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Introduction: Acne vulgaris, one of the most common skin conditions, affects up
to 85% of late adolescents, currently no universally accepted assessment system.
The biomechanical properties of skin provide valuable information for the
assessment and management of skin conditions. Wave-based optical
coherence elastography (OCE) quantitatively assesses these properties of
tissues by analyzing induced elastic wave velocities. However, velocity
estimation methods require significant expertise and lengthy image processing
times, limiting the clinical translation of OCE technology. Recent advances in
machine learning offer promising solutions to simplify velocity
estimation process.

Methods: In this study, we proposed a novel end-to-end deep-learning model,
named velocity prediction network (VP-Net), aiming to accurately predict elastic
wave velocity from raw OCE data of in vivo healthy and abnormal human skin. A
total of 16,424 raw phase slices from 1% to 5% agar-based tissue-mimicking
phantoms, 28,270 slices from in vivo human skin sites including the palm,
forearm, back of the hand from 16 participants, and 580 slices of facial closed
comedones were acquired to train, validate, and test VP-Net.

Results: VP-Net demonstrated highly accurate velocity prediction performance
compared to other deep-learning-based methods, as evidenced by small
evaluation metrics. Furthermore, VP-Net exhibited low model complexity and
parameter requirements, enabling end-to-end velocity prediction from a single
raw phase slice in 1.32 ms, enhancing processing speed by a factor of ~100
compared to a conventional wave velocity estimation method. Additionally, we
employed gradient-weighted class activation maps to showcase VP-Net’s
proficiency in discerning wave propagation patterns from raw phase slices.
VP-Net predicted wave velocities that were consistent with the ground truth
velocities in agar phantom, two age groups (20s and 30s) of multiple human skin
sites and closed comedones datasets.
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Discussion: This study indicates that VP-Net could rapidly and accurately predict
elastic wave velocities related to biomechanical properties of in vivo healthy and
abnormal skin, offering potential clinical applications in characterizing skin aging, as
well as assessing and managing the treatment of acne vulgaris.

KEYWORDS

optical coherence elastography, deep learning, convolutional neuronal network (CNN),
surface acoustic wave (SAW), agar-based tissue-mimicking phantoms, In vivo human skin,
closed comedones

1 Introduction

Skin, as the body’s largest organ, serves to regulate body fluid and
temperature and forms a protective barrier shielding the organism
against pathogens and injuries from the environment (Proksch et al.,
2008). Skin disease is one of the most common human illnesses,
affecting nearly 900 million people, more than one-third of the
global population (Hay et al., 2014). Among these, acne vulgaris is a
prevalent chronic skin inflammatory disease affecting up to 85% of late
adolescents (Lynn et al., 2016), resulting in various consequences,
including scarring, dyspigmentation, and psychological impacts (Ogé
et al., 2019). However, there is currently no universally accepted
assessment system for acne vulgaris.

The biomechanical properties of skin are primarily determined by
its structural components (Joodaki and Panzer, 2018). Elastography is
the functional modality to provide information on the biomechanical
properties of tissues. Among different elastography modalities, optical
coherence elastography (OCE), derived from optical coherence
tomography (OCT), has an ultra-fast sampling rate, micrometer
imaging resolutions and millimeter depth penetration (~one to
two mm) (Larin and Sampson, 2017). A notable branch of OCE
technology is wave-based OCE, an in situ non-destructive approach
that quantitatively estimates biomechanical properties in soft tissues
using elastic waves (Liang and Boppart, 2009). Biomechanical
properties, especially elasticity (Everett and Sommers, 2013), have
been proven to be a potential biomarker for characterizing skin
aging (Couturaud et al., 1995), understanding physiology,
pathological cases, and monitoring treatment (Balbir-Gurman et al.,
2002; Neto et al., 2013; Killaars et al., 2015). In OCE, wave propagation
in tissue occurs when an elastic wave is generated by excitation and then
transmits through other regions of the tissue. The velocity of the wave is
intrinsically related to the biomechanical properties of the tissues (Kirby
et al., 2017). OCE’s millimeter penetration depth confines motion
measurements to regions near tissue boundaries, where surface
acoustic waves (SAWs) are the dominant wave type (Zvietcovich
and Larin, 2022). SAW velocities can be estimated by analyzing the
phase term of the complex OCT signal. Typically, the phase difference
between successive scans is utilized to detect sub-resolution axial
differential displacement within a sample (Song et al., 2013),
followed by the use of a time-of-flight approach to measure SAW
velocities. By selecting an appropriate elasticity model, the
biomechanical properties of the tissue can then be determined
(Zvietcovich and Larin, 2022). While wave-based OCE has gained
increasing interest in recent years, its application to in vivo skin
conditions remains in its early stages. Two pre-clinical studies have
shown the ability of wave-based OCE to characterize mechanical
properties in animal models of systemic sclerosis (Du et al., 2016)
and skin burns (Liu et al., 2024). However, only one wave-based OCE

system has been translated to a clinical trial in human subjects for the
assessment of systemic sclerosis in vivo (Liu et al., 2019). The major
challenges limiting the clinical translation of OCE technology are the
high level of expertise required and the inability to produce real-time
results (Sun et al., 2011). In particular, biomechanical property analysis
often demands complex image processing for wave feature extraction
and velocity estimation (Song et al., 2015; Kirby et al., 2019), which
could extend processing times to potentially several minutes or longer,
limiting its use in real-time clinical settings.

Deep learning holds considerable promise for enhancing the
efficiency of the processing of wave-based OCE by discerning and
analyzing raw data. Currently, deep learning-assisted OCE analysis is
still in the early stages. Schlaefer’s group (Neidhardt et al., 2020;
Neidhardt et al., 2021; Neidhardt et al., 2023) demonstrated elastic
velocity prediction for OCE data by using convolutional neural
networks (CNNs) with dense connections. These methods have been
proved based on homogeneous tissue-mimicking materials (Neidhardt
et al., 2020; Neidhardt et al., 2021) and ex vivo chicken heart (Neidhardt
et al., 2023) studies. However, there are inherent differences in structural
(Labroo et al., 2021) and physical (Godin and Touitou, 2007) properties
between heterogeneous animal and human tissue. Additionally,
involuntary movements (Kirkpatrick et al., 2006) and breathing
motion artefacts (Fang et al., 2019) frequently occur during in vivo
humanOCE acquisitions. Consequently, their CNNmodelsmight need
to adapt the intricate textures of wave patterns from in vivo human data,
instead of focusing on velocity prediction, leading to less optimal for in
vivo human applications.

