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Rehabilitation assessments hold an irreplaceable role in the field of rehabilitative
therapy. However, due to the subjectivity of traditional physicians and the
variability of patient conditions, this leads to a lack of detailed grading and
inaccurate assessment results. To address this issue, we developed an upper
limb rehabilitation evaluation model. This model integrates muscle strength
assessment methods and the Belief Rule Base (BRB), along with qualitative
knowledge such as clinical rehabilitation theories and expert experiences. It
also utilizes training data from actual patients, collected by an upper limb
rehabilitation robot. We then optimized the BRB model’s evaluation accuracy
using the Fmincon algorithm and compared its result with commonly used
methods such as the Back Propagation (BP) neural network and Support
Vector Machine (SVM). This comparison validated the effectiveness and
advancement of our BRB approach. This work has laid both a theoretical and
practical groundwork for developing a clinical decision support system based on
the BRB for upper limb rehabilitation evaluations.
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1 Introduction

In the field of rehabilitation medicine, assessing the progress and effects of patients’
rehabilitation is a crucial part. However, due to the complex and varied conditions of
patients with upper limb impairment, rehabilitation therapists often face the challenge of
not being able to accurately diagnose them. For example, in one real work, a stroke sequelae
patient sought rehabilitation services due to upper limb dysfunction. Despite partial data
obtained through a series of quantitative tests, such as muscle strength tests, the lack of a
comprehensive assessment model leaves therapists to rely on personal experience and
limited data to make judgments, which often results in less precise or comprehensive
assessments.

In order to solve these problems, researchers began to explore various rehabilitation
assessment models. At present, these models can be broadly divided into two categories:
traditional statistical methods (Meng et al., 2022; Li et al., 2010; Lin et al., 2019) andmachine
learning methods (Hamaguchi et al., 2020; Tang, 2020; Ahmed et al., 2021; Saibene et al.,
2017). Among them, machine learn-based methods have received more and more attention
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due to their ability to process large amounts of complex data, and
have been applied in many fields, including expert systems, neural
networks, and so on. However, because each patient’s specific
situation is different, building a rehabilitation assessment model
that takes into account both quantitative information and the
subjective knowledge of experts remains a challenge.

This paper aims to propose a new model that combines muscle
strength assessment methods with Belief Rule Base (BRB) theory, in
order to provide a more accurate and comprehensive assessment of
upper limb rehabilitation effects. Next, we will first introduce the
relevant work background, and then elaborate our proposed BRB
rehabilitation assessment model and its optimization process.

In recent years, there has been rapid development and
application of rehabilitation assessment models for patients. A
well-designed rehabilitation assessment model can effectively
integrate subjective expert knowledge with uncertain data to
evaluate the rehabilitation outcomes of patients. For instance,
Das et al. (2013) developed an expert system for hypertension
diagnosis using fuzzy rules in 2013, demonstrating high
predictive accuracy. In 2016 (Abunaser, 2016), Abu-Naser et al.
created an expert system for lower back pain diagnosis and
treatment based on rules and knowledge. Furthermore, De La
Concepcion et al. (2017) utilized smartphones as detection tools
to accurately recognize mobile activity and detect falls in elderly
individuals through real data training and movement detection
algorithms in 2017. Additionally, Oyelade et al. (2018)
established an expert system for breast cancer using NL parser
and dictionary database in 2018 to assess the risk of breast cancer in
patients through inference models and rule bases.

The aforementioned approach necessitates substantial data
support and heavily relies on expert knowledge. However,
because expert knowledge is very subjective, it is difficult to
establish rehabilitation assessment model only through expert
knowledge in many rehabilitation assessment systems. Moreover,
these systems that rely on extensive data support and expert
knowledge cannot ensure the accuracy of the rehabilitation
evaluation model. Therefore, there is a need to develop a
rehabilitation evaluation model capable of incorporating
quantitative information and expert subjective knowledge while
effectively managing complex data and decision-making processes.

The Belief Rule Base (BRB) is a modeling method that integrates
quantitative data and expert subjective knowledge to effectively
address uncertainty in complex decision-making problems. The
concept of BRB was initially introduced by Professor Jianbo Yang
(Ribernik and Liu, 2006) from the University of Manchester in 2006.
Subsequently, Professor Zhijie Zhou from Rocket Force Engineering
University further enriched and developed the BRB theory,
proposing an optimized learning method for BRB structure based
on the original theory. His contributions to the fundamental
theoretical research of BRB parameters and structure iterative
learning methods have been significant (Gong et al., 2017; Karim
et al., 2017; Chen et al., 2019; Feng et al., 2018). Due to its exceptional
decision-making capabilities, the belief rule base has found
applications across various fields, fulfilling its corresponding role
effectively.

