
A novel framework for elucidating
the effect of mechanical loading
on the geometry of
ovariectomized mouse tibiae
using principal component
analysis

Stamatina Moraiti1,2, Vee San Cheong1,2,3, Enrico Dall’Ara2,4,
Visakan Kadirkamanathan2,5 and Pinaki Bhattacharya1,2*
1Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom, 2INSIGNEO
Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom, 3Future Health
Technologies Programme, Singapore-ETH Centre, Create campus, Singapore, Singapore, 4School of
Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom, 5Department of
Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom

Introduction: Murine models are used to test the effect of anti-osteoporosis
treatments as they replicate some of the bone phenotypes observed in
osteoporotic (OP) patients. The effect of disease and treatment is typically
described as changes in bone geometry and microstructure over time.
Conventional assessment of geometric changes relies on morphometric scalar
parameters. However, being correlated with each other, these parameters do not
describe separate fractions of variations and offer only a moderate insight into
temporal changes.

Methods: The current study proposes a novel image-based framework that
employs deformable image registration on in vivo longitudinal images of
bones and Principal Component Analysis (PCA) for improved quantification of
geometric effects of OP treatments. This PCA-based model and a novel post-
processing of score changes provide orthogonal modes of shape variations
temporally induced by a course of treatment (specifically in vivo
mechanical loading).

Results and Discussion: Errors associated with the proposed framework are
rigorously quantified and it is shown that the accuracy of deformable image
registration in capturing the bone shapes (~1 voxel = 10.4 μm) is of the same order
of magnitude as the relevant state-of-the-art evaluation studies. Applying the
framework to longitudinal image data from the midshaft section of
ovariectomized mouse tibia, two mutually orthogonal mode shapes are
reliably identified to be an effect of treatment. The mode shapes captured
changes of the tibia geometry due to the treatment at the anterior crest
(maximum of 0.103 mm) and across the tibia midshaft section and the
posterior (0.030 mm) and medial (0.024 mm) aspects. These changes agree
with those reported previously but are now described in a compact fashion, as a
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vector field of displacements on the bone surface. The proposed framework
enables a more detailed investigation of the effect of disease and treatment on
bones in preclinical studies and boosts the precision of such assessments.
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mouse tibia, osteoporosis, mechanical loading, bone morphometry, principal component
analysis (PCA)

1 Introduction

Osteoporosis is one of the most severe and common skeletal
diseases that reduces bone mineral density (BMD), and diminishes
bone quality and structural integrity, leading to weaker bones and a
higher risk of fracture. Treatment strategies such as exercise aim to
enhance bone structure by stimulating new bone tissue formation
and reducing bone loss (Rodan and Martin, 2000). Research in this
area focuses on elaborating how bones respond to external
mechanical stimuli. Murine models play a crucial role in
investigating treatment strategies for osteoporosis due to their
rapid response to interventions (Jilka, 2013). In particular, the
ovariectomized murine model is an accepted model of estrogen
deficiency that accelerates bone resorption as observed in post-
menopausal osteoporotic patients (Bouxsein et al., 2005). In vivo
micro–Computed Tomography (microCT) enables the longitudinal
acquisition of high-resolution images of peripheral bones (e.g., the
tibia, caudal vertebrae) in mice (Bouxsein et al., 2010). For example,
this approach has been used to study the effect of aging,
ovariectomy, mechanical loading and pharmacological
interventions (Akhter and Recker, 2021; Dall’Ara et al., 2016;
Levchuk et al., 2014; Viceconti and Dall’Ara, 2019).

Established imaging and image processing protocols for in vivo
microCT images of murine bones enable the quantification of
spatio-temporal changes in geometry, microstructure and bone
adaptation over time (Birkhold et al., 2015; Javaheri et al., 2020;
Jepsen et al., 2015; Roberts et al., 2019; Oliviero et al., 2019; van ’t
Hof and Dall’Ara, 2019; Gasser et al., 2005). Mouse bone geometric
variations are often reported as variations of scalar geometric
properties obtained from standard morphometric analysis of 3D
images (Bouxsein et al., 2010). Such geometric properties, for, e.g.,
cortical thickness, area, volume, eccentricity, and moments of
inertia, allow comparisons with older similar histomorphometric
measures (Dempster et al., 2013; Iida-Klein et al., 2007; Zhou et al.,
2003). As histomorphometry analysis involves 2D ex vivo bone
samples using microscopy or structural analysis in ex vivo images
(Miller et al., 2021; Rooney et al., 2023; Monzem et al., 2023;
Sugiyama et al., 2008; De Souza et al., 2005; Weatherholt et al.,
2013), standard morphometric analysis is also focused on short,
pseudo-2D regions, such as the tibia midshaft, even when applied to
3D in vivo images (Roberts et al., 2019; Holguin et al., 2014; Silva
et al., 2012). As such, scalar geometric assessment is based on
assumptions and simplifications of the geometry and produces
measures that are averaged over the examined section. Despite
the advancement of in vivo longitudinal imaging, the
methodology to analyze such images for a complete assessment
of bone shape changes remains underdeveloped.

A limitation of the state-of-the-art approach is that it provides
averaged scalar quantifiers to characterize the structure which

effectively ignores the 3D complexity of bone shape changes.
However, other preclinical studies provide evidence of localized
bone geometry changes for, e.g., due to external mechanical loading.
Miller et al. (2021) measured the local thickness on four cross
sections (25%, 37%, 50% and 75% of length) of murine tibiae
and showed that the local changes due to mechanical loading
depended on the location and the loading magnitude. Zhang
et al. (2019) introduced a novel wavelet transform framework
and found that over an 8-week period, changes observed in
mouse tibia geometry were heterogeneous and contained both
low- and high-frequency components in space. Javaheri et al.
(2020) used superimposition and rigid registration measures and
showed that the mouse tibia adapted to a short-term loading regime,
but after the regime concluded, these adaptations were only partially
retained. Other computational studies predict local bone adaptation
that also cannot be described by standard morphometric parameters
alone. For example, Cheong et al. (2020a) suggested that mechanical
loading of mouse tibia predominantly impacts the periosteum.
Carriero et al. (2018) combined 3D fluorochrome mapping and
finite element modelling and showed prominent endosteal
formation in the lateral aspect of the mouse tibia and decreased
turnover distal to the midshaft. Although the aforementioned
techniques have revealed new insights regarding local bone
adaptation, it remains unclear which geometrical features explain
the most variability within a population and which consistently
change due to disease or treatment.

Another drawback of the scalar morphometric properties is their
mutual interdependence, i.e., non-negligible covariance. One
example is the correlation between cortical thickness and cortical
area, with the latter being described as a function of the former. This
explains why studies report concurrent changes over time in both
parameters (Roberts et al., 2020). Therefore, not only do the
variations in individual standard morphometric parameters
overlap with each other, but also, when combined, these also
only partially explain the total variation in bone geometry. This
also points to a potential challenge in using the effect sizes of the
standard morphometric parameters (changes in bone shapes), when
this assessment aims to represent the efficacy of a candidate
treatment on bone geometry.

A potential alternative to the currently incomplete assessment of
geometric changes is to use PCA to extract ‘patterns’ of bone
geometry variations. This is promising because each ‘pattern’ (or
PC mode) encodes local variations throughout the bone surface and
is guaranteed to explain an independent fraction of the total bone
geometry variation. More details on methodology and application of
PCA in shapemodelling can be found in monographs such as Davies
et al. (2008).