In this study, we propose a novel velocity prediction network
(VP-Net), that predicts bulk (body) wave velocities in vivo human
healthy and abnormal skin sites from raw OCE data. The network
architecture incorporates a squeeze-and-excitation (SE) block (Hu
et al., 2018) and a separable convolution block, enabling efficient
feature reuse and integration without significantly increasing model
complexity. Compared to existing CNN models, VP-Net could
accurately predict elastic wave velocity from each raw phase slice
directly, maintaining the lowest model complexity and inference
time. VP-Net demonstrated high accuracy in predicting elastic wave
velocities in multiple healthy skin sites and distinguishing age-
related velocity changes between 20s and 30s age groups. Closed
comedones, a type of acne lesions (Lavers, 2014), were also
investigated in this study. VP-Net’s successfully predicted high
velocities in comedones, indicating elevated skin elasticity. To the
best of our knowledge, this is the first study to quantify the
biomechanical properties of facial acne lesions using OCE
technology and to develop an elastic wave velocity prediction
model in human in vivo using deep learning. VP-Net achieved a
processing speed of 1.32 ms per slice, approximately 100 times faster
than a conventional velocity estimation method. Therefore, VP-Net
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offers real-time elastic wave velocity prediction in human skin in
vivo, providing potential clinical applications in characterizing skin
aging, as well as assessing and managing the treatment of
acne vulgaris.

Our study has five main contributions: 1) Our model
demonstrated consistent and repeatable velocity predictions on
tissue-mimicking phantoms, which are homogenous and have
consistent biomechanical properties for each concentration. 2) To
the best of our knowledge, this is the first study to deploy a deep
learning method to directly predict biomechanical property-related
velocities for in vivo human healthy and abnormal datasets,
showcasing its potential for skin condition diagnosis. 3) We
conducted a comprehensive comparison with various neural
networks and an ablation study on VP-Net to validate the
efficacy of our proposed model. 4) Compared to existing models,
the proposed VP-Net has the fastest inference time and the lowest
model complexity while providing accurate SAW velocity
predictions, even when applications shifted from tissue-
mimicking materials to in vivo human skin. 5) We used
gradient-based class activation maps (Grad-CAM) to visualize the
model’s process in predicting velocities.

This paper is structured as follows: The Methods section
describes the details of our proposed velocity prediction deep
learning model and the OCE data processing strategies to
generate raw phase slices and ground truth velocities. The Results
section presents the performance metrics, ablation study, and visual
explanations of our network’s efficacy in predicting velocities.
Additionally, the predicted bulk velocities of agar phantoms and
healthy skin sites from participants across two age groups, as well as
abnormal skin, are shown. Finally, we conclude the paper with a
summary of our key contributions, a discussion on the factors
affecting model performance, and potential improvements for
future research.

2 Methods

2.1 Definition of deep learning-based OCE
velocity prediction pipeline

To facilitate accurate and fast determination of biomechanical
properties, specifically Young’s modulus, from OCE imaging, an
automated prediction of bulk SAW velocity is essential. Figure 1
illustrates a schematic of our proposed OCE velocity prediction pipeline.

In this study, we designed our neural model to function as a
linear regression model to predict SAW velocity from the input of
single raw phase slices, Si ∈ RM×M

+ , with i � 1,/, L (L≤ 300) where
the number of images L is specified according to the dataset used in
the experimental results andM � 320. The definition is provided in
Equation 1:

V̂Ri � f Si( ) (1)
where V̂Ri∈ R+,with i � 1,/, L denotes the model-predicted
velocity at a given depth layer (i), and f is the neural model
employed in our study. During the training stage, the model-
predicted velocity was compared with the ground truth velocity
(VRi) calculated by a conventional elastic wave velocity estimation
(Song et al., 2013). This comparison facilitated the calculation of the
training loss, which subsequently guided the updating of the model’s
trainable parameters.

2.2 Velocity prediction network (VP-Net)
architecture

The architecture of our proposed velocity prediction network
(VP-Net) is depicted in Figure 2. VP-Net includes four downsample
stages to extract the features and reduce the size of the feature maps

FIGURE 1
Schematic of the deep learning-based optical coherence tomography elastography (OCE) velocity prediction pipeline.
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from the input 2D raw phase signal in spatial-temporal dimensions,
thereby predicting the velocity. VP-Net has fewer parameters and
less computational demand than models like VGG16 (Simonyan
and Zisserman, 2014) and ResNet18 (He et al., 2016), significantly
reducing the resources for model inference and training. VP-Net is
mainly formed with three blocks: convolution-batch normalization-
ReLU (CBR) block, separable convolution block, and SE-Block. The
network is described in detail in the following sections.

2.2.1 CBR block
As shown in Figure 2A, the CBR Block consists of a 2D

convolution layer (Conv2D), a batch normalization layer (BN),
and a ReLU activation layer. Taking the input is Fin, and the
output is Fout, the forward process of the CBR block can be
written as Equation 2:

Fout � ReLU BN Conv2D Fin( )( )( ) (2)
In terms of the setting of five CBR blocks in VP-Net, as shown

in Figure 2, the first CBR block has a kernel size of 11, a stride of 4,
and a filter size of 16, providing a trainable and overlapped image
patch extraction function. Moreover, the large kernel size
(i.e., 11) can provide a larger receptive field, which is essential
to this study since the input raw phase signals include a time
signal. The second CBR block has a kernel size of 3, a stride of 1,
and a filter size of 16, further extracting the features from the
image patches from the first CBR block. The third and fourth
CBR blocks have the same kernel size of 7, a stride of 2, and a filter
size of 32 and 64, respectively. The fifth CBR block has a kernel
size of 3, a stride of 1, and a filter size of 128.

2.2.2 Separable conv block
To achieve a lower model complexity, we introduced the

separable convolution block to VP-Net. Compared to the 2D
convolution layer, a separable convolution block can extract the
features based on the channel-wise and spatial-wise, while reducing
the model complexity and computational resource demanded.

Assume the input feature is Fin, and the output feature is Fout,
the forward process of the separable conv block can be written as
Equation 3:

Fout � ReLU BN Conv1× 1 ReLU BN ConvDw Fin( )( )( )( )( )( ) (3)
Regarding the setup of the three separable conv blocks in VP-

Net, all depth-wise convolution layers and 1 × 1 convolution layers
have the same filter size as the Fin. The kernel size of all depth-wise
convolution layers is 3. The stride of all depth-wise convolution
layers and 1 × 1 convolution layers is 1.

2.2.3 SE block
To improve the efficiency of the feature reuse, we also

introduced the squeeze-and-excitation (SE) block (Hu et al.,
2018) to VP-Net, which can improve model performance by
adaptively recalibrating channel-wise feature responses, thereby
improving the model’s representational power and accuracy of
velocity prediction. Taking the input as Fin with a shape of H ×
W × C, and the output is Fout, the forward process of the SE block
can be expressed as Equation 4:

Fout � Fin × Sigmoid Linear1 ReLU Linear2 GAP Fin( )( )( )( )( ) (4)
where GAP is global averaging pooling. After processing by GAP,
the shape of the feature is converted from H × W × C to 1 × 1 × C.
Linear stands for linear projection operation and the units of the
Linear1 is set as C/4, and the units of the Linear2 is set as C.