In recent years, numerous scholars have dedicated their efforts
to the exploration and advancement of BRB theory, applying it
within the realm of medical decision-making. Kong Guilan from

Peking University has developed a clinical decision support system
grounded in BRB and a clinical assessment decision support system
for risk stratification of patients with cardiac chest pain, effectively
addressing the uncertainty inherent in clinical domain knowledge
and data (Yin et al., 2022; Chang et al., 2019). Saifur Rahaman from
the International Islamic University of Chittagong has conducted
research on an expert system for diabetes diagnosis based on belief
rule database to enhance diagnostic accuracy and reduce costs (Kong
et al., 2009). Hossain et al. (2014) utilized an expert system
employing belief rule base, gathered real patient data, and
diagnosed influenza disease through rule-based reasoning
methods. Raihan et al. (2022) employed belief rule base for
diagnosing Alzheimer’s disease. Maitri Patel (Patel et al., 2013)
and Komal R (Hole and Gulhane, 2013) also utilized belief rule
base expert systems for diagnosing symptoms related to memory
loss and viral infection respectively.

It is evident that BRB can be utilized to construct an effective
model for assessing patients’ recovery status. However, in practical
application, it is necessary to pre-divide patients’ conditions based
on different diseases in order to enhance the accuracy of sample data
provided by the recovery model. Nevertheless, in certain exceptional
cases, rehabilitation experts may encounter challenges in accurately
determining parameter values due to variations in patients’ physical
conditions and diagnostic requirements. This could result in
discrepancies between the initial BRB output and actual results,
thereby diminishing the precision of upper limb rehabilitation
evaluation. As shown in Table 1, the rehabilitation evaluation
models have their own advantages and disadvantages. To address
these issues, this paper proposes an optimized BRB rehabilitation
evaluation model using the Fmincon algorithm. This model
establishes more precise sample data through classification of
upper limb muscle strength and enhances Evidential Reasoning
(ER) of BRB with the Fmincon algorithm to improve the accuracy of
rehabilitation evaluation outcomes.

The paper is structured as follows: The “Problem Description”
section outlines the key issues to be addressed; the “BRB
rehabilitation evaluation Model” section presents an optimized
BRB rehabilitation evaluation model based on the Fmincon
algorithm, with detailed procedural descriptions; in the
“experimental verification and comparison” section, experimental
validation is conducted and the BRB rehabilitation evaluation model
is compared with models established using alternative algorithms.
Finally, a conclusion is provided in the “Conclusion” section.

2 Description of the problem

In the process of establishing an upper limb rehabilitation
assessment model based on BRB, we face several key issues.
These issues not only guide our research design but also
determine the specific steps and methodological choices for
model construction. The following is an overview of the main
research questions and their corresponding study designs:

Question 1: How to effectively process the data and classify the
evaluation levels for different patients?

In the actual rehabilitation process, we have found that the
upper limbmuscle strength data of patients is highly variable. Due to
differences in the patients’ age, gender, and initial status, the data on
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their upper limb muscle strength becomes very complex. This
greatly affects the ability of rehabilitation therapists to adjust the
patients’ rehabilitation training plans. Therefore, handling upper
limb rehabilitation data is extremely important. At the same time,
we have observed significant differences in the actual performance of
patients with different health statuses. The Brunnstrom grading
method cannot fully express this variation, which also impacts the
ability of rehabilitation therapists to develop tailored rehabilitation
plans for patients. Thus, the first question is how to effectively
process the data and classify the evaluation levels for
different patients.

Question 2: How to improve the accuracy of rehabilitation
assessment results?

There are many methods for evaluating rehabilitation, but most
of them fail to utilize expert experience and qualitative knowledge
effectively, often resulting in low accuracy of rehabilitation
assessment outcomes. Since the results of rehabilitation
assessments are crucial for therapists to develop subsequent plans
for patients, a highly accurate rehabilitation assessment model is
essential. Therefore, the second question is how to improve the
accuracy of rehabilitation assessment results.

To address the above issues, we designed the following steps: 1.
Analysis of upper limb rehabilitation mechanisms and muscle
strength assessment; 2. Data collection and preprocessing; 3.
Establishment of the BRB model; 4. Model validation and
optimization; 5. Practical application testing. Through such a

TABLE 1 Comparison of rehabilitation assessment models.