PCA has been used in various applications. One common use in
bone research is to identify shape and/or intensity variations on
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osteoporotic bones to improve osteoporosis care. The literature
reviews of Castro-Mateos et al. (2014) and Grassi et al. (2021)
detail the major methodological characteristics of the PCA models.
Their various applications include segmentation, preoperative
planning, 2D-to-3D intensity and shape reconstruction using 2D
clinical images (Dual-energy X-ray Absorptiometry, DXA), Finite
Element Modelling and investigation of bone fracture. More
specifically, in the context of the human femur, PCA has been
used to predict hip fracture risk combining shape and intensity
modes derived by DXA (Aldieri et al., 2020). Additionally, it has
been used to reduce the dependence on expensive imaging
modalities (e.g., CT/MRI) in pre-operative planning (Rajamani
et al., 2007; Barratt et al., 2008). Moreover, it was developed to
generate statistical models of geometry and material properties of
the human femur (Bryan et al., 2010). In mouse bone research, the
use of PCA is relatively limited. Killian et al. (2019) used PCA to
investigate the deformity of dysplastic murine hips and Chan et al.
(2012) used PCA to identify the major distal femoral geometrical
features that temporally vary during bone maturation. Both these
studies focused on sections of bones. A larger scale model developed
by Brown et al. (2017) investigated abnormalities in the murine hind
paws with rheumatoid arthritis.

Assessing shape variations requires image processing to enable
direct comparison between the shape observations (Castro-Mateos
et al., 2014). Chan et al. (2012) performed an automatic landmarking
approach for murine bones and obtained an atlas with
412 anatomical landmarks. This bone structure was a segment of
the distal femur extracted from ex vivo images of mice at different
ages (resolution 9 μm). Since the images were acquired in a cross-
sectional experimental design, captured variations due to bone
maturation could not be classed into temporal changes.
Therefore, they were reported as variations from the mean shape.
Additionally, the performed rigid registration protocol involved
isotropic scaling and eliminated the size variations related to
length and area. Killian et al. (2019) also focused on subsections
of bones in the hip joint, scanned using in vivo micro–Computed
Tomography (resolution 21 μm). In that study, the surfaces were
scaled up and an automatic landmarking algorithm in ShapeWorks
(Cates et al., 2017) was used to discretize the shapes using
2048 points. Although a comparison between disease severity also
appears feasible using this approach, Killian et al. (2019) examined
only one disease stage (severe) in their study. Brown et al. (2017)
applied an automated method for discretizing and registering the
meshes (~200,000 vertices) from volumetric microCT images of the
mouse hind paw (resolution ~14 μm). Finally, Hoshino et al. (2023)
analyzed murine skull variations to investigate dysmorphology
(resolution ~62 μm), using 33 landmarks to define the skull shape.

The findings from the literature suggest that instance alignment,
shape correspondence and reliability analysis emerge as three
important aspects common to all methodologies for conducting a
Statistical Shape Models (SSM). The protocol of instance alignment
varies among different studies. This step starts with defining an atlas
(alternatively called template or reference) that can be either the
mean shape or a random choice of one shape observation. Then the
shapes are aligned to the reference. This alignment is either applied
to the images, using rigid body movements, or applied to meshes,
using algorithms based on distance metrics. Isotropic scaling of
shapes is also sometimes used in the literature to disregard size

variations. The number of landmarks used to achieve
correspondence among shapes, varies depending on factors such
as examined structure, image resolution, discretization andmapping
method. Correspondence is primarily accomplished via deformable
registration using B-Spline interpolation or other types of
interpolation such as Kernel-based in Deformetrica (Bône et al.,
2018; Fornai et al., 2021; Heutinck et al., 2021) Past studies highlight
that the choices made in each step depend on the goal of each study,
and the reliability of each step can influence the reliability of any
shape model derived from them. For example, a small number of
landmarks may lead to unrepresentative shape descriptions, or
missing morphologic information of the examined structure,
resulting in a lack of robustness to the shape analysis.

The objective of the present study is to develop a robust and
accurate framework that can be used to assess the effects of disease
(here, ovariectomy-induced bone loss) and treatment (here, passive
mechanical loading) on the 3D geometry of long bones (here, tibial
midshaft section) in a murine population (here, female adult C57BL/
6 mice). This novel framework combines in vivo longitudinal
imaging, deformable registration, PCA and statistical analysis for
treatment investigation in preclinical studies.

2 Materials and methods

The framework developed in this study is used to analyze image
data obtained from past animal experiments. Sections 2.1, 2.2 recall
details from specific past studies concerning the mice used, the
interventions performed, and longitudinal microCT images
acquired following a well-established imaging protocol (Lu et al.,
2016). The details of the new framework follow from section 2.3
onwards. Sections 2.3–2.6 describe how the existing images are
processed to extract bone geometry information. A validated and
robust deformable registration technique named Sheffield Image
Registration Toolkit (ShIRT) (Barber and Hose, 2005) is used here
for the first time to map bones within a population of mice over a
course of treatment. The mapping leads to differences in coordinates
of “anatomically similar” locations on the endosteal and periosteal
surfaces (see also schematic in Figure 1). In section 2.7, these
differences in bone surface are decomposed into mutually
orthogonal mode shapes using PCA, and section 2.8 describes a
novel post-processing statistical analysis of PCA scores that is used
to identify effects on geometry due to disease and treatment.

2.1 Animals and interventions

The experimental data were taken from two previous murine
studies published elsewhere (Roberts et al., 2019; 2020). Therein, all
experimental procedures were performed under the British Home
Office licenses (PPL 40/3499 and PF61050A3), complied with the
UK Animals (Scientific Procedures) Act 1986 and were ethically
approved by the local Research Ethics Committee of the University
of Sheffield. Female virgin C57BL/6 mice (n = 5, Roberts et al.
(2019); n = 6; Roberts et al. (2020)) were housed starting at 13 weeks
old. All mice were skeletally mature at the time of purchase. The
housing conditions were temperature of 22°C, with a 12-h dark/light
cycle, and ad libitum access to protein rodent diet and water.
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All mice were ovariectomized at 14 weeks old to generate
estrogen deficiency (Turner, 2001). The five mice comprising the
control group “OVX” (Roberts et al., 2019) remained untreated
throughout the study. The six mice in the treatment group “OVX +
ML” (Roberts et al., 2020) were subjected to mechanical loading
using the tibia loading model (Nepal et al., 2023) 3 days per week at
19 and 21 weeks old. The right tibia was uniaxially compressed along
the superior–inferior axis. Waveform load cycles were performed,
with a peak of 12 N (held for 0.2 s) and a 10 s interval between each
cycle. All mice were humanely killed at 24 weeks old.

2.2 In vivo imaging and image alignment

The right tibia of each mouse was scanned using in vivo
micro–Computed Tomography (microCT, VivaCT80, Scanco
Medical, Switzerland) every 2 weeks between weeks 14 and 24
(Roberts et al., 2019; 2020). The scanning parameters were:
10.4 μm isotropic voxel size, voltage of 55 keV, intensity of
145 μA, field of view of 32 mm, 1500/750 samples/projections,
integration time 100 m. The microCT images of all mice and time-
points were co-registered as follows (Cheong et al., 2020b; Cheong
et al., 2021). First, the growth plate, the fibula and the condyles were
removed from all microCT images. The proximal and distal
cropping resulted in examining 80% of the total length. Next, the
3D image of one random tibia at 14 weeks was considered as a

reference. The z-axis was aligned to the reference tibia anatomical
axial direction and the x-axis was aligned to the anterior–posterior
direction, such that the x–z plane bisected the midpoint of the line
joining the centers of the articular surfaces of the medial and lateral
condyles (Lu et al., 2016). The remaining images were rigidly
registered to the reference tibia image using Normalized Mutual
Information as the similarity metric and Lanczos interpolation
(Amira, v5.4.3, FEI Visualization Sciences Group, France).

In the present study, the registered images of each mouse from
two time-points (18 and 24 weeks) extracted from Cheong et al.
(2020b) were analyzed. Note that all mice at 18 weeks present
evidence of ovariectomy untreated for a period of 4 weeks. The
bones in the “OVX” group at 24 weeks present evidence of
ovariectomy untreated for a period of 10 weeks. Lastly, the bones
in the “OVX + ML” group at 24 weeks present evidence of
ovariectomy untreated for a period of 4 weeks followed by
mechanical loading treatment at weeks 19 and 21.