2.3 Data pre-processing

The acquired raw OCE volume (512 depth × 512 lateral ×
512 time pixels) were cropped to 320 × 320 pixels along the lateral
and time axes to get rid of the head of the piezoelectric actuator and
retain the region of interest. The raw phase (φ(x, z, t)) of the
complex OCT data was linear normalized to be in the range of
0–1 by Equation 5:

FIGURE 2
Architecture of VP-Net model. (A) CBR Block. (B) Separable Conv Block. (C) SE-Block.
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φNor x, z, t( ) � φ x, z, t( )
π

× 0.5( ) + 0.5 (5)

The temporal-spatial normalized raw phase slices served as the
input of deep learning models.

2.4 Ground truth elastic wave velocity
estimation

In order to provide accurate bulk SAW velocities as ground truth
for model development, a conventional wave velocity estimation
method was employed, including phase change measurement, noise
filter applications for wave extraction and a time-of-flight approach for
velocity estimation. First, the phase difference (Δφ(x, z, t)) between two
consecutive A-lines (along the temporal axis) at each spatial position
was calculated to compute deformation. The axial displacement at each
lateral location was then measured from the phase difference (Wang
et al., 2007). Next, the following noise filters were applied to the spatial-
temporal displacement data. A directional filter was applied to
minimize the distortion effect by reflected/refracted elastic waves on
the original forwarding waves (Kirby et al., 2019). A low pass filter with
a cutoff frequency of 2 kHz was applied to further eliminate high-
frequency noise (Kirby et al., 2019). The remaining noise was reduced
by using a 3D median filter of the kernel size of 11 × 5 in all directions
(Neidhardt et al., 2020). Finally, the displacement was normalized by
dividing it by the maximum value of each particle along the time axis.
For velocity estimation, a time-of-flight approach (Song et al., 2013) was
used, which involved tracking the main peak of the waveform along the
propagation direction. In this work, the main peak of the wavefront is
defined as the maximum of the normalized displacement along lateral
locations. For a given depth layer (i), the ground truth bulk velocity
(VRi) was estimated by calculating the slope of the space-time main
wavefront peak curve along lateral locations, expressed as Equation 6
(Song et al., 2013):

VRi � Δx
Δt (6)

Where VRi ∈ R+,with i � 1,/, L, and Δx represents the distance
traveled by the main peak of the SAWwavefront along lateral locations
during time shiftΔt. SAW velocity over the depth layer (i) was obtained
using linear least squares regression fitting the time shits to the
corresponding propagation distances (Lan et al., 2021), continuing
until L � 300 or until reaching the maximum iteration limit when
the relative difference of two continuous coefficient estimates exceeded
1 × 10-6 (L< 300). For the abnormal skin dataset, only the lesion region
was selected and fitted. In this study, the above procedures for SAW
velocity estimation were designed to provide accurate ground truth for
generating the labels needed during supervised training and did not
influence the model’s performance in velocity prediction once trained.

2.5 Experimental data acquisition
and dataset

2.5.1 Agar-based tissue-mimicking phantom
Eight concentrations of agar-based tissue-mimicking phantoms

ranging from 1% to 5% with an interval of 0.5% were fabricated. The

general protocol for producing the agar phantom has been described
in detail in our previous study (Li et al., 2015). Each phantom
underwent scanning at three locations with three repetitions. For
algorithm development, 16,424 normalized raw phase slices of agar
phantoms (sourced from 7 OCE scans for each concentration) were
used for model training. A random selection of 1,147 slices was used
for model validation, and 4,854 slices (sourced from 2 OCE scans for
each concentration) were used for model testing.

2.5.2 In vivo human healthy skin
Sixteen healthy adults, including nine males and seven females

from the 20s and 30s age groups, with no history of skin or medical
conditions, were enrolled in this study. Each participant underwent
scanning at three sites (palm, forearm, and back of hand) with three
acquisitions at each site. The study was approved by the School of
Science and Engineering Research Ethics Committee (SSEREC) of
the University of Dundee, which also conformed to the tenets of the
Declaration of Helsinki. Informed consent was obtained from each
subject prior to the OCE imaging.

For algorithm development, overall, 28,270 normalized raw
phase slices were produced from 16 participants’ OCE data. Of
them, 17,671 slices (sourced from 10 participants, with an equal split
of 5 each from the 20s and 30s age groups) were used for model
training, 4,340 slices from 2 participants (one from each age group)
were set aside for validation, and 6,259 slices from 4 independent
participants (two from each age group) were used for model test
preventing data leakage.

2.5.3 In vivo human abnormal skin
Seven facial closed comedones from two enrolled adults were

scanned using OCE imaging, with three acquisitions taken for each
comedo. For model training, we utilized 580 raw phase slices
sourced from 3 OCE scans. An additional 129 slices from 1 OCE
scan were used for validation, and 641 slices from 3 OCE scans were
used for testing.

The velocities of agar phantoms have been well studied (Yang
et al., 2022; Brewin et al., 2015), and the wave patterns of
homogeneous agar phantoms tend to be straightforward and
clear (Wang and Larin, 2015). Thus, the existing agar phantom
datasets served as a validation of our VP-Net’s accuracy.
Importantly, the wide range of agar phantom velocities covered
both healthy and abnormal human skin velocities, thereby
enhancing the model’s performance through convergence of
predictions. The imbalance between the smaller number of agar
phantom slices and the larger number of human skin slices ensured
that the model placed more weight on learning from in vivo data,
characterized by multiple wave patterns, high noise and artifacts.

2.6 Experimental setup and data acquisition

A lab-built OCE system consisting of a phase-sensitive OCT
(PhS-OCT) system and an external SAW generation system was
used in this study. Figure 3 presents the schematic of the
experimental set of the OCE system, along with photographs
capturing the agar-based tissue-mimicking phantom (Figure 3, a)
and in vivo human skin (Figure 3B) during data acquisition. The
PhS-OCT, with a central wavelength of 1,310 ± 110 nm and
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sampling frequency of 92 kHz, detected mechanically induced
SAWs in the skin. The axial sampling distance and lateral
sampling distance were measured as 4.7 μm/pixel and 21.7 μm/
pixel, respectively.

A piezoelectric actuator (PC4QR, Thorlabs Inc., Newton, NJ,
United States of America) was set at an angle of 45° contact with the
skin to generate SAW. The piezoelectric actuator was triggered by
the waveform generator, which could generate the square wave with
a frequency of 2 kHz, a peak-to-peak voltage of 10 mV, and a duty
cycle of 60%.

An M-B scanning protocol was employed to acquire the
propagation of the SAWs. One complete acquisition was
completed within 3.9 s. The size of the effective imaging plane
was ~2 mm × 11 mm (depth × lateral distance). All data was
acquired through a customized LabVIEW interface (LabView 2020;
National Instruments, Austin, TX, United States) and stored in the
computer for processing.