Rehabilitation evaluation model Advantage Disadvantage

Expert system The assessment has high precision Rely on expert knowledge

Rehabilitation evaluation system Do not need a lot of knowledge The assessment has low precision

Belief rule base Accurate use of quantitative knowledge The assessment results are not detailed enough

FIGURE 1
Establish a flow chart of BRB rehabilitation assessment model.

TABLE 2 Upper limb muscle strength grading table.

Serial number Muscle strength level Evaluation criteria

1 Lv.1 There was no sign of muscle contraction

2 Lv.2 There was muscle contraction, but no joint movement

3 Lv.3 Remove the influence of gravity on the limbs, and the joints can move to the maximum range

4 Lv.4 Against the gravity of the limb itself, the joint is able to move to its maximum range

5 Lv.5 Maximum range of motion can be achieved under moderate resistance

6 Lv.6 Maximum range of motion can be achieved with sufficient resistance
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FIGURE 2
Upper limb feature data acquisition map.

TABLE 3 Patients rehabilitation experiment table.

Experimental number Active resistance torque for the upper limbs Action times

E1 5 50

E2 8 50

E3 11 50

FIGURE 3
Diagram of the patient’s upper limb training.
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systematic methodological framework, we aim to develop an
efficient and reliable tool for evaluating upper limb rehabilitation
outcomes, providing strong support for clinical doctors.

3 Establish an upper limb rehabilitation
assessment model based on BRB

The establishment of BRB rehabilitation assessment model
needs to analyze the rehabilitation mechanism to obtain the
sample data of rehabilitation assessment and optimize the model
to achieve better rehabilitation assessment effect. Figure 1 shows the
process of establishing the BRB rehabilitation assessment model.

Firstly, the muscle strength data were graded. The active
resistance moment (ARM) and rehabilitation time (RT) were
sorted into rehabilitation data (RD). The prerequisite attribute
weight and activation weight of BRB were calculated. Using ER

FIGURE 4
Block diagram of rehabilitation effect evaluation of human upper limb based on BRB model.

TABLE 4 Attribute reference value of ARTUL.

Semantic values S N B

Quantized values 4 8 12

TABLE 5 Attribute reference value of RTT.

Semantic values S N L

Quantized values 5 10 15

TABLE 6 Attribute reference value of MAMS.

Semantic values S N H

Quantized values 5 8 11
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rules for inference, the Fmincon optimization function and MSE
(mean square error) function were employed for parameter
optimization. The BRB model was then trained to obtain the
optimal model parameters under BRB parameter vector constraints.

3.1 Analysis of upper limb
rehabilitation mechanism

This paper mainly analyzes the maximum resistance that the
isotonic muscle strength can overcome when the knuckle moves in
full amplitude in the process of upper limb rehabilitation in the state
of grade 4 muscle strength. Through the upper limb rehabilitation
training robot, the muscle strength data of patients in the active
rehabilitation process was collected in real time and evaluated by
scientific evaluation method. This assessment includes the

Maximum resistance to do a Repetition, called an I Repetition
Maximum (IRM), and the maximum resistance to overcome at
the completion of 10 repetitions (10 IRM). Assessment results can be
used by rehabilitation therapists in the following ways:

1. Aid rehabilitation therapists in assessing the current upper
limb strength of patients.

2. Assist rehabilitation therapists in determining the extent of
upper limb nerve injury.

3. Support rehabilitation therapists in identifying the next steps
for rehabilitation treatment.

4. Assist rehabilitation therapists in evaluating the effectiveness of
early rehabilitation interventions.

Therefore, by continuously collecting real-time muscle strength
data and other relevant rehabilitation information, and integrating it

TABLE 7 Initial parameters given by rehabilitation experts for BRB model.