2.3 Midshaft section and further alignment

The 80% of the total length was divided into 10 equal
longitudinal sections and slices corresponding to a midshaft
section (Figure 1, Step 0) measuring 8% of the tibia length were
considered. To suppress differences in relative position due to
differences in whole tibia length, the cropped tibial midshaft

FIGURE 1
Framework flowchart. Step 0: The grayscale image slices corresponding to the midshaft section are extracted for each of the M images of mouse
tibia. Step1: All images are aligned to a reference image sample previously registered to its anatomical coordinate system. Step 2: The greyscale images
are binarized and corrected to enforce topological equivalence. Step 3: The reference surface mesh, consisting ofN nodes with x, y and z coordinates, is
extracted from the binarized reference image. Step 4: The reference bone is mapped to all other image samples by applying a deformable image
registration algorithm using the Sheffield Image Registration Toolkit (ShIRT). The deformation field is applied to the reference surface mesh leading to
individual surfacemeshes for each bone shape observation. The periosteum and endosteum surfacemesh for eachmouse image constitutes the rows of
the PCA input P.
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images were rigidly registered to a randomly selected reference
cropped image (Figure 1, Step 1). Rigid registration was
performed in Amira (v6.3, Thermo Fisher) using Mutual
Normalized Information as a similarity metric and Lanczos
interpolation.

2.4 Binarization and geometry correction

The midshaft sections typically contain cortical pores and
trabeculae. These isolated features do not occur at anatomically
similar locations across bones, and as such their presence poses
challenges in mapping the periosteal and endosteal surfaces as
desired. To suppress these features, the following semi-automatic
process was used (Figure 1, Step 2). Firstly, every image was
binarized using a single-level threshold. The arithmetic means of the
peaks in the intensity histogram corresponding to the background and
bone voxels was used as the threshold value. Then all 2D image slices
were individually considered and holes with perimeter smaller than
50 pixels were automatically identified. The holes were then artificially
‘filled’ by applying simultaneous dilation and erosion algorithms
(Matlab v2021, functions: ‘imdilate’, ‘imerode’). The remaining big
hole-like features such as the cavities formed between the
endosteum and the trabecula as in Figure 2, were treated manually.
The image data at both ages for that mouse were considered, and the
number of adjacent slices containing the feature was counted in these
images. Since the structural evolution of trabeculae has a direct impact
on thickness (Figure 2), if both counts were smaller than seven slices
(~70 μm), then the trabecular feature bounding the hole was identified
and deleted from all slices in both images. The remaining hole-like
features were classified as either being bound by trabeculae or being
cortical pores, looking at their structural changes between the two time
points. Features that were not holes, but appeared as notches and
transverse gaps in the cortex were classified as early-stage formed

trabeculae and transverse cortical pores respectively. After
classification, trabeculae were deleted, and cortical pores were filled,
leading finally to binarized images of the registered section with well-
defined endosteal and periosteal surfaces.

This geometry correction step was evaluated to demonstrate the
bone geometry and mechanical alterations due to the simplification
of the bone sections. The sensitivity study is elaborated in
Supplementary Material 1. Briefly, micro–Finite Element analyses
were conducted on the original and processed bone sections. The
numbers of common and different elements were assessed to
indicate the fraction of the geometric differences between the two
types of models. The differences in the strain distribution across the
entire bone section and locally around the cortical pores and
trabeculae and in the highly deformed areas were also assessed. It
was found that the removed features occupied an average of 0.40% of
the total number of elements across all mouse samples and the strain
distribution of the processed section is not different from the ones of
the original bones.

2.5 Reference surface discretization

The endosteal and periosteal surfaces bounding the bone volume
in the binarized reference image were discretized (Figure 1, Step 3).
The discretization was produced using the default settings in Amira
v6.3 and is denoted as Mesh-0. It contained 166,639 triangular faces
with a mean edge length of 13.9 μm. A coarser discretization of the
reference bone surface can potentially reduce the computational
demand in the trilinear interpolation and PCA steps of the
framework described later. Therefore, the above mesh was
coarsened successively using Amira v6.3 such that the final
chosen mesh (denoted as Mesh-15) included 2978 vertices,
5802 faces and a mean edge length equal to 68.2 μm. The sub-
study reported in Supplementary Material 2 demonstrated that such

FIGURE 2
Example of the trabecula feature and its structural evolution over time between weeks 18 and 24 of age.
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coarsening did not result in a loss of important geometrical features.
Specifically, the coarsening induced error in geometry was randomly
distributed over the bone surface, the mean error was 0.22 μm and
the maximum error of 1.5 μm was located in a relatively flat area of
the bone surface.

2.6 Mapping bone images using deformable
image registration

Three-dimensional deformable image registration was used to
individually map the binarized reference bone image to each of the
remaining 21 (also binarized) individual bone images (Figure 1, Step
4). The Sheffield Image Registration Toolkit (ShIRT) was used for
mapping, employing a “registration grid” with a “nodal spacing”
(NS) of five voxels. Details of the algorithm can be found elsewhere
(Barber and Hose, 2005). Briefly, ShIRT superimposes a cubic
registration grid with a given NS on both the “fixed” (an
individual bone) and the “moved” (reference to be mapped)
images. It then determines the mapping between the two images
as a displacement vector at each registration grid node. The
displacement at any reference image voxel location or reference
surface mesh vertex is computed by tri-linearly interpolating the
displacements at its eight closest registration grid nodes. Adding the
displacement of a reference surface mesh vertex to its position gives
the position of an “anatomically similar” location on the individual
bone surface.

Since the performance of the algorithm is sensitive to its spatial
resolution (and hence NS) and the inherent bone surface differences
in the input images, an evaluation study optimized the choice of the
NS considering a combination of sources of complexities in the
images. Similar to past studies (Dall’Ara et al., 2014), this was done
by applying known “virtual” displacement fields to representative
images, predicting this displacement using ShIRT, and quantifying
the difference between known and predicted displacements for a
range of NS values. Six studies, described below, define virtual
displacement fields of increasing complexity by successively
including new sources of uncertainty. The images of the six mice
at 18 weeks in the “OVX + ML” group are representative of the full
dataset. The known virtual displacements were used to synthetically
generate six corresponding fixed bone images. ShIRT was used to
register the fixed/moved image pairs with NS ranging from 5 to
50 voxels in steps of five voxels. The absolute difference between the
imposed displacement and that estimated by ShIRT was calculated
at bone boundary voxels, i.e., voxels whose voxel neighbors were not
all bone or not all background. For a given NS, the average and
standard deviation of the absolute differences, taken over all bone
boundary voxels of all six moved images, are referred to as errors
associated with the accuracy and precision of registration,
respectively. As the execution time to register a typical pair of
images was ~15 min with NS = 5 voxels but ~35 min with the
smallest allowable NS = 2 voxels, NS lower than five voxels were not
considered in the following. Similar evaluations, using the same
algorithm for registering images of the same resolution and same
bone structure, considered Nodal Spacings larger than 10 voxels
(Dall’Ara et al., 2017). For all six studies, the bone images obtained
after binarization and geometry correction in section 2.4 above were
considered as the initial moving images..

1. Uniform translation of binarized images: This study
investigated the effects of rigid misalignments of the bone
samples on the performance of the elastic registration. It tested
the ideal scenario of uniform translations, equal to an integer
number of voxel size. Displacements of either 2, 4 or 6 voxels
each in the three Cartesian directions were individually applied
to the moved images to obtain the fixed images.

2. Non-uniform translation on binarized images: Similar to Study
#1, this study investigated the effects of the non-uniform rigid
misalignments of the bone samples on the elastic registration.
Thus, a displacement of 2 voxels along both the x and y
directions and 4 voxels in the z direction was applied to
obtain the fixed images.

3. Non-uniform, fractional voxel translation on binarized images:
This study measured the effect of rigid registration, including
interpolation errors due to the translations being equal to non-
integer number of voxels. To test this, a translation of 2.5 voxels
along both the x and y directions were first applied to the
images. These were then resampled using bilinear interpolation
and finally a translation of 2 voxels in the z direction was
applied to obtain the fixed images.