2.7 Model training details

All neural networks used in the study were built and trained based
on TensorFlow 2.9.0 backend (Abadi et al., 2016). The training took
place on aNvidia RTX 4090with 24GBmemory. The training epoch of
VP-Net was set as 1,000, with a batch size of 32. An Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 0.001 was used to update
trainable weights in the models. The mean-absolute-error (MAE) was
utilized as the loss function since we found that the mean-square-error
(MSE) function would bring the unstable training of all neural networks
in this study. An early stop strategy was used to save the best
performance model’s weights when the metrics validation loss of
MAE was not decreased in 30 training epochs, preventing

overfitting during the model training. Data augmentation, such as
rotation and flipping, were not used since those methods would
affect the patterns and properties of perturbations, leading to
unstable training.

2.8 Evaluation metrics

To evaluate the performance of the proposed deep learning-based
velocity prediction for OCE, MSE and MAE were used to calculate the
difference between the model-predicted velocity (V̂Ri) and the ground
truth velocity (VRi) obtained by the linear fitting of the wavefront curve.
The MSE and MAE are given by Equations 7, 8, respectively.

MSE VRi, V̂Ri( ) � VRi − V̂Ri( )2 (7)
MAE VRi, V̂Ri( ) � VRi − V̂Ri

∣∣∣∣ ∣∣∣∣ (8)

3 Results

3.1 Comparison with neural networks on
velocity prediction

The performance of our VP-Net on bulk SAW velocities of agar
and human skin datasets was evaluated with various published deep-
learning networks, including the VGG16/19 (Simonyan and
Zisserman, 2014), ResNet18/34/50/101 (He et al., 2016),
DenseNet121/169 (Huang et al., 2017), and MobileNetV2
(Sandler et al., 2018). The training details and training strategy of
the compared-used models were consistent with VP-Net. The
evaluation was based on the test set to avoid data leakage. The

FIGURE 3
Schematic of the experimental setup for the generation and detection of SAW on sample using a piezoelectric actuator and the PhS-OCT system,
and photographs of (A) agar-based tissue-mimicking phantom and (B) in vivo human skin data acquisition. DAQ, Data acquisition; NI, national instrument;
PC: polarization controller; PhS-OCT, phase-sensitive optical coherence tomography.
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evaluation metrics were MAE and MSE, and a lower value of
resultant indicated a more accurate velocity prediction.

Table 1 and Table 2 demonstrate the comparison results of MAE
andMSE among various networks based on the eight concentrations
of the agar-based tissue-mimicking phantoms from the test set. VP-
Net had the best MSE and MAE performance in the 1.5%, 3.0% and
4.0% agar phantoms. Furthermore, VP-Net had similar MAE
(0.225) and MSE (0.393) values to the mobileNetV2 (MAE:
0.183; MSE: 0.325) in the 2.5% agar phantom. However, VP-Net
had a relatively low performance in 1.0%, 3.5%, and 5.0% agar
phantoms from the test set.

Table 3 shows the comparison of VP-Net with various networks
based on in vivo human healthy and abnormal skin datasets. The
proposed VP-Net performed the best for the back of hand (MSE:
1.585; MAE: 0.992) and forearm (MAE: 0.997). The
ResNet101 demonstrated the lowest MSE (1.844) and MAE
(1.133) for the palm. For the closed comedones dataset, VP-Net
showed the second-best performance, with MSE of 1.051 and
MAE of 0.863.

3.2 Influence of VP-Net size

To investigate the influence of VP-Net size on prediction
performance and model efficiency, we varied the filter sizes
utilized in VP-Net. Our proposed VP-Net architecture included
five CBR blocks and three separable convolution blocks (Figure 2).
The baseline VP-Net (VP-Net-B) was defined with initial filter sizes
for the five CBR blocks set to FSCBR ∈ {16, 16, 32, 64, 128}, and for
the three separable convolution blocks, FSSCB ∈ {32, 64, 128}. We
also proposed two additional VP-Net sizes, called VP-Net-S
(FSCBR ∈ {16, 16, 16, 32, 64}; FSSCB ∈ {16, 32, 64}) and VP-Net-L
(FSCBR ∈ {32, 32, 64, 128, 256}; FSSCB ∈ {64, 128, 256}).

Table 4 and Table 5 compare the evaluation metrics among the
three VP-Net sizes on agar phantoms and in vivo human skin
datasets. VP-Net-L demonstrated relatively high performance in the
1%, 3%, 4.5% and 5% agar phantoms but did not achieve the best
metrics for human skin. VP-Net-B achieved the lowest MSE (1.585)
and MAE (0.992) on the back of hand, the lowest MAE (0.997) on
the forearm, and similar MSE and MAE values to VP-Net-S on the

TABLE 1 MSE of neural networks for SAW velocity prediction on agar phantoms.

Model 1.0% agar 1.5% agar 2.0% agar 2.5% agar 3.0% agar 3.5% agar 4.0% agar 4.5% agar 5.0% agar

VGG16 1.517 ± 0.309 0.223 ± 0.236 0.200 ± 0.237 0.241 ± 0.255 0.069 ± 0.099 0.760 ± 0.963 0.181 ± 0.226 0.468 ± 0.595 0.797 ± 1.007

VGG19 1.519 ± 0.366 0.213 ± 0.226 0.167 ± 0.197 0.246 ± 0.258 0.077 ± 0.108 0.725 ± 1.020 0.188 ± 0.286 0.280 ± 0.377 0.513 ± 0.648

ResNet18 4.799 ± 3.310 0.290 ± 0.365 0.330 ± 0.784 0.367 ± 0.432 0.849 ± 0.474 0.634 ± 0.776 2.354 ± 1.342 3.406 ± 2.068 5.169 ± 3.287

ResNet34 0.830 ± 0.440 0.205 ± 0.225 0.208 ± 0.330 0.203 ± 0.293 0.491 ± 0.287 0.565 ± 0.750 0.261 ± 0.305 0.525 ± 0.659 0.858 ± 1.137

ResNet50 0.217 ± 2.547 0.290 ± 0.345 1.500 ± 6.456 5.641 ± 4.618 1.746 ± 0.609 0.896 ± 1.154 0.267 ± 0.364 0.184 ± 0.246 2.334 ± 1.466

ResNet101 1.885 ± 0.329 0.305 ± 0.306 0.152 ± 0.199 0.294 ± 0.274 1.107 ± 0.383 1.571 ± 1.802 2.683 ± 1.255 3.081 ± 1.712 5.067 ± 2.817

DenseNet121 5.253 ± 2.301 1.094 ± 0.677 0.796 ± 0.925 0.388 ± 0.687 0.089 ± 0.103 0.503 ± 0.625 0.643 ± 0.577 1.264 ± 1.134 2.286 ± 1.883

DenseNet169 4.298 ± 2.212 0.559 ± 0.488 0.927 ± 1.126 0.247 ± 0.467 0.291 ± 0.226 0.558 ± 0.674 1.972 ± 1.071 2.682 ± 1.594 4.932 ± 2.783

MobileNetV2 5.024 ± 1.334 1.280 ± 0.786 0.495 ± 0.509 0.183 ± 0.309 0.162 ± 0.153 0.590 ± 0.788 0.266 ± 0.315 0.490 ± 0.606 1.058 ± 1.292

VP-Net 1.158 ± 1.294 0.121 ± 0.128 0.369 ± 0.420 0.225 ± 0.256 0.057 ± 0.090 0.742 ± 1.350 0.149 ± 0.192 0.636 ± 0.696 0.995 ± 1.074

The results shown as mean ± standard deviation; The best value of MSE, for each agar phantom highlighted in bold.