Number of rules ARTUL, RTT, MAMS Failure degree distribution{D1 D2 D3 D4} = {1 2 3 4}

1 S, S, S {1 0 0 0}

2 S, S, N {0.9 0.1 0 0}

3 S, S, H {0.8 0.2 0 0

4 S, N, S {0.9 0.1 0 0

5 S, N, N {0.8 0.2 0 0}

6 S, N, H {0.7 0.3 0 0}

7 S, L, S {0.6 0.3 0.1 0}

8 S, L, N {0.5 0.4 0.1 0}

9 S, L, H {0 0.9 0.1 0}

10 N, S, S {0.8 0.2 0 0}

11 N, S, N {0.4 0.5 0.1 0}

12 N, S, H {0.3 0.4 0.3 0}

13 N, N, S {0.2 0.6 0.2 0}

14 N, N, N {0.1 0.2 0.7 0}

15 N, N, H {0 0.3 0.7 0}

16 N, L, S {0 0.1 0.9 0}

17 N, L, N {0 0 1 0}

18 N, L, H {0 0 0.9 0.1}

19 B, S, S {0 0.3 0.6 0.1}

20 B, S, N {0 0.2 0.7 0.1}

21 B, S, H {0 0.1 0.8 0.1}

22 B, N, S {0 0 0.7 0.3}

23 B, N, N {0 0 0.3 0.7}

24 B, N, H {0 0 0.1 0.9}

25 B, L, S {0 0 0.2 0.8}

26 B, L, N {0 0 0.1 0.9}

27 B, L, H {0 0 0 1}
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with the expertise of rehabilitation therapists, this study will
incorporate a method for assessing muscle strength into an upper
limb rehabilitation training robot. This method will categorize data,
establish a muscle strength database for different patient profiles,
and provide tailored resistance levels and scientifically-based muscle
strength ratings. The grading system for upper limb muscle strength
is presented in Table 2 (Naghdi et al., 2010).

3.2 Feature quantity acquisition

The input parameters for this study primarily encompass basic
patient information and upper limb characteristic data collected via
the rehabilitation robot. Specifically: Basic patient information
includes age, gender, medical history, etc. Upper limb
characteristic data: Collected using the upper limb robot system
shown in Figure 2, covering health indicators such as active
resistance torque and recovery time. These data are obtained
through methods like marker matching, motion capture
technology, and electromyography (EMG) sensor testing.

To ensure the accuracy and reliability of the research results, all
patients participating in this experiment must meet the following
criteria: 1. Able to independently complete specified movements
during moderate-intensity upper limb muscle strength training; 2.
The onset time is between 1 week to 3 months; 3. Age range is
between 20 and 70 years old; 4. No history of cognitive impairment
or neurological diseases such as epilepsy; 5. All patients have signed
informed consent forms.

Based on the aforementioned patient criteria, all subjects in this
study met the Level 5 requirements of the Brunnstrom scale.
Consequently, three different experiments were designed with
varying levels of active resistance torque for the upper limbs,
denoted as E1, E2, and, E3. The specific experiments are shown
in Table 3. It is assumed that under these three sets of experiments,
the health statuses of the patients’ upper limbs correspond to First-
degree Fault, Second-degree Fault, Third-degree Fault, and Fourth-
degree Fault, respectively.

In the table, each experiment represents the patient’s
rehabilitation training action under the specified upper limb
active resistance moment. Each action is completed, and the
number of actions is recorded as 1. When the patient completes
50 actions, it indicates that the patient has completed the
experiment.

During the experimental process, muscle patches were affixed to
the upper limbs of each patient, as illustrated in Figure 3. Daily
training sessions involving E1, E2, and E3 were conducted based on
the patients’ rehabilitation status.

The upper limb feature data collected by the rehabilitation robot
will be used as the input of the BRB model, that is, the prerequisite
attribute. By combining these characteristic quantities, confidence
rules can be formed to infer the recovery status of the patient’s upper
limb. In this process, the qualitative knowledge of the rehabilitation
physician can be used to determine the importance and reference
values of characteristic quantities such as active resistance moment
and recovery time, and serve as inputs to the BRB model. Therefore,
BRB theory can be effectively applied to the evaluation of upper
limb rehabilitation status. On the basis of in-depth study of
BRB theory system, this paper focuses on the evaluation and
prediction of upper limb rehabilitation of patients, and expands
the application of BRB theory in the assessment of upper
rehabilitation status.

3.3 Design of upper limb rehabilitation
evaluation model based on BRB

The evaluation block diagram of the human upper limb
rehabilitation effect based on BRB is shown in Figure 4. First of
all, data collection was carried out in Jilin Electric Power Hospital to
collect real and effective quantitative test data and expert qualitative
knowledge. Based on quantitative rehabilitation evaluation
indicators, constraint conditions of characteristic quantity were
set up, combined with rehabilitation exercise mechanism, and on
the basis of quantitative rehabilitation evaluation parameters, a

FIGURE 5
Health assessment results of the initial BRB.
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rehabilitation degree evaluation model was established by using
beleif rule base theory.