4. Translation on greyscale images followed by binarization: The
same translation as in study #3 was applied, but to the greyscale
images of the six mice at 18 weeks in the “OVX +ML” group, as
obtained before binarization and geometry correction steps in
section 2.4. Binarization and geometry correction were applied
to the translated images to obtain the fixed images. Study #4 is
similar to Study #3, with the only difference being the
binarization coming after the translation and interpolation.
Therefore, this study includes the effect of applying the rigid
registration firstly on grayscale images and also investigates
how the binarization and geometry correction influences the
deformable registration performance. This case is more
representative of the order of the image processing steps as
proposed in the current PCA framework.

5. Local deformation: This study evaluated the performance of
the ShIRT algorithm to capture non-uniform and local
deformations. The local deformations introduced by affine
transformation were used to simulate the shape differences
that exist between bone samples in the examined population.
To do so, simulations of several local deformation fields were
tested. Three affine transformations along the x direction were
separately applied on the binarized images as obtained at the
end of study #4. The three individual affine transformations
were: (i) compression of the posterior half of the bone image by
0.95× (referred to as ‘Study #5: Posterior, Half, Tc = 0.95’), (ii)
compression of a smaller posterior section of the image by
0.85×, 0.95× or stretching by 1.15× (referred as ‘Study #5:
Posterior, Smaller Part, Tc = .’), and (iii) stretching the anterior
half by 1.2× (referred as ‘Study #5: Anterior, Half, Tc = 1.2’).
The third case was motivated by the observation that when any
individual mouse bone image was overlaid on the reference
image, the horizontal distance between the bone surfaces at the
anterior crest was at most 11 voxels apart. The stretching factor
of 1.2 achieved an imposed displacement of similar magnitude
along the x-direction at the anterior crest. Figure 3 illustrates
examples of virtual translation and affine transformation
successively added to the original images, as evidenced by
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incomplete overlap between the obtained binarized deformed
images (fixed) and the binarized original images (moved).

6. Image noise: Finally, this study examined the effect of image
noise on the performance of the elastic registration. To do so,
original image noise was measured from the original input
image and subsequently added to the image to create a
simulated noisy image. These steps were accomplished as
follows. For each mouse in the “OVX + ML” group at
18 weeks, 3D image masks were created to separate the
bone tissue and background regions in the grayscale images.
The standard deviations of the pixel intensity in these regions
were separately computed and then averaged over the six mice,
leading to one standard deviation value each for bone and
background. These were used to define two normal
distributions (both with zero mean) from which samples
were drawn and added to the bone and background regions
of the greyscale mouse images to create simulated noisy images.
The simulated images were then deformed as described in
study #5. This study was carried out for NS equal to
5 and 10 voxels.

All virtual translations described above were performed using
ImageJ 1.53s. Images were manipulated with affine transformation
and noise in Matlab R2022b.

Once the coordinates of the “anatomically similar” locations of
the discretized endosteal and periosteal surfaces were obtained for
each bone shape observation, these were concatenated to construct a
single “shape vector”

xj � x1
j , y

1
j , z

1
j , x

2
j , y

2
j , z

2
j , . . . , x

N
j , y

N
j , z

N
j{ }

where (xi
j, y

i
j, z

i
j) are the Cartesian coordinates of the ith point (i = 1,

2, . . . , N = 2978) of the jth bone shape observation (j = 1, 2, . . . ,M =
22). Here, N and M are the number of vertices in Mesh-15 and the

number of tibia observations respectively. A data matrix P is
constructed where the jth row constitutes the centered shape
vector xj − x0 where x0 is a (3N)-element row vector denoting
the mean shape. The shape variance was calculated from the
product of the P with its self-transpose. The sum of all the
diagonal elements divided by the N−1 gives the total variance,
whereas the sum of the diagonal elements corresponding to a
cohort group or age gives the proportional variance of a specific
subgroup within the examined population.

2.7 Decomposition into mode shapes and
validation

The matrix P is decomposed using PCA as

FIGURE 3
Examples of applied virtual deformation fields: (A) Study #5: Posterior, Smaller Part, Tc = 0.85; (B) Study #5: Posterior, Smaller Part, Tc = 1.15; (C)
Study #5: Anterior, Half, Tc = 1.2. The deformations comprise: a virtual translation with components 2.5 voxels in horizontal (anterior, A to posterior, P)
and vertical (medial, M to lateral, L) directions (red arrows), and two voxels in the length direction (proximal to distal, not shown here); and an affine
transformation that deforms only the part of the image spanned by the blue arrows, displaces the dashed blue line by zero and reaches its full
magnitude (Tc) at the corresponding edge of the image. Regions of overlap between the fixed (red) andmoved (green) bone images are shown in yellow.

FIGURE 4
Types of variations in the examined population. The population
includes longitudinal data of treated and untreated mice. The
proposed PCA score processing uncovers all the sources of variations
and differentiates them into classes. These classes are generic
variations among groups and systematic variations with respect to
time. The latter can be further categorized into disease progression
and growth, and treatment effects.
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P � a · Y
where a is the matrix of mode scores (dimensionM × (M–1)) and Y
is the matrix of mode vectors (dimension (M–1) × (3N)). The M
scalar values in the kth column of the matrix a (k = 1, 2, . . . , M–1)
represent the contributions to theM tibia observations due to the kth

Principal Component (or mode). The shape of this mode is given by
the kth row of the matrix Y .

Leave-one-out tests were conducted to assess the accuracy of
reconstructing any tibia not belonging to the original database. In
turn, the two shape observations (corresponding to weeks 18 and 24)
of each of the six mice in the “OVX + ML” group, were randomly
removed. PCA was performed on the remaining data, i.e., (5 “OVX”
+ 5 “OVX + ML”) × 2 ages. For each PCA mode, the score values of
the two left-out sample tibiae were found by projecting these on the
mode shape. The left-out samples were reconstructed as the sum of
the mean shape and the linear superposition of the mode shapes,
weighted by the score values. The reconstruction error was defined
as the distance between corresponding surface nodes of the two pairs
of reconstructed and left-out samples. Note that reconstruction
errors were assessed only for the six pairs of shape observations
in the “OVX + ML” group to evaluate the sensitivity of the PCA
model to describe treatment-related variations over time.

2.8 Temporal variations and treatment
effects categorization

In the current application, longitudinal data of treated and
untreated mice were analyzed, i.e., 22 observations, to investigate
the disease progression for the control group, “OVX”, and the
treatment progression for the “OVX + ML” group. The 21 PCA
modes describe multiple sources of variations. These variations can
be categorized (Figure 4) as either a combination of natural
variability between individual mice and random errors in the
image processing framework or a temporal change. For modes
that are not associated with temporal changes, it is expected that
their scores will remain similar over time for an individual mouse.
Therefore, the change over time in the scores of each mode was
computed for all individual mice. Only those modes are considered
as associated with temporal change for which median score changes
over time are statistically significantly different from zero in either or
both the “OVX + ML” and “OVX” groups. Two-sided Wilcoxon
signed rank test was used to test if the temporal score changes in any
group are significantly different from zero. Additionally, in order to
evaluate whether the “OVX + ML” and “OVX” at week 18 are
biologically indistinguishable, Wilcoxon signed rank test on the
scores of these subgroups was performed. A nonparametric test was
used because of the small data sample size.