TABLE 2 MAE of neural networks for SAW velocity prediction on agar phantoms.

Model 1.0% agar 1.5% agar 2.0% agar 2.5% agar 3.0% agar 3.5% agar 4.0% agar 4.5% agar 5.0% agar

VGG16 1.225 ± 0.125 0.394 ± 0.260 0.364 ± 0.260 0.415 ± 0.262 0.209 ± 0.159 0.709 ± 0.507 0.348 ± 0.246 0.557 ± 0.397 0.727 ± 0.518

VGG19 1.224 ± 0.143 0.385 ± 0.254 0.332 ± 0.238 0.421 ± 0.263 0.223 ± 0.165 0.681 ± 0.511 0.336 ± 0.274 0.426 ± 0.315 0.583 ± 0.417

ResNet18 2.079 ± 0.689 0.436 ± 0.316 0.417 ± 0.395 0.507 ± 0.332 0.879 ± 0.274 0.652 ± 0.458 1.462 ± 0.464 1.750 ± 0.586 2.151 ± 0.735

ResNet34 0.881 ± 0.231 0.377 ± 0.250 0.361 ± 0.279 0.362 ± 0.267 0.666 ± 0.219 0.607 ± 0.444 0.424 ± 0.285 0.592 ± 0.418 0.747 ± 0.548

ResNet50 0.258 ± 0.387 0.444 ± 0.305 0.602 ± 1.067 2.248 ± 0.767 1.301 ± 0.230 0.766 ± 0.557 0.413 ± 0.311 0.344 ± 0.256 1.440 ± 0.510

ResNet101 1.368 ± 0.121 0.466 ± 0.298 0.322 ± 0.219 0.470 ± 0.270 1.035 ± 0.190 1.040 ± 0.699 1.588 ± 0.402 1.681 ± 0.507 2.158 ± 0.641

DenseNet121 2.243 ± 0.472 0.988 ± 0.344 0.759 ± 0.470 0.464 ± 0.415 0.250 ± 0.165 0.579 ± 0.410 0.709 ± 0.375 0.998 ± 0.518 1.365 ± 0.651

DenseNet169 2.016 ± 0.485 0.659 ± 0.354 0.809 ± 0.522 0.367 ± 0.335 0.490 ± 0.224 0.613 ± 0.428 1.344 ± 0.408 1.557 ± 0.508 2.124 ± 0.649

MobileNetV2 2.223 ± 0.290 1.071 ± 0.365 0.599 ± 0.370 0.325 ± 0.278 0.353 ± 0.195 0.619 ± 0.455 0.427 ± 0.289 0.573 ± 0.402 0.843 ± 0.589

VP-Net 0.913 ± 0.569 0.295 ± 0.185 0.505 ± 0.338 0.393 ± 0.266 0.184 ± 0.150 0.672 ± 0.539 0.313 ± 0.227 0.673 ± 0.428 0.837 ± 0.542

The results shown as mean ± standard deviation; The best value of MAE, for each agar phantom highlighted in bold.
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palm. In the closed comedones, VP-Net-S had the best performance
with MSE of 0.659 and MAE of 0.661.

3.3 Model complexity analysis

The model’s inference efficiency among various batch sizes for
input data was evaluated (Figure 4). We utilized the same computation
platform to compare the processing time between the conventional
velocity estimation method and the neural network-based methods, as

shown in Figure 4A. Figure 4B demonstrates the inference time
comparison between the neural networks. VP-Net performance
outperformed the other neural networks on both CPU and GPU.
Moreover, when the batch size increased, VP-Net achieved a higher
throughput than the other networks. The model complexity
comparison was compared based on the floating-point operations
(FLOPs) and network parameters, as shown in Figure 4C. VP-Net
family had the relatively lowest FLOPs compared to the other neural
networks, and VP-Net-S and VP-Net-B have the lowest and second-
lowest parameters, respectively.

TABLE 3 MSE and MAE of neural networks for SAW velocity prediction on in vivo human skin.

Model Back of hand Palm Forearm Closed comedones

MSE MAE MSE MAE MSE MAE MSE MAE

VGG16 1.805 ± 2.016 1.130 ± 0.727 2.264 ± 2.664 1.228 ± 0.870 2.054 ± 2.574 1.027 ± 0.834 0.643 ± 0.665 0.702 ± 0.388

VGG19 2.373 ± 2.998 1.287 ± 0.847 2.428 ± 2.850 1.269 ± 0.904 1.725 ± 2.592 1.012 ± 0.837 1.118 ± 1.048 0.929 ± 0.506

ResNet18 21.424 ± 13.997 4.274 ± 1.777 4.461 ± 4.919 1.759 ± 1.169 10.404 ± 8.477 2.890 ± 1.432 4.045 ± 2.673 1.856 ± 0.774

ResNet34 10.797 ± 10.183 2.893 ± 1.558 4.739 ± 5.169 1.820 ± 1.195 5.080 ± 6.163 1.866 ± 1.264 5.481 ± 3.232 2.206 ± 0.783

ResNet50 3.340 ± 7.083 1.378 ± 1.200 7.981 ± 8.224 2.405 ± 1.482 4.507 ± 9.203 1.478 ± 1.524 12.435 ± 7.287 3.363 ± 1.059

ResNet101 1.941 ± 2.484 1.143 ± 0.796 1.844 ± 2.105 1.133 ± 0.748 2.052 ± 3.080 1.103 ± 0.914 1.474 ± 1.505 1.050 ± 0.609

DenseNet121 11.885 ± 8.404 3.170 ± 1.355 3.342 ± 3.857 1.502 ± 1.042 7.578 ± 6.893 2.448 ± 1.260 3.352 ± 2.467 1.661 ± 0.771

DenseNet169 7.913 ± 6.914 2.506 ± 1.279 3.281 ± 3.914 1.489 ± 1.032 5.470 ± 5.626 2.033 ± 1.157 2.714 ± 2.436 1.451 ± 0.781

MobileNetV2 10.498 ± 7.765 2.988 ± 1.254 5.198 ± 5.636 1.912 ± 1.241 7.235 ± 6.279 2.431 ± 1.152 9.856 ± 4.769 3.031 ± 0.817

VP-Net 1.585 ± 2.283 0.992 ± 0.775 2.450 ± 2.903 1.274 ± 0.910 2.007 ± 3.502 0.997 ± 1.007 1.051 ± 1.681 0.863 ± 0.554

The results shown as mean ± standard deviation; The best values of MSE, and MAE for each human skin site and closed comedones highlighted in bold.