In order to evaluate the rehabilitation state of the patient’s upper
limb, this section will establish the relationship between the health
state of the patient’s upper limb and the characteristic quantity based
on the BRB theory by using the nonlinear relationship model f. The
specific relationship model is shown in Formula 1:

H � f x1t, x2t, . . . ., xMt, V( ) (1)
whereH represents the health state of the patient’s upper limb predicted
by the BRB model; x represents the characteristic quantity of the
evaluation system; f Represents nonlinear function; V represents the
weight parameters set inside the model. The characteristic quantity
includes the characteristic quantity, such as the active resistance
moment and active recovery time collected by the system.

In the process of establishing the patient’s upper limb health
assessment model based on BRB, firstly, the feature quantity
representing the patient’s upper limb health state is extracted,
and the feature quantity of the upper limb health state is
segmented and used as the input of the BRB model. Secondly,
the parameter optimization model of BRB is established, and the
parameters of the model are optimized and updated by computer
algorithm to improve the accuracy of BRB model in predicting the
rehabilitation state of upper limbs. Finally, the rehabilitation status
of patients’ upper limbs was evaluated through the trained model.

In the BRBmodel of patient upper limb health assessment, rule k
of BRB is shown in Formula 2:

Rk: if x1 is A
k
1 ∧ x2 is A

k
2 ∧/∧ xM is Ak

M (2)
Then D1, β1,k( ), D2, β2,k( ), . . . , DN, βN,k( ){ }

TABLE 8 Updated BRB model parameters.

Number of rules ARTUL, RTT, MAMS Failure degree distribution{D1 D2 D3 D4} = {1 2 3 4}

1 S, S, S {0.835 0.15 0.013 0.000}

2 S, S, N {0.814 0.176 0.010 0.000}

3 S, S, H {0.723 0.237 0.030 0.010}

4 S, N, S {0.812 0.117 0.064 0.007}

5 S, N, N {0.837 0.105 0.047 0.011}

6 S, N, H {0.643 0.348 0.008 0.001}

7 S, L, S {0.489 0.377 0.103 0.031}

8 S, L, N {0.466 0.279 0.228 0.027}

9 S, L, H {0.027 0.813 0.132 0.028}

10 N, S, S {0.774 0.196 0.030 0.000}

11 N, S, N {0.496 0.386 0.107 0.011}

12 N, S, H {0.319 0.376 0.245 0.060}

13 N, N, S {0.197 0.631 0.123 0.049}

14 N, N, N {0.089 0.217 0.597 0.097}

15 N, N, H {0.013 0.321 0.564 0.102}

16 N, L, S {0.003 0.064 0.877 0.056}

17 N, L, N {0.032 0.005 0.899 0.064}

18 N, L, H {0.001 0.006 0.900 0.093}

19 B, S, S {0.010 0.280 0.632 0.078}

20 B, S, N {0.002 0.121 0.796 0.081}

21 B, S, H {0.006 0.012 0.843 0.139}

22 B, N, S {0.004 0.053 0.698 0.245}

23 B, N, N {0.003 0.027 0.325 0.645}

24 B, N, H {0.003 0.064 0.182 0.751}

25 B, L, S {0.006 0.009 0.311 0.674}

26 B, L, N {0.001 0.003 0.082 0.914}

27 B, L, H {0.007 0.021 0.036 0.936}
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with a new rule weight θk and attribute weight δ1, δ2, . . . , δM

where xi(1,2,...,M)is BRB input, that is, the quantity of the patient’s
upper limb health characteristics collected by the upper limb
rehabilitation robot; k indicates the number of BRB rules;
Ak
i (1, 2, . . . ,M) represents the reference value of the ith

premise attribute; Rk represents the kth evaluation result of the
rule;M andN represent the number of prerequisite attributes and
the number of evaluation results respectively; βj,k represents the
belief of the first evaluation result j; θk represents the weight of rule
k, and represents the weight of the δi epresents the weight of the ith
premise attribute.

3.4 ER-based rule inference process

In the process of BRB rule Reasoning, Evidential Reasoning (ER)
algorithm is used to combine the confidence rules to get the final
system output, which is the beleif rule base reasoning method based
on evidence reasoning algorithm (Belief Rule-base Inference
Methodology Using the Evidential Reasoning Approach) (Yang
et al., 2006; Yang and Singh, 1994). The whole reasoning process
consists of three main steps (Zhijie et al., 2017).