Temporal changes were further distinguished into either an
effect of treatment or a combined effect of other temporal factors,
e.g., ovariectomy and growth. Here, three possibilities arise: 1)
effect only due to treatment: evidenced by a non-zero median score
change in only the “OVX + ML” group; 2) effect not due to
treatment: evidenced by a non-zero median score chfange in only
the “OVX” group, 3) effect partially due to treatment: evidenced by
non-zero median score changes in both “OVX” and “OVX + ML”
groups. The Mann–Whitney U test was performed to compare the

two cohorts with each other. Where a mode is established to be
associated with a temporal change, this change was quantified in
two ways. First, Cohen’s d effect size was computed as the ratio of
the average and standard deviation of the score changes in the
group (Lakens, 2013). Second, the surface change that each mode
describes was computed by considering the median score changes
of the “OVX + ML” group between two ages and scaling the mode
vectors. Specifically, a centered shape vector Pk

j18, of the j
th shape

observation at week 18, can be reconstructed using a treatment-
related mode Yk, k = 1, . . . ,M–1 using the PCA formula. Similarly
for the jth shape observation at week 24. Therefore, the two
reconstructions of the jth shape observation of a group at the
two ages can be written as

Pk
j18 � akj18 · Yk

Pk
j24 � akj24 · Yk

The surface change SC of the jth shape reconstruction using the kth

model is the difference between the coordinates of Pk
j24 and P

k
j18, and

it can be written as:

SCk
j � Pk

j24 − Pk
j18 � akj24 − akj18( ) · Yk

To represent a group, the median of the surface change is:

MSCk � median SCk
j[ ] � median akj24 − akj18( )[ ] · Yk

The median surface change of a group is henceforth called surface
change for the sake of brevity. Note that the surface change has
dimensions of length. The direction of the vectors indicates bone
formation or bone deletion as geometric changes on the
active surfaces.

3 Results

3.1 Mapping bone images using deformable
image registration

In study #1, the registration algorithm ShIRT determined the
known displacement of uniform rigid translation by an integer
number of voxels, leading to a maximum error (across the range
of NS investigated) of 2.5 × 10−5 voxels (2.6 × 10−4 μm) associated
with accuracy and of 1.3 × 10−4 voxels (1.3 × 10−3 μm) associated
with precision. In study #2, where a non-uniform rigid translation
(2 voxels in x and y directions and four voxels in z) was applied, the
registration errors were similarly negligible, as a maximum error
associated with accuracy of 2.8 × 10−5 voxels (2.9 × 10−4 μm) and
associated with precision of 1.7 × 10−4 voxels (1.8 × 10−3 μm)
were obtained.

In study #3, rigid translation by a non-integer number of voxels
led to constant errors (across the range of NS investigated) of
~0.15 voxels (1.56 μm) in magnitude associated with accuracy
(Figure 5A) and ~0.05 voxels (0.52 μm) in precision (Figure 5B).
Note that translation with a non-integer number of voxels involved
blurry transition due to the linear interpolation of black and white
pixels and then forced back to binary values (thresholding). This
possibly explains the higher error magnitudes in this study
compared with those in studies #one to two.
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On the other hand, the same translation field on grayscale
images revealed lower errors associated with accuracy
(~0.08 voxels = 0.83 μm, Figure 5). Note that in study
#4 linear interpolation is performed on a spatially smooth
field of grey values, which results in a smoother final bone
surface than in study #3, which probably explains the lower
errors associated with accuracy. The errors associated with
precision were similar to those in study #3. The slight
decrease in errors associated with accuracy and precision with
large NS in both studies was because the output displacement

fields were smoother, possibly reducing a noise effect and getting
closer to the uniform imposed virtual translation.

The displacements applied in ‘Study #5: Posterior, Half, Tc =
0.95’ led to almost constant errors of ~0.87 voxels (9 μm) associated
with accuracy and ~1.1 voxels (11 μm) associated with precision.
The displacements applied in ‘Study #5: Posterior, Smaller Part, Tc =
. . .’, led to errors associated with accuracy of ~0.20 voxels (2.3 μm)
for affine transformation coefficient Tc = 0.85, ~0.12 voxels (1.2 μm)
for Tc = 0.95 and ~0.18 voxels (1.8 μm) for Tc = 1.15. Errors
associated with precision were nearly constant around 0.34, 0.08 and

FIGURE 5
Dependence of errors associated with accuracy (A) and precision (B) of the deformable registration on Nodal Spacing. Each line corresponds to a
different imposed displacement field; the details of these are found in the main text.

FIGURE 6
(A) Histogram of registration errors and (B) their spatial distribution on the bone surface for the simulated displacement field given by ‘Study #5,
Anterior, Half, Tc = 1.2’. Errors are shown for a representative specimen taken from the “OVX +ML” group at 18 weeks of age. Contour darkness indicates
error magnitude at the specific location on the bone surface.
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0.26 voxels (3.5 μm, 0.8 μm, 2.7 μm, respectively) when Tc = 0.85,
0.95 and 1.15 respectively. Comparing ‘Study #5: Posterior, Half,
Tc = 0.95’ and ‘Study #5: Posterior, Smaller Part, Tc = 0.95’ suggests
that errors associated with both accuracy and precision increase as a
larger part of the image is deformed. Comparing within ‘Study #5:
Posterior, Smaller Part, Tc = . . .’ suggests that the errors associated
with accuracy and precision are higher when the magnitude of the
difference between the affine transformation coefficient and unity
increases (Tc = 0.85/1.15 vs. 0.95, i.e., |Tc–1| = 0.15 vs. 0.05). It also
revealed that the errors increase when the direction of the
deformation and of rigid transformation oppose each other
(shrinkage: 0.85, Figure 3A) instead of being aligned (expansion:
1.15, Figure 3B).

For the case ‘Study #5: Anterior, Half, Tc = 1.2’, the errors
associated with accuracy varied between 0.52 and 0.97 voxels
(5.4–10 μm), whilst those associated with precision varied
between 0.68 and 1.45 voxels (7.1–15 μm). Both types of errors
increased with an increase in NS, in a monotonic fashion. The higher
errors in precision are due to the localization of large magnitude
errors around the anterior crest, which is expected because the
imposed displacement magnitude is highest in that region
(Figure 6A). For NS = 5, the maximum error at the anterior
crest was 2.8 voxels (29 μm), which is less than 25% of the
maximum imposed simulated local deformation (12 voxels =
124 μm). The 75% (interquartile range, IQR = Q3–Q1) of the
surface locations were successfully registered with a systematic
error smaller than 0.47 voxels. The median registration error
over the bone surface and for all mice was 0.18 voxels
(1.8 μm) (Figure 6B).

The addition of image noise (Study #6) led to 0.56 voxels
(5.8 μm) and 0.73 voxels (7.6 μm) in errors associated with
accuracy and precision respectively for NS = 5, averaged across
all mice, and to 0.59 voxels (6.1 μm) and 0.78 voxels (8.1 μm) in
errors associated with accuracy and precision respectively for NS =
10. For NS = 5, the median registration error over the bone surface
was 0.33 voxels (3.4 μm), and its spatial distribution was similar to

when image noise was absent for the same nodal spacing with
slightly higher standard deviation (‘Study #5: Anterior: Half,
Tc = 1.2’).

After this step, the mesh samples were consistently discretized,
with a fixed number of nodes. The shape variance as described by the
centered mesh data in the groups “OVX” week 24 and “OVX +ML”
week 24 amounted to 18% and 44% respectively of the total variation
of geometry in the data set. The remaining variation in the dataset
was due to all mice at week 18.

3.2 Decomposition into mode shapes and
validation

The first 6 PCA modes explained 91% of the total variation in
tibia geometry (Figure 7). All remaining modes (7–21 modes)
individually explained 2% or less of the total variation in
tibia geometry.

As shown in Figure 8, Mode 1 (explaining 49% of total shape
variation) describes variations in the thickness and “sharpness”
of the anterior crest and Mode 2 (explaining 20%) describes
variations at the endosteum at the medial aspect. Mode 3
(explaining 8%) describes variations in the curvature of the
medial and lateral aspects and Mode 4 (explaining 6%)
describes local variations at the lateral aspect of the distal end.
Figure 8 also shows that Mode 5 (explaining 5%) describes local
variations at the distal anterior crest and Mode 6 (explaining 3%)
describes variations in local features scattered all over the bone
midshaft, of which the variations at the posterior periosteal and
posterior-lateral endosteal surfaces are prominent.