TABLE 4 Comparison of VP-Net sizes for SAW velocity prediction on agar phantoms.

Model Agar
1.0%

Agar
1.5%

Agar
2.0%

Agar
2.5%

Agar
3.0%

Agar
3.5%

Agar
4.0%

Agar
4.5%

Agar
5.0%

VP-Net-S MSE 0.188 ± 0.085 0.121 ± 0.137 0.197 ± 0.238 0.126 ± 0.182 0.088 ± 0.096 2.770 ± 2.899 0.179 ± 0.223 0.717 ± 0.778 1.087 ± 1.079

VP-Net-B 1.158 ± 1.294 0.121 ± 0.128 0.369 ± 0.420 0.225 ± 0.256 0.057 ± 0.090 0.742 ± 1.350 0.149 ± 0.192 0.636 ± 0.696 0.995 ± 1.074

VP-Net-L 0.178 ± 0.120 0.130 ± 0.153 0.377 ± 0.416 0.204 ± 0.255 0.042 ± 0.070 4.268 ± 3.137 0.159 ± 0.188 0.608 ± 0.684 0.884 ±
0.968

VP-Net-S MAE 0.420 ± 0.106 0.291 ± 0.190 0.359 ± 0.261 0.275 ± 0.225 0.250 ± 0.159 1.404 ± 0.894 0.346 ± 0.244 0.716 ± 0.452 0.892 ± 0.540

VP-Net-B 0.913 ± 0.569 0.295 ± 0.185 0.505 ± 0.338 0.393 ± 0.266 0.184 ± 0.150 0.672 ± 0.539 0.313 ± 0.227 0.673 ± 0.428 0.837 ± 0.542

VP-Net-L 0.396 ± 0.144 0.296 ± 0.205 0.512 ± 0.339 0.367 ± 0.264 0.157 ± 0.131 1.889 ± 0.835 0.329 ± 0.225 0.653 ± 0.425 0.785 ±
0.517

The results shown as mean ± standard deviation; The best values of MSE, and MAE for each agar phantom highlighted in bold.

TABLE 5 Comparison of VP-Net sizes for SAW velocity prediction on in vivo human skin.

Model Back of hand Palm Forearm Skin Face Acne

MSE MAE MSE MAE MSE MAE MSE MAE

VP-Net-S 1.689 ± 2.093 1.065 ± 0.744 2.329 ± 2.867 1.245 ± 0.883 2.002 ± 3.356 1.035 ± 0.965 0.659 ± 0.891 0.661 ± 0.471

VP-Net-B 1.585 ± 2.283 0.992 ± 0.775 2.450 ± 2.903 1.274 ± 0.910 2.007 ± 3.502 0.997 ± 1.007 1.051 ± 1.681 0.863 ± 0.554

VP-Net-L 1.749 ± 2.391 1.058 ± 0.793 2.358 ± 2.721 1.252 ± 0.889 2.130 ± 3.478 1.059 ± 1.004 0.660 ± 0.599 0.722 ± 0.372

The results shown as mean ± standard deviation; The best values of MSE, and MAE for each human skin site and closed comedones highlighted in bold.
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3.4 Interpretation of proposed deep
learning network

Gradient-weighted class activation maps (Grad-CAM)
(Selvaraju et al., 2017) were employed to interpret the decision-
making process of VP-Net when predicting wave velocity from a
single raw phase slice. Distinct from the original Grad-CAM, which
generated activation maps based on the model’s output class label,
this experiment used the model-predicted SAW velocity to produce
the Grad-CAMs. Based on the model architecture (Figure 2), we
generated Grad-CAMs from the first convolution layer of each CBR
block. These maps emphasize areas crucial for the model’s
prediction, providing in-depth information on its internal
operations.

Figure 5 shows an example of the raw phase slice from agar
phantom (Figures 5, 1A), human healthy skin (Figures 5, 1–4A), and
abnormal skin (Figures 5A), accompanied by their respective Grad-
CAM (Figures 5C–F) produced from our purposed VP-Net. The raw
phase slices were selected from the test set, which were not presented
in the model training and validation stages. Corresponding axial
displacement slices (Figure 5B) were used to estimate the ground
truth SAWvelocity. Our VP-Net demonstrated high accuracy in
velocity prediction for tissue-mimicking phantoms, three healthy
skin sites, and abnormal skin, with differences between predicted
and ground truth velocities being less than 0.3 m/s.

The perturbations caused by SAW propagation, surrounded by
massive noise, were noticeable in all the raw phase slices (Figure 5A).
Due to the homogeneous properties of the agar phantom, the
processed displacement slice (Figures 5, 1B) displayed clear wave
propagation and intense signals with less noise and fewer artifacts,
even at a significant depth of 1,175 µm. The Grad-CAMs revealed a
clear shape of the main wave propagation at the first and third
convolution layers.

For the palm, which displayed a clear and distinct pattern of
wave propagation on the displacement slice (Figures 5, 2B), the
Grad-CAMs appeared to identify the main wave’s contour and
texture, as reflected in the outputs of the first to third
convolution layers (Figures 5, 2D, 1F). In the back of the hand,
some distortion was observed, possibly caused by movement

(Figures 5, 3B). Interestingly, the model seemed to recognize the
main wave’s textures and shape, focusing less on the distorted region
(Figures 5, 3C, 2G). The forearm slice, taken from a deeper depth
(470 µm), exhibited more noise in its reconstructed displacement
slice (Figures 5, 4B). Still, the model’s first to third convolution layers
(Figures 5, 4C, 3D) appeared to capture the main wave’s texture.

Regarding the abnormal skin dataset, the wave pattern changed
due to the boundary between closed comedones and the
surrounding healthy skin at a lateral distance of 4.5 mm on the
displacement slice (Figures 5B). In the first convolution layer
(Figures 5C), only the SAW propagation across the closed
comedo region was shown as a high-intensity pattern. From the
deeper convolution layers of the agar phantom and human skins
(Figures 5E, F), which likely indicated the high-level features
extracted, intensity changes around the wave propagation region
could be noticed.

3.5 Prediction of SAW velocities using
VP-Net

The bulk SAW velocities of agar-based tissue-mimicking
phantoms, in vivo healthy human skin, and abnormal skin were
predicted using our trained VP-Net on the test set. The input raw
phase slices from the test set were not included in the training and
validation datasets. Table 6 summarizes the SAW velocities
predicted by VP-Net, compared with the ground truth velocities
estimated using the flight-of-flight approach.

