032/facebook-ctrl-labs-acquisition-neural-interface-armband-ar-vr-deal
https://doi.org/10.3389/fnbot.2022.1061201
https://www.pcmag.com/reviews/myo-gesture-control-armband
https://www.pcmag.com/reviews/myo-gesture-control-armband
https://doi.org/10.3390/s23083905
https://doi.org/10.1016/j.engappai.2023.106327
https://doi.org/10.1145/159544.159617
https://doi.org/10.1145/329124.329126
https://doi.org/10.1186/s12984-019-0480-5
https://doi.org/10.1186/s12984-019-0480-5
https://doi.org/10.1109/JAS.2024.124329
https://doi.org/10.1109/TNSRE.2023.3342050
https://doi.org/10.1109/TNSRE.2023.3324252
https://doi.org/10.1145/3278681.3278709
https://doi.org/10.1109/TNSRE.2022.3173946
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1463377

	Big data in myoelectric control: large multi-user models enable robust zero-shot EMG-based discrete gesture recognition
	1 Introduction
	1.1 Scope and contribution

	2 Methods
	2.1 Data acquisition
	2.1.1 Dataset 1: EMG-EPN612
	2.1.2 Dataset 2: Discrete confounding factors (Myo DisCo)

	2.2 Discrete control
	2.2.1 The Myo Armband
	2.2.2 Majority vote linear discriminant analysis (MVLDA)
	2.2.3 Dynamic time warping (DTW)
	2.2.4 Long short-term memory (LSTM)


	3 Findings
	3.1 User-dependent models
	3.1.1 Methods
	3.1.2 Results
	3.1.3 Discussion

	3.2 Many-subject cross-user models
	3.2.1 Methods
	3.2.2 Results
	3.2.3 Discussion

	3.3 Effect of window and increment length
	3.3.1 Methods
	3.3.2 Results
	3.3.3 Discussion

	3.4 Effect of number of subjects and repetitions
	3.4.1 Methods
	3.4.2 Results
	3.4.3 Discussion

	3.5 Feature selection
	3.5.1 Methods
	3.5.2 Results
	3.5.3 Discussion

	3.6 Effect of bias in the training data
	3.6.1 Methods
	3.6.2 Results
	3.6.3 Discussion

	3.7 Effect of gesture selection
	3.7.1 Methods
	3.7.2 Results
	3.7.3 Discussion

	3.8 Effect of transfer learning
	3.8.1 Methods
	3.8.1.1 Traditional Transfer Learning
	3.8.1.2 Contrastive Transfer Learning
	3.8.2 Results
	3.8.3 Discussion

	3.9 Generalization to a new dataset with confounding factors
	3.9.1 Methods
	3.9.2 Results
	3.9.3 Discussion

	3.10 Confidence-based rejection
	3.10.1 Methods
	3.10.2 Results
	3.10.3 Discussion


	4 Discussion
	4.1 Outlook on zero-shot approaches
	4.2 Outlook on transfer learning approaches
	4.3 Outlook on online discrete gesture recognition
	4.4 A coming together for recording large datasets

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