Reconstruction errors in the leave-one-out tests had an average,
standard deviation and maximum of 1.5, 1.2 and 9.5 voxels (16 μm,
12 μm and 99 μm) respectively when considered over all surface
points and all mouse samples. Figure 9 shows the boxplots of the
error distribution over the tibia surface for specimens grouped by
age. The large number of outliers in both distributions highlights
their skewness. The median errors in week 18 (1.2 voxels, 12 μm)
were lower than those in week 24 (1.4 voxels, 15 μm) (Figure 9A, p <
0.05). Figure 9B shows the median error distribution on the 3D bone
profile over the six mice at 24 weeks of age. Relatively higher error
magnitudes are found around the proximal medio-posterior and
anterior edges and at the distal latero-posterior aspect in the
endosteum only, but errors are otherwise small and randomly
distributed over the bone surface.

3.3 Temporal variations and treatment
effects categorization

Mouse-specific changes in mode scores, going from week
18–24 of age, were statistically significantly different from zero
only for Modes 1, 2, 5 and 6 in the “OVX + ML” (p < 0.05)
group (Figure 10). Additionally, no statistically significant
differences (p > 0.05) between “OVX + ML” and “OVX” groups
at week 18 were found when comparing their scores of these PCA
modes. As such, Modes 1, 2, 5 and 6 describe geometric features that
are associated with a temporal change, and this change is an effect
only due to treatment. This could be also visually indicated by the

FIGURE 7
Cumulative variance (%) explained by the PCAmodes. The first six
modes (red circles) describe up to 91% of the total geometric variance
within the examined population.
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positive trend of score changes for the “OVX + ML” group in
Figure 10, in contrast with score changes for the “OVX” group which
do not follow a specific pattern. Modes 1, 2, 5 and 6 were found to
have Cohen’s d effect sizes of 2.0, 0.60, 0.54 and 2.4 respectively.

For these modes, the profiles of the mode-specific temporal
surface changes are shown in Figure 11. This figure illustrates the
change map on top of the median mode-specific bone profile at week
18. The arrows and magnitudes show that Mode 1 is associated with

FIGURE 8
The 3D profiles of the treatment-relatedmodes 1, 2, 3, 4, 5 and 6, depicted as vectors plotted on themean shape. The vectors are scaled and colored
by the mode magnitude at each point of the mesh. Darker and longer arrows indicate higher variability in shape across different bone specimens at that
surface location. All profiles share the same viewpoint.
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prominent endosteal deletion of 0.054 mm and periosteal formation
of 0.1 mm at the anterior crest along the whole length of the
midshaft and less prominent concurrent endosteum and
periosteal formation (0.027 mm) at the latero-posterior aspect. A
similar interpretation revealed that Mode 2 describes endosteum
deletion and periosteal formation in the range of 0.013–0.032 mm
along the medial side. Mode 5 primarily captured periosteal deletion
at the distal end of the anterior crest with a magnitude of 0.011 mm.
Although this opposed the effect described by Mode 1, the
summative effect of both Mode 1 and Mode 5 is still periosteal
expansion of the anterior crest by 0.09 mm. Finally, Mode 6
exhibited endosteal formation at the posterior-lateral aspect of
0.03 mm and periosteal formation along the posterior side of
similar magnitudes (0.03 mm).

4 Discussion

The main objectives of this study are to demonstrate that: (a) the
variations in mouse bone geometry obtained by the novel
framework are robust to uncertainty sources contained therein;
(b) to demonstrate that this framework enables an assessment of
3D geometric variations induced by treatment.

4.1 Robustness of framework including
mapping bone images

The robustness of the framework was assessed through case
studies focusing on its distinct steps. These analyses were conducted

for all mice in the “OVX +ML” group at the age of 18 weeks. At this
age, the groups “OVX + ML” and “OVX” were shown to be
biologically indistinguishable (p > 0.05, statistical tests on the
scores) as the mechanical loading interventions start only when
mice are 19 weeks old.

All images were rigidly registered to a reference structure at the
starting time point (Viceconti and Dall’Ara, 2019), to eliminate
spatial errors (Campbell et al., 2014). Since the comparison of the
longitudinal images is very sensitive to the registration of each set of
microCT scans, a validated registration procedure with errors of less
than 3.5% was used (Lu et al., 2016), demonstrating reproducibility
in similar mouse tibia studies (Oliviero et al., 2022). Finally, as this
study focused on one segment within the entire tibia volume, further
local registration at the tibia midshaft was successfully implemented
aided by its simple geometry (compared with more heterogeneous
trabecular regions).

The first evaluation study (Supplementary Material 1)
demonstrated that cortical pores and trabeculae occupy a very
small portion of the total bone section volume, and that
excluding these features had negligible influence on the
mechanical strain distribution. As such, this simplification was
considered acceptable. It is not a limitation of the framework
because the state-of-the-art method of standard morphometric
analysis at midshaft also excludes such features. The second
evaluation (Supplementary Material 2) indicated that bone
surface topology was preserved across various levels of
discretization, with errors converging quickly and remaining
small compared to voxel size.

Since ShIRT is here used for a new application for mapping
bones from different mice and ages, the third evaluation study

FIGURE 9
(A) Boxplots of the leave-one-out errors in reconstructing the bone geometry of six mice in the “OVX + ML” group at weeks 18 and 24. The overall
median error for week 24 is statistically significantly higher (p < 0.05) than for week 18. (B) Two different views of the endosteal and periosteal surfaces
(mean bone shape for week 24) overlaid with contours levels indicating magnitude of median error at each bone surface location for week 24.
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(section 3.1) assessed the accuracy and precision of the algorithm in
the prediction of uniform, non-uniform, global and local surface
displacements. Mean errors in mapping such surfaces were always
below one voxel. SD of errors were almost always lower than one
voxel, apart from local and high magnitude deformations which
seemed to challenge the algorithm. In those cases (‘Study #5:
Anterior, Half, Tc = 1.2’), a linear relationship between errors
and NS was revealed and errors associated with precision were
found higher than one voxel for NS > 35 voxels. Since the
distribution of errors in the bone surface was skewed resulting in
high errors in the most deformed bone areas, NS was chosen to be
five voxels to ensure that all important local differences within the
examined population of shapes are captured. For NS = 5, errors
remained smaller than one voxel (5.8 μm and 7.6 μm errors
associated with accuracy and precision, respectively) in the
presence of existing and simulated image noise and when
binarization and geometry correction steps were also applied.
Taken together, this evaluation study suggests that the mapping

of the reference bone surface to “anatomically similar” locations on
the 21 mouse tibial surfaces, achieved using deformable registration
with NS = 5 voxels, contains errors associated with accuracy and
precision smaller than one voxel (10.4 μm).

Past evaluation studies of ShIRT have found comparable error
magnitudes and similar relationships between error magnitudes and
NS of deformable registration. For example, Dall’Ara et al. (2014)
showed that when predicting uniform displacements of two voxels
using NS = 5 voxels, the mean and standard deviation of error
magnitudes were of the order of 10–4 voxels and 10–2 voxels
respectively. Dall’Ara et al. (2017) simulated uniform virtual
displacement fields of similar magnitude in murine tibia samples
and found good performance in precision. In the present evaluation
study #1, where uniform or non-uniform virtual displacements
(i.e., homogeneous but anisotropic) of integer magnitudes (up to
six voxels) was used, mean and standard deviation of error
magnitudes were of the order of 10–5 voxels and 10–4 voxels
respectively, and relatively independent of NS, and similar to

FIGURE 10
Treatment categorization of Modes 1, 2, 5 and 6. Mode score values of individual mice at are shown at week 18 (unfilled) and week 24 (filled) (“OVX +
ML”, △; “OVX”, ▢). Lines (“OVX + ML”, solid; “OVX”, dashed) connect mode scores of individual mice between the two time points. Asterisks (*) highlight
median changes with time of mode scores in a group that are statistically significantly (p < 0.05) different from zero.
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those reported in the two studies mentioned above. However, whilst
the cortical midshaft section of murine tibia was analyzed in the
present study, Dall’Ara et al. (2014) focused on localized cubes
extracted from trabecular or cortical regions of bovine femur. The
lower error magnitudes found in the present study are expected
because the topology of the cortical region of the murine midshaft is
much simpler than of the trabecular bovine femur regions.