The actual and predicted SAW velocities of the agar phantoms
increased with concentration. The phantoms showed stability and
consistency, showing that the mean predicted velocities were close to
the actual velocities, indicated by a standard deviation of less than
0.5. For healthy human skin, the network-predicted bulk SAW
velocities for both age groups (20s and 30s) across the three skin
sites closely aligned with the actual velocities obtained from the
conventional method. The palm exhibited the highest SAW
velocities, approximately 8 m/s in the 30s group and 6 m/s in the
20s group, followed by the forearm, with approximately 4 m/s in the
20s group and 5 m/s in the 30s group. For the back of the hand,

FIGURE 4
Model complexity comparison results. (A) Latency time of the various methods based on CPU (Intel i9-12900K). (B) Latency time of the various
methods based on GPU (Nvidia RTX 4090). (C) Model parameters and floating-point operations (FLOPs) comparison.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Zhang et al. 10.3389/fbioe.2024.1465823

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1465823


VP-Net predicted velocities were higher than those obtained by the
conventional method by 0.6 m/s in the 20s group, and 0.2 m/s in the
30s group. For closed comedones, VP-Net predicted velocity was
close to the conventional method, with a high velocity of
approximately 9 m/s, indicating higher biomechanical properties.

4 Discussion

Wave-based OCE has been one of the most studied OCE
branches, producing a fundamental impact in the quantitative

and nondestructive biomechanical characterization of tissues.
However, the long processing time limits its real-time and
clinical applications (Sun et al., 2011). In this study, we proposed
a rapid, high-efficiency, and high-accuracy deep-learning-based
velocity prediction network (VP-Net) to predict biomechanical
property-related velocity. We comprehensively evaluated the
network with homogenous agar-based tissue-mimicking
phantoms, in vivo human healthy and abnormal skin. Compared
to the conventional OCE velocity estimation method (Zvietcovich
and Larin, 2022), VP-Net could directly predict velocity from a
single raw OCE slice, which provided end-to-end processing and

FIGURE 5
Repretative normalized raw phase slices, axial displacement slices, Gradient-weighted Class Activation Map (Grad-CAM) from the 2D convolution
layers in VP-Net for tissue-mimicking phantom, in vivo human healthy skin site, and in vivo human abnormal skin. (1) 2% agar-based tissue-mimicking
phantom, at 1,175 µm depth, (2) palm from a male in the 20s age group male, at 131.6 µm depth, (3) back of hand from a male in the 30s age group, at a
depth of 197.4 µm, (4) forearm, a female in the 20s group, at a depth of 470 µm. (5) a closed comedo from a male in the 20s group, at a depth of
225.6 µm (A) raw phase slice, (B) axial displacement slice, (C–F) Grad-CAMs from the 1st, 3rd, 5th, and 7th 2D convolution layers, respectively; Predicted
velocity by VP-Net and ground truth velocity for each sample displayed beneath raw phase and displacement slices, respectively.
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eliminates the requirement for complex processing. Therefore, the
proposed VP-Net has great potential to be translated into clinical
practice for characterizing skin aging, as well as assessing and
managing the treatment of acne vulgaris.

In the discussion, the results will be analyzed and compared with
the findings from other studies. First, we conducted a comprehensive
comparison with a series of existing deep-learning models, including
VGG16/19, ResNet18/34/50/101, DenseNet121/169, and

MobileNetV2. The evaluation results in Table 1 and Table 2 show
that the mean MSE and MAE errors were approximately below 0.5 in
agar phantoms, with concentrations ranging from 1.5% to 4%,
indicating high accuracy in predicting the velocities in these agar
phantoms. However, for the agar phantoms with low (1%) and
higher concentrations (4.5% and 5%), the mean errors from VP-Net
were relatively higher than 0.5. We hypothesize this is due to the
unbalanced data distribution in the training datasets, as the velocity

TABLE 6 SAW velocities of agar-based tissue-mimicking phantoms, healthy skin at three sites between 20s and 30s age group, and abnormal skin estimated
from time-of-flight approach and proposed VP-Net.

Sample Number of OCE scans Number of raw phase slices Age group Approach SAW velocity (m/s)

1% agar 2 400 - Time-of-flight 2.66 ± 0.09

VP-Net 3.09 ± 0.05

1.5% agar 2 421 - Time-of-flight 4.39 ± 0.32

VP-Net 4.36 ± 0.13

2% agar 2 293 - Time-of-flight 6.26 ± 0.32

VP-Net 6.39 ± 0.28

2.5% agar 2 533 - Time-of-flight 8.88 ± 0.25

VP-Net 8.99 ± 0.22

3% agar 2 411 - Time-of-flight 9.53 ± 0.18

VP-Net 9.33 ± 0.12

3.5% agar 2 418 - Time-of-flight 11.557 ± 0.49

VP-Net 11.708 ± 0.52

4% agar 2 350 - Time-of-flight 14.00 ± 0.34

VP-Net 13.87 ± 0.22

4.5% agar 2 452 - Time-of-flight 14.53 ± 0.42

VP-Net 14.14 ± 0.41

5% agar 2 446 - Time-of-flight 15.96 ± 0.51

VP-Net 15.10 ± 0.29

Palm 8 1524 20s Time-of-flight 6.72 ± 0.79

VP-Net 6.78 ± 0.82

9 1311 30s Time-of-flight 8.32 ± 0.79

VP-Net 8.10 ± 0.74

Forearm 6 1145 20s Time-of-flight 4.35 ± 0.75

VP-Net 4.29 ± 0.33

7 865 30s Time-of-flight 5.44 ± 1.24

VP-Net 5.33 ± 1.06

Back of hand 6 616 20s Time-of-flight 3.75 ± 0.34

VP-Net 4.40 ± 0.29

7 619 30s Time-of-flight 4.31 ± 0.38

VP-Net 4.55 ± 0.22

Closed comedones 3 642 20s Time-of-flight 9.08 ± 0.69

VP-Net 9.19 ± 0.41
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distributions for these concentrations had fewer slices (5,127 slices).
Regarding the in vivo human skin (Table 3), VP-Net achieved the best
performance in the back of hand (MSE: 1.585;MAE: 0.992) and had the
lowest MAE of 0.863 in the forearm. In the palm, VP-Net performed
similarly to ResNet101 in terms of MSE and MAE. For closed
comedones, VP-Net had the second-lowest MSE and MAE. Thus,
VP-Net demonstrated high accuracy in predicting biomechanical
property-related velocities, indicating its potential for early diagnosis
of skin conditions.

An ablation study was conducted to investigate the influence of
VP-Net sizes on performance. As shown in Table 4, increasing the
size of VP-Net did not improve accuracy for agar phantoms with
1.5%–4.0% concentrations. However, for agar phantoms with 1.5%–
2.5% concentrations, decreasing the size of VP-Net improved
performance. In the human skin dataset (Table 5), VP-Net-B
provided the lowest MAE (0.992) and MSE (1.585) errors in the
back of hand, and the lowest MAE (0.997) and second-lowest MSE
(2.007) in the forearm. In the palm and closed comedones, reducing
the size of VP-Net again provided the best performance in terms of
MSE and MAE errors. Compared to VP-Net-S and VP-Net-L, VP-
Net-B offered the best trade-off between prediction performance
and model complexity.