Step 1: calculate the matching degree of the prerequisite attribute
of the belief rule base model, that is, the matching degree
of the feature quantity. The matching degree reflects the

FIGURE 6
BRB health assessment results after training.

FIGURE 7
BP health assessment result graph.
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matching degree between the feature quantity and the
rule. The formula for calculating the matching degree of
the prerequisite attribute of rule k is shown in Formula 3:

aki �

Al+1
i − xi

Al+1
i − Al

i

k � l Al
i ≤ xi ≤Al+1

i( )
1 − aki k � l + 1

0 k � 1, L, N k ≠ l, l + 1( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(3)

where,aki represents the matching degree of the i premise attribute in
rule k;Al

i and A
l+1
i represent the i - th prerequisite attribute reference

value in the two adjacent rules, respectively.
Step 2: Calculate the activation weight.
This process is used to determine which rules should be

activated and considered during reasoning, better reflecting the
uncertainties and fuzziness in expert knowledge, thereby
improving the model’s adaptability to unknown situations to
further determine the final output of the system. The degree to
which different rules are activated depends on how well they match
the input data. According to the BRBmodel, in order to facilitate the
understanding and interpretation of the decision-making process of
the model, the setting of the activation weights should be transparent
and adjustable, and the relative relationship between them should be
consistent. By calculating the activation weights, the contribution
degree of different rules can be evaluated, and the reasoning basis
based on the matching degree can be provided for the system. The
formula for calculating the activation weight of Rule k is shown in
Formula 4:

ωk �
θk ∏N

i�1
aki( )�δi

∑L
l�1

θl ∏N
i�1

ali( )�δi (4)

where �δi indicates attribute weight; aki represents the matching
degree of the input feature quantity relative to the ith attribute;
θk represents the corresponding rule weight.

Step 3: Use the ER algorithm for rule reasoning.
ER algorithm can deal with the combination of expert

knowledge, deal with uncertainty, and is suitable for a variety of
scenarios. ER algorithm can effectively synthesize the inference
results of multiple rules, considering the weight and correlation
between them, so as to reach a more accurate conclusion. By using
the ER algorithm, the limitation of single-rule reasoning can be
overcome, and the performance and effect of the system in decision-
making and evaluation tasks can be improved. All rules in the BRB
model are reasoned and analyzed by using the ER algorithm, and the
final output result is obtained as shown in Formula 5:

S x( ) � Dj, β̂j( ), j � 1, 2, . . . , L, N{ } (5)

where, β̂j indicates the belief degree of the evaluation result Dj, as
shown in Formula 6:

β̂j �
μ × ∏L

k�1
ωkβj,k + 1 − ωk ∑N

i�1
βi,k( ) − ∏L

k�1
1 − ωk ∑N

i�1
βi,k( )[ ]

1 − μ × ∏L
k�1

1 − ωk( )[ ] (6)

Formula 7 serves as a regulator in the ER model handling
process, responsible for adjusting the evaluation result model.
When μ increases, the evaluation result will be more
conservative; when μ decreases, the evaluation result will be more
aggressive.

μ � ∑N
j�1

∏L
k�1

ωkβj,k + 1 − ωk ∑N
i�1

βi,k⎛⎝ ⎞⎠ − M − 1( )∏L
k�1

1 − ωk ∑N
i�1

βi,k⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦−1

(7)

FIGURE 8
SVM health assessment result graph.
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whereN represents the number of evaluation results; β̂j Is a function
of rule weights θk, attribute weights δi, and belief βj,k.

Assuming that Dj the utility of the evaluation result is μ(Dj),
then the expected utility is S(X) as shown in Formula 8:

μ S X( )( ) � ∑M
j�1

μ Dj( )βj (8)

where βj indicates the belief of the output relative to Dj.
Therefore, the output of the BRB-based health assessment model

ŷ is expressed as shown in Formula 9:

ŷ � μ S X( )( ) (9)

3.5 BRB parameter optimization based on
fmincon algorithm

In general, the rehabilitation specialist gives the initial BRB
parameters based on the collection of historical information and
empirical knowledge of the patient’s upper limb status. However,
in special cases, it is difficult for rehabilitation specialists to
accurately determine the value of these parameters due to
differences in the patient’s physical condition and diagnostic
requirements. This can lead to deviations between the initial BRB
output and the actual results, thus reducing the accuracy of the
evaluation of the upper limb rehabilitation effect. Fmincon is a
nonlinear multivariable function with constraints Sreeraj (2013),
which is often used to solve the minimum value of a nonlinear
multivariate function. Therefore, this paper adopts Fmincon as
an optimization function, takes mean square error as the input
objective function for parameter optimization, and trains the
BRB model to obtain the optimal model parameters. To minimize
the error between the actual output result and the initial BRB
output result, improve the evaluation accuracy of upper limb
rehabilitation effect.