A non-uniform translation equal to a non-integer number of
voxels results in significantly larger mean errors, as also
demonstrated previously (Dall’Ara et al., 2014). It is attributable
to interpolation, but with less impact on grayscale images. This is
expected because interpolation of the displacement on the bone
surface is more gradual when applied to grayscale images. Local
deformations led to non-uniform errors on the bone surface, with

FIGURE 11
Median changes in endosteum and periosteum shapes due to Modes 1, 2, 5 and 6 between weeks 18 and 24 in “OVX +ML” group. The directions of
change at different locations are denoted by the arrows, and a redder arrow indicates a relatively larger change. The mean bone profile at week 18 is
shown as a solid gray surface, whilst the mean profile at week 24 is given as a colored wireframe.
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error magnitudes being larger in areas of larger local deformation
(Figure 6). Therefore, the dependence of the errors on NS is
modulated by the deformed features and the magnitude of
deformation. For example, a flatter shape of the posterior part in
‘Study #5: Posterior, Half, Tc = 0.95’ resulted in a relatively low
dependence of error magnitudes on NS, similarly with applying local
deformation in a small fraction of the image. In contrast, the sharp
feature of the anterior part explains the linear increase of errors with
NS in the case of ‘Study #5: Anterior, Half, Tc = 1.2’. Image noise
slightly increased registration errors. In this study, artificial noise
was added to already noisy images, while Dall’Ara et al. (2014) used
noise from repeated scans. Despite the difference in noise sources,
error magnitudes were similar to those reported previously. The
strong dependence of registration errors on NS for complex
simulated displacement fields suggests the need to reassess this
dependence for new applications. Such reassessment should
ideally design tests representative of the length scale, image
resolution, alignment, features and noise that are present in such
new applications.

Simulated displacement fields, such as those described in the
present evaluation study, have the advantage that different sources
of complexity can be separately analyzed. However, not all past PCA
models have analyzed registrations errors in similar ways, which
makes it challenging to directly compare the magnitude of errors
reported here with earlier work. Unlike the present study, where
images were mapped using elastic registration, Bryan et al. (2010)
registered the surface meshes. The defined registration error as the
distance between the registered and target surface meshes were
reported with mean and maximum errors of 0.60 mm and 3 mm,
respectively. Their error magnitudes cannot be directly compared
(i.e., in dimensional units) to the error magnitudes reported in the
present study, due to differences in bone sites, scales and imaging
modalities. As the image resolution in the study of Bryan et al. (2010)
was 0.78 mm×0.78 mm×2mm, the errors can be inferred to be in the
range of 0.3–3.8 voxels. A similar range of mean registration errors
(0.42–3 voxels) was reported by Brown et al. (2014) and Brown et al.
(2017) who imaged hind limbs of female C57BL/6 (similar bone size
as the present study) with somewhat lower resolution (14 µm).
Registration errors in the present study are slightly smaller than
those reported in the above studies. This could be due to differences
in elastic registration approach between current and past work and
errors in initial positioning/alignment that existed in these past
studies, but these effects cannot be further separated.

4.2 Decomposition of variations and
treatment effects categorization

Among all groups, the “OVX + ML” week 24 group contributed
most to the total variation. This indicates that it is furthest from the
mean shape of the whole dataset and suggests a strong effect of
treatment. The relatively small variation within the “OVX” week
24 group indicates that the effect of untreated ovariectomy from the
period from 18 to 24 weeks cannot be reliably distinguished from the
natural variation between mice in this study. The results of standard
morphometric analysis on the same mice suggest that the variation
in cortical area (both week 18: 19%; “OVX” week 24: 13%, “OVX +
ML” week 24: 68%) and in cortical thickness (both week 18: 18%;

“OVX” week 24: 11%, “OVX + ML” week 24: 71%) are distributed
similarly (Roberts et al., 2019; Roberts et al., 2020). However, while
the novel framework presented here can be used to assess the
variation in the full 3D bone geometry, standard morphometric
analysis can be used to assess only the part of variation in geometry
that is captured by the morphometric parameters.

The geometry variation across the 22 mouse image specimens
was compact, with 90% of it being explained by the variation of only
six principal components (i.e., shape modes). This is interesting
because several different factors, including natural variability
between individuals, growth, disease, treatment and artifacts of
image processing were present in the dataset. The full 3D
assessment enabled by PCA allows a concise description of
separate findings of previous studies. Mode 1 describes
simultaneous formation and deletion localized at the anterior
crest, which agrees with the previous findings of Cheong et al.
(2020b). At this site, the mode vectors on the formation surface are
longer than those on the deletion resorption surface indicating
higher magnitude of change in periosteum than endosteum
(0.1 mm vs. 0.054 mm), and this agrees with previous findings of
Birkhold et al. (2017). This localized cortical thickening of 0.046 mm
also agrees with the averaged cortical thickening of 0.064 mm of
similar bone region reported by Roberts et al. (2020). Roberts et al.
(2020) attributed this change to treatment, and this agrees with the
present finding that Mode 1 is characterized as a pure treatment
effect (by the statistical tests of the scores). An a posteriori analysis
found that Mode 1 was moderately correlated (R2 > 0.50) to the
standard morphometric parameters (extracted from the same
dataset): maximum moment of inertia (R2 = 0.62), minimum
moment of inertia (R2 = 0.55) and eccentricity (R2 = 0.61) and
had a low correlation with area and thickness. Correlations between
any of the Mode 2–6 scores and any morphometric parameter (area,
thickness, maximum and minimum moment of inertia and
eccentricity) were consistently low (R2 ≤ 0.50) or negligible.

Mode 2 describes periosteal formation and endosteal deletion
of the medial aspect which could potentially explain the increased
cortical area in the study of Roberts et al. (2020). The localized
changes in the anterior–medial aspect agree with the predictions
of Razi et al. (2015) and Javaheri et al. (2020) that indicate higher
strain magnitudes at these locations. Both Mode 1 and 6 also
describe localized thickening of the posterior-lateral edge,
consistent with other loading murine studies which highlight
the dependency of the bone remodeling to the strain distribution
(Carriero et al., 2018; Cheong et al., 2021; Sugiyama et al., 2008;
Rooney et al., 2023). Overall, posterior and anterior bone
response as shown by Modes 1 and 6 are also in agreement
with the local thickness changes as measured cross-sectionally in
the midshaft slice of the tibia bone in similar loading models
(Miller et al., 2021; Holguin et al., 2014). The periosteal deletion
of the distal anterior crest as described by Mode 5 has not been
previously reported elsewhere but this effect is much smaller
compared to the opposite effect of Mode 1. Overall, the current
framework provides a full 3D assessment of the geometric
changes, that could not be obtained by previous approaches.

The used sample size (n = 6 for each examined cohort and age)
was relatively small but similar to other longitudinal studies that
quantify bone changes over time and space (Li et al., 2019; Lu et al.,
2017; Roberts et al., 2019). The overall median reconstruction errors
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in the “OVX + ML” groups in weeks 18 and 24 were comparable to
the standard deviation of cortical thickness (0.5 voxels and 1.7 voxels
respectively) as reported previously by Roberts et al. (2019, 2020)
using the same images. This implies that the difference in cortical
thickness between an original and a reconstructed geometry (using
all PCA modes) of a mouse is of the same order of magnitude as the
difference in cortical thickness between two randomly selected mice
in the population. This suggests that a mouse not belonging to the
examined population cannot be reconstructed using the discovered
PCA modes sufficiently accurately. This highlights that inferences
drawn based on the somewhat small dataset must be extrapolated
with caution to a larger population of mice undergoing the same
course of disease/treatment.