Additionally, we evaluated the computational demand of VP-
Net in both GPU and CPU environments, comparing inference time
and model complexity among various methods, as presented in
Figure 4. Figure 4A, B illustrate that VP-Net had the lowest inference
time in both environments. Specifically, Figure 4A shows that VP-
Net accelerated the velocity prediction procedure by a factor of
100 compared to the conventional method. Figure 4B further
indicates that VP-Net-S and VP-Net-B had the lowest model
complexity and network parameters, respectively.

Grad-CAM (Figure 5) was employed to interpret VP-Net’s velocity
prediction processes.When the wave propagation pattern was clear and
had single wave mode details (Figure 5 (1B and 2B)), the full wave
propagation path (Figure 5 (1C,D and 2 C,D)), was seen in the shallow
convolution layers (first to third). In contrast, when artifacts induced by
motion, far-end noise, or low intensities at deeper depths were present
(Figures 5, 3B, 4B), only the high-quality portions of the wave patterns
were emphasized in these layers (Figures 5, 3C, D). This may indicate
that the model effectively filtered significant noise from the raw phase
slices to extract useful and accurate wave information. For abnormal
skin, only the high-velocity wave propagating through the comedo
region was displayed as the highest intensity curve in the first
convolution layer (Figure 5C). We believe that the comprehensive
training dataset, which included high-quality slices at surface depths,
low-intensity wave images at deeper depths, motion artifacts, and
boundaries between abnormal and healthy regions, enhanced the
model’s ability to analyze difficult situations and accurately predict
the velocity of abnormal regions (Li et al., 2022).

Biomechanical properties, specifically elasticity (Young’s modulus),
can be estimated directly from velocity measurements. The bulk
Young’s modulus (E) can be calculated from the predicted SAW
velocity (V̂R) using the formula E � 3.35 × V̂R

2
, assuming skin

mass density (ρ) of 1.02 g/cm2 and a Poisson’s ratio (υ) of 0.5
(Liang and Boppart, 2009). By converting the velocities in Table 6
to elasticity, the bulk Young’s modulus for 1%–2% agar phantoms
predicted from raw phase slices were 44 ± 14 kPa, 66 ± 4 kPa, and 149 ±
14 kPa, respectively. These results are in good agreement with the values

obtained by Yang et al. (Yang et al., 2022). The Young’s modulus for the
2% agar phantom predicted by our model was 286 ± 12 kPa,
comparable to the 254 kPa reported by Brewin et al. (Brewin et al.,
2015). In our study, the average predicted Young’s moduli for the three
skin sites were 188 ± 58 kPa for the palm, 79 ± 42 kPa for the forearm,
and 64 ± 35 kPa for the back of hand, was consistent with values
documented in our previous study (Zhou et al., 2020). Also, the values
aligned with other reference values. For instance, The bulk Young’s
modulus for the palmwas reported at 108 ± 48 kPa (Zhang et al., 2011),
forearm at 42 ± 32 kPa (Zhang et al., 2011) and 129 ± 88 kPa
(Diridollou et al., 2000); Back of hand 11–23 kPa (Wakhlu et al.,
2017). Notably, a difference in bulk Young’s modulus between age
groups (20s and 30s) was observed: for the palm, 154 ± 37 kPa in the 20s
group vs 220 ± 40 kPa in the 30s group; for the forearm, 62 ± 9 kPa in
the 20s group vs 95 ± 38 kPa in the 30s group; and for the back of the
hand, 65 ± 9 kPa in the 20s group vs 69 ± 7 kPa in the 30s
group. Regarding abnormal skin, no previous studies have reported
the Young’s modulus of facial skin diseases. For comparison, the mean
stiffness of malignant neck tumors was 226.4 kPa as measured by
ultrasound elastography (Roldán, 2016), similar to the predicted
Young’s modulus of closed comedones at 308 ± 35 kPa. Thus, our
proposedVP-Net demonstrated its efficacy by accurately obtaining bulk
velocity from a single image with noisy raw phase information.

Neidhardt et al. (2021) reported a densely connected network for
predicting concentrations of gelatin phantoms by analyzing shear
wave OCE data. They later expanded this approach to aid in force
estimation on gelatin phantoms and ex vivo chicken hearts
(Neidhardt et al., 2023). Their model could process both 3D
(depth × lateral distance × time) and 4D (depth × lateral
distance × vertical distance × time) volumes, with each
dimension of 32 pixels, and was capable of performing
classification in real-time. While their methods had valuable
contributions, particularly for real-time and 4D analysis, there
may be challenges when applying this approach to in vivo studies
and clinical translations. First, the input depth for each volume in
their model required 32 pixels, approximately 235 µm. In contrast,
our proposed deep learning network could predict velocity from
each single slice, with a single depth layer of approximately 4.7 µm.
In addition, their low spatial sampling points limited the spatial
resolution of the raw volume, resulting in reduced elastography
resolution (Kirby et al., 2019). This constrains its applications to
address motion artifacts and complicated wave patterns, which
frequently occur in vivo OCE acquisitions. Next, its field of view
was restricted to 3 mm, which could be insufficient for measuring
abnormal skin conditions, typically around 6 mm in diameter
(Kasmi and Mokrani, 2016). In our study, the scanning range
was up to 11 mm, and we successfully predicted the bulk
velocities of closed comedones with diameters greater than
4.2 mm. Thus, VP-Net may offer an advantage in predicting
biomechanical property-related velocity from a single image,
handling high noise and artifacts, and is particularly suitable for
both healthy and abnormal in vivo scans.

While our work represents a significant advancement, further
research is needed to refine the deep learning model, particularly its
translation to clinical settings. By including a more diverse range of
participants, we intend to enhance the robustness of our model,
ensuring accurate wave velocity predictions across all biological
genders. Additionally, we plan to substantially enlarge our dataset
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to explore the potential of vision transformers for predicting the
biomechanical properties of both healthy and abnormal human skin.

5 Conclusion

In conclusion, we developed an end-to-end deep learning-based
velocity prediction network (VP-Net) for predicting elastic wave
velocities associated with biomechanical properties using OCE. VP-
Net demonstrated the ability to provide real-time elastic wave velocity
predictions without the need for expertise and complex image
processing. In vivo applications on both healthy and abnormal
human skin, VP-Net accurately differentiated age-related changes
in elastic velocities across multiple skin sites and detected high
velocities in closed comedones. Therefore, VP-Net holds significant
potential for clinical applications in characterizing skin aging, as well
as assessing and managing the treatment of acne vulgaris.
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