In the process of parameter optimization of BRB rehabilitation
evaluation model, the following optimization objective function is
established as shown in Formula 10:

Ms � θ1/θk/δ1/δm/βk1/βkn[ ]T
minMSE y θk, δm, βkn( )( )
0≤ θk ≤ 1
0≤ βkn ≤ 1

∑N
n�1

βkn ≤ 1, k � 1, 2,/L

(10)

Where as shown in Formula 11:

MSE � 1
T

∑T
i�1

yi − yir( )2 (11)

where, T represents the rehabilitation data volume, yi represent
output of rehabilitation evaluation model for patients, and yir

represent output results of actual rehabilitation state of patients.

3.6 Establishment of BRB health
assessment model

In the process of establishing the health assessment model of
upper limb active rehabilitation, it is very important to select the
reference index of upper limb rehabilitation state. According to the
communication of rehabilitation experts in Jilin Electric Power
Hospital, combined with the muscle strength sensor of
rehabilitation robot. Finally, the active resistance torque of upper
limb (ARTUL), Rehabilitation Training Time (RTT) and Mean
Amplitude of Muscle Strength (MAMS) were selected as the
reference indexes of upper limb rehabilitation, and three
reference values were selected for every three reference indexes.
These indicators will be used as the main basis for evaluating the
health status of upper limbs, and verified by simulation verification
data. In order to verify the evaluation model, because the main
research object of this paper is the patients with grade 5 in
Brunnstrom muscle strength table, after patient screening and
training, 40 patients with grade 5 in Brunnstrom muscle strength
table are finally determined for follow-up testing. According to the
actual training of patients and communication with rehabilitation
experts, Brunnstrom muscle strength is subdivided into 4 grades
again for evaluation example verification as shown in formula 15.

For ARTUL, take 3 reference values, Small, Normal and Big,
denoted by S, N and B, respectively as shown in Formula 12:

Ak
1 ∈ S,N, B{ } (12)

Similarly, for RTT, take 3 reference values, Small, Normal and
Long, denoted by S, N and L, respectively as shown in Formula 13:

Ak
2 ∈ S,N, L{ } (13)

Similarly, for MAMS, take 3 reference values, Small, Normal and
High, denoted by S,N andH, respectively as shown in Formula 14:

Ak
3 ∈ S,N,H{ } (14)

As for the evaluation results, it can be seen from the experiment
that there are 4 health states, respectively represented as I,II, III and
IV, namely as shown in Formula 15:

D � D1 D2 D3 D4( ) � I II III IV( ) (15)

The input feature quantity of the BRB has 3 reference indicators,
and each reference indicator has 3 reference values, from which
27 initial confidence rules can be established to evaluate the health
state of the system. Taking ARTUL as S as an example, the following
rules are established according to expert knowledge as shown in
Formula 16:

R1: If ATRUL is S( ) ∧ RTT is S( ) ∧ MAMS is S( ),Then 1, 0, 0, 0, 0( ){ }
R2: If ATRUL is S( ) ∧ RTT is S( ) ∧ MAMS is N( ),Then 0.9, 0.1, 0, 0, 0( ){ }
R3: If ATRUL is S( ) ∧ RTT is S( ) ∧ MAMS is H( ),Then 0.8, 0.2, 0, 0, 0( ){ }
R4: If ATRUL is S( ) ∧ RTT is N( ) ∧ MAMS is S( ),Then 0.9, 0.1, 0.0, 0, 0( ){ }

R5: If ATRUL is S( ) ∧ RTT is N( ) ∧ MAMS is N( ),Then 0.8, 0.2, 0, 0, 0( ){ }
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R6: If ATRUL is S( ) ∧ RTT is N( ) ∧ MAMS is H( ),Then 0.7, 0.3, 0, 0, 0( ){ }
R7: If ATRUL is S( ) ∧ RTT is L( ) ∧ MAMS is S( ),Then 0.6, 0.3, 0.1, 0, 0( ){ }
R8: If ATRUL is S( ) ∧ RTT is L( ) ∧ MAMS is N( ),Then 0.5, 0.4, 0.1, 0, 0( ){ }