Notwithstanding this limitation, some assertions regarding
modes corresponding to treatment effects can still be made
reliably. The median reconstruction error across all “OVX + ML”
week 24 samples is the highest (~3 voxels) at the anterior crest. The
median change due to Mode 1 is also highest (~9 voxels) at a similar
location. This suggests that the small dataset used in the present
study does not limit the assertion that Mode 1 is an effect of
mechanical loading treatment. A similar assertion can be made
for Mode 6, as the median change corresponding to this mode is the
highest at the endosteum (~3 voxels) which is nearly twice the
highest median reconstruction error (found at a similar anatomical
position). However, such assertions cannot be made for either Mode
2 or Mode 5, as the maximum median change (3 and 1 voxels,
respectively) is not distinguishable from the magnitude of median
reconstruction errors in the medial aspect and distal anterior crest,
respectively.

The higher confidence in interpreting Modes 1 and 6 as
treatment effects is supported by their large effect sizes. The
contrast in fractions of total variation explained between Modes
1 and 6 highlights that Mode 1 describes a global change (a large area
around the anterior crest) whereas Mode 6 describes a local change
(a small area on the posterior-lateral aspect). Modes 2 and 5 explain
larger fractions of total variance than Mode 6 but approximately a
quarter of the effect size of Mode 6. This highlights that Modes 2 and
5 do not capture treatment effects as reliably as Mode 6, even if these
modes separately explain larger fractions of the total variance
than Mode 6.

The orthogonality of PCA modes guarantees that the treatment
effects described by Modes 1, 2, 5 and 6 are uncorrelated to each
other. In contrast, the standardized set of morphometric parameters,
such as cortical thickness and area, are dependent on each other.
This makes it challenging to separate the fractions of total variation
explained by each parameter. In the present study, the treatment-
related modes described most of the total variance, indicating the
role treatment plays in modifying bone shape. Orthogonality of
modes also allows attributing Modes 3, 4, 7–21 to sources of
variation other than treatment, such as natural variability
including random errors and noise but not growth and disease
which have systematic temporal effects. The lack of a temporal effect
was supported by our analysis of the original data in Roberts et al.
(2019). This analysis showed that neither cortical thickness or
cortical area were statistically significantly different (Wilcoxon
signed-rank test, p > 0.05) between 18 and 24 weeks in the
“OVX” group. This is expected because the impact of
ovariectomy in murine bone models is prominent in the first

couple of weeks post-surgery but stabilizes after that period
(Roberts et al., 2019).

A major advancement due to the proposed framework is that the
experimental design (and corresponding imaging data) drives the
discovery of geometric features that automatically separate into
independent effects due to treatment, unpacked from disease,
growth, random variations and combinations of these, whilst
capturing the full 3D variation in the data. This contrasts with
the state-of-the-art approach of fixing the morphometric parameters
to characterize bone geometries. The study in this paper successfully
demonstrated that there are important local treatment effects that
the scalar parameters cannot describe. This contrasts with prevailing
approaches that discard a part of total shape variation and
moderately decompose the effects of treatment, disease, growth
and/or random variations along these parameters, with no
guarantee that the decomposition is mutually independent.

4.3 Limitations

The 90% coarsening of the surface meshes showed that
important geometrical features across the reference bone section
are preserved (Supplementary Material 2). Similar levels of
coarsening were also suggested previously in the study of Brown
et al. (2017). However, a concern is whether the coarse reference
surface mesh is representative of all bone samples across the tibia
length. Specifically, if there are important features that are present in
different regions of bone surfaces for other bones, then coarsening
the reference surface mesh cannot guarantee that these features are
described by the mapped reference meshes following deformable
registration. In the present study, the size of the cropped section of
the tibia was proportional to its length, which ensured that these
sections corresponded to similar anatomical regions and thus
reduced the possibility of including disparate anatomical landmarks.

This framework is designed to investigate bone variations within
an examined population. Although this is based on a PCA model,
the latter should be used with care when attempting to approximate
new geometries not observed in this study. It is also important to
note that individual PCA mode shapes and scores, even those with
the highest explanatory power or effect size (Modes 1 and 6), cannot
predict the full effect of treatment for individual mice, and should
not be used in a predictive modeling setting. Therefore, the number
of samples used in this study are insufficient for the purpose of
building in silico physiologic or pathologic cohorts. However, this
study can contribute to an ongoing process of data sharing within
the scientific community with the long-term aim of reducing the use
of animals in bone research (Viceconti and Dall’Ara, 2019).

This study assumed negligible densitometric variations within
the bone samples. Roberts et al. (2020) found 1% change in the tissue
mineral density (TMD) in a similar bone segment driven by a double
course of mechanical loading. Oliviero et al. (2021) analyzed
homogeneous (Young’s modulus E = 14.8 GPa) and
heterogenous (E derived from local TMD) FE models of mouse
tibia at different ages and cohorts (healthy, diseased and treated) but
did not find any significant differences in bone mechanics. In future
applications where TMD is expected to change significantly (above
levels reported in Roberts et al. (2020)) or be more heterogeneous
compared to (Oliviero et al., 2021), further development of the
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present framework is necessary to describe local TMD variations
and separate it into effects of treatment, disease, growth, natural
variability and other relevant sources.

This application only focused on the midshaft section, and
further development is needed to analyze 3D shape variation in
the entire tibia. It is expected that removing the fibula (Cheong et al.,
2020b) will be necessary to preserve the topological similarity. The
high dimensionality of the problem and the computational demand
of each step of the framework should be carefully considered. Here,
controlling the surface mesh density using coarsening could be a
crucial step. Sophisticated job submission techniques may be needed
for efficient compute time and data management. The application of
conventional PCA in the framework presented here inherently
assumes that modes can be linearly combined. This assumption
might occlude important effects, and the use of several alternative
models, such as Probabilistic PCA (Kim and Lee, 2003) and
Gaussian processes (Lawrence and Hyvärinen, 2005) should be
explored in the future.

The presented PCA-based framework is limited to the
analysis of topologically equivalent shapes. As such, only the
variations in cortical bone regions can be examined and the
framework excludes the possibility of analyzing trabecular
regions. The image processing protocol for removing cortical
pores and trabeculae was based on previous evidence of bone
remodeling for this specific bone system. However, if the
framework is applied to a different volume, site of bone or
different bone, evidence of bone remodeling and influence on
bone mechanics should be reviewed in the new context.

The selected mouse genetic strain was considered skeletally
mature at week 14 of their age and an appropriate experimental
model to quantify bone variations in osteoporosis and treatment
cohorts. However, bone aging can affect bone response to
interventions. Ageing-related effects were not distinguished in
this analysis. Particularly, the PCA database did not include any
healthy specimens, but it considered ovariectomized mice as the
control group. Additionally, some sources of uncertainties within
the examined population that could not be eliminated are the exact
date of birth related to their age (± some days), genetic phenotypes,
success of ovariectomy (complete removal of ovaries with/without
additional soft tissue) and recovery.

5 Conclusion

The proposed new framework based on longitudinal
microCT imaging, image processing and PCA on discretized
bone shapes showed the potential to improve the preclinical
treatment investigation in murine bone models. The framework
was demonstrated to accurately describe bone shapes up to
~1 voxel accuracy in the presence of several error sources in
the processing pipeline. Application of PCA on discretized tibial
midshaft shapes taken from a population of diseased and treated
mice identified for the first time six mutually independent
geometrical features that explained a significant fraction of the
total variation in the 3D imaging data. Four of these geometric
features (modes) were found to be purely an effect of the
mechanical loading treatment and described changes over the
course of treatment at the anterior crest, medial aspect, posterior

area and some specific localized features. Due to the small dataset
size, only two of these features could be reliably asserted as being
treatment effects. Nevertheless, these features offer a compact
description of several changes found in previous studies, and
contain new information not discovered until now. The imaging
data used here enabled the demonstration of the various
methodological aspects of the developed framework, which
was the primary focus of this paper. However, the application
of the framework is not limited to the experimental set-up from
where the images are sourced. It has the potential to be used as a
more precise strategy for investigating the effect of different
treatment strategies on bone structure.
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