R9: If ATRUL is S( ) ∧ RTT is L( ) ∧ MAMS is H( ),Then 0, 0.9, 0.1, 0, 0( ){ }
(16)

Taking the above rules as an example, a systematic BRB
rehabilitation evaluation model is established. The kth rule is as
shown in Formula 17:

Rk: if ATRUL is Ak
1 ∧ RTT is Ak

2 ∧ MAMS is Ak
3 , (17)

Then Health − condition is I, β1,k( ), II, β2,k( ), III, β3,k( ), IV, β4,k( ){ }
with rule weight θk and attribute weight δ1, δ2, . . . , δ4

4 Verification and analysis

4.1 Experimental verification

The validity of the health assessment model established in this
section is verified by simulation analysis. During the experiment, 2,000
groups of characteristic values in three states were collected, of which
1,600 groups were used as training sets and 400 groups as test sets.

First of all, according to the reference values given by the
rehabilitation therapist of Jilin Electric Power Hospital and the
analysis of the characteristics of the sampled data, the semantic
reference values of the characteristic quantities and evaluation
results are quantified, as shown in Tables 4–6.

In the rehabilitation evaluation model, since each feature has 3
reference values, there are a total of 27 rules when evaluating the health
status of these features. According to expert knowledge, the initial
confidence of the three characteristic quantities is shown in Table 7.

According to the initial parameters given by the experts,
regardless of the weight of the characteristic quantity δi and θk set
to 1, the health evaluation result can be obtained, as shown in Figure 5.
In Figure 5, the blue distribution represents the initial BRB health
assessment results, and black represents the true health assessment
results. As can be seen from the figure, the degree of fitting between
the evaluation results and the training data is not high.

In order to improve the evaluation accuracy of the evaluation
model, the parameters of the initial BRB were updated based on the
established optimization model and the Fmincon optimization
algorithm. The BRB parameters after training are shown in
Table 8, and the evaluation results are shown in Figure 6. As can
be seen from Figure 6. In Figure 6, the blue distribution represents
the initial BRB health assessment results, black represents the real
health assessment results, and red represents the BRB health
assessment results optimized by Fmincon function, with an
accuracy of 92.6%. It can be seen that the BRB health assessment
results optimized by Fmincon function have a higher accuracy.

4.2 Comparative analysis

In order to further verify the advanced nature of the proposed
model, BP and SVM were used for comparative analysis. BP and

SVM algorithms are widely used in diagnosis, classification,
prediction and other problems. Similar to BRB model simulation
analysis, the SVM and BP algorithm evaluation model were trained
and tested 1:1 with 1,600 sets of data. Figures 7, 8 show the results of
the rehabilitation degree evaluation model based on support vector
machine SVM and BP. It can be observed from the figure that the
accuracy of BP neural network in the evaluation of upper limb health
status is low for grade 2 and grade 4 health status, and the accuracy
of overall rehabilitation evaluation is only 67%, while the overall
evaluation stability is poor when SVM evaluates upper limb health
status, and the assessed health status fluctuates poorly, and the
evaluation accuracy is only 53%. Through the analysis of
experimental results, it can be seen that the BRB-based upper
limb health evaluation model of patients proposed in this chapter
has higher accuracy and effectiveness than the rehabilitation
evaluation model based on SVM and BP algorithm.

5 Conclusion

Based on the analysis of the evaluation method of upper limb
muscle strength and BRB method, a rehabilitation degree evaluation
model based on beleif rule base theory (BRB) was established by
combining clinical rehabilitation theory, expert clinical experience
and collected real and effective quantitative test data of upper limb
rehabilitation status. In order to improve the evaluation accuracy of
the model and reduce the subjectivity due to expert experience and
other qualitative knowledge, Fmincon optimization algorithm was
used to optimize the average resistance moment weight, average
amplitude weight of muscle force and time weight of BRB. The
optimized BRB upper limb rehabilitation evaluation model was
compared with the evaluation results of BP neural network and
support vector machine algorithm. The accuracy of BRB upper limb
rehabilitation evaluation results was 92.6%, which was better than
67% and 53% of BP and SVM. The correctness and advanced nature
of BRB assessment method are verified, which lays a theoretical and
practical foundation for the establishment of BRB-based clinical
upper limb rehabilitation evaluation decision support system.
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