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Background and Aims: Diabetic foot ulcers (DFUs) are a serious complication of
diabetes mellitus (DM), affecting around 25% of individuals with DM. Primary
treatment of a DFU involves wound off-loading, surgical debridement, dressings
to provide a moist wound environment, vascular assessment, and appropriate
antibiotics through a multidisciplinary approach. Three-dimensional (3D) printing
technology is considered an innovative tool for the management of DFUs. The
utilization of 3D printing technology in the treatment of DFU involves the
modernization of traditional methods and the exploration of new techniques.
This review discusses recent advancements in 3D printing technology for the
application of DFU care, and the development of personalized interventions for
the treatment of DFUs.

Methods:We searched the electronic database for the years 2019–2024. Studies
related to the use of 3D printing technology in Diabetic foot were included.

Results: A total of 25 identified articles based on database search and citation
network analysis. After removing duplicates, 18 articles remained, and three
articles that did not meet the inclusion criteria were removed after reading
the title/abstract. A total of 97 relevant articles were included during the
reading of references. In total, 112 articles were included.

Conclusion: 3D printing technology offers unparalleled advantages, particularly
in the realm of personalized treatment. The amalgamation of traditional
treatment methods with 3D printing has yielded favorable outcomes in
decelerating the progression of DFUs and facilitating wound healing.
However, there is a limited body of research regarding the utilization of 3D
printing technology in the domain of DFUs.

KEYWORDS

diabetes foot ulcers, 3D printing, bio-materials, new treatments, intelligent detection

1 Introduction

Nowadays, the aging of society is accelerating, and the growth of age and the
degradation of physiological functions will induce a variety of diseases, such as various
cancers and chronic diseases (DeSantis et al., 2019; Feng et al., 2024; Shen et al., 2022; Feng
DC et al., 2023). Diabetes mellitus (DM) is the most common chronic metabolic disease
with high incidence, which brings serious public health burden (Collier et al., 2024; Lin
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et al., 2023). The global prevalence of DM is estimated at 9.3 percent
(463 million people) in 2019. By 2030 and 2045, this proportion may
increase to 10.2% (578 million) and 10.9% (700 million) respectively
(Magliano et al., 2019).

Diabetic foot (DF) is one of the serious complications of diabetes
(Du et al., 2023; Bellomo et al., 2022). Eighty five percent of
individuals with diabetes mellitus undergoing lower extremity
amputation have had DFUs (Thorud et al., 2016; Lepäntalo et al.,
2011). Therefore, early identification, prevention and effective DF
management are essential to improve the quality of life of DM
patients (Guo et al., 2024). DF is currently managed primarily
through medication, wound care, and surgery. Among these
treatments, management based on 3D printing has gained the
attention of researchers.

3D printing technology facilitates the production of
personalized equipment with complex structures, and also offers
new possibilities for customized solutions (DongNJ et al., 2022; Silva
et al., 2022; Chen et al., 2024; Wu et al., 2024; Jiang et al., 2024). In
diabetic foot management, 3D printing can customize wound
dressings and assistive devices, and can be combined with
biomaterials to promote wound healing and functional
restoration of the foot (Beach et al., 2021; Armstrong et al., 2022;
Collings et al., 2021; Jørgensen et al., 2018; Wang et al., 2023). We
provide a comprehensive review of the implementation of 3D
printing technology in the integrated management of DFUs.

2 Methodology

2.1 Search strategy

The literature search was conducted in electronic databases for
the years 2019–2023. The search strategy in PubMed was as follows:
((“Diabetic Foot”[Mesh]) OR (Diabetic foot ulcer[Title/Abstract]))
AND ((“Printing, Three-Dimensional”[Mesh]) OR
((((((((((((((((((((3D printing[Title/Abstract]) OR (Printing, Three
Dimensional[Title/Abstract])) OR (Printings, Three Dimensional
[Title/Abstract])) OR (Three-Dimensional Printings[Title/
Abstract])) OR (3-Dimensional Printing[Title/Abstract])) OR
(3 Dimensional Printing[Title/Abstract])) OR (3-Dimensional
Printings[Title/Abstract])) OR (3-Dimensional Printings[Title/
Abstract])) OR (Printings, 3-Dimensional[Title/Abstract])) OR
(3-D Printing[Title/Abstract])) OR (3 D Printing[Title/
Abstract])) OR (3-D Printings[Title/Abstract])) OR (Printing, 3-
D[Title/Abstract])) OR (Printings, 3-D[Title/Abstract])) OR
(Three-Dimensional Printing[Title/Abstract])) OR (Three
Dimensional Printing[Title/Abstract])) OR (3D Printing[Title/
Abstract])) OR (3D Printings[Title/Abstract])) OR (Printing, 3D
[Title/Abstract])) OR (Printings, 3D[Title/Abstract]))). In addition,
the reference lists of the included articles were investigated to
identify other relevant articles that could not be found through
the initial electronic search strategy.

2.2 Inclusion and exclusion criteria

Studies related to the use of 3D printing technology in DF were
included. Studies, review papers, book chapters, conference

abstracts, reviews and research protocols published in any
language other than English were excluded. The first step was to
eliminate duplicate articles by looking at titles and abstracts through
EndNote. Next, titles were screened to remove irrelevant articles.
Then, abstracts and full texts of relevant articles were read and
screened for inclusion based on predefined criteria. Finally, criteria-
compliant articles were included.

2.3 Result

A total of 25 identified articles based on database search and
citation network analysis. After removing duplicates, 18 articles
remained, and three articles that did not meet the inclusion criteria
were removed after reading the title/abstract. A total of 97 relevant
articles were included during the reading of references. In total,
112 articles were included. The flow chart of this study was
presented in Figure 1.

3 Models

3.1 3D printing of DFUs models

The paucity of drugs for DFU treatment in the clinic is partly
due to the lack of good experimental models to predict their effects.
The mouse model is superior to the human body in terms of wound
repair due to the abundance of hair follicle stem cells and growth
factors, leading to the questioning of the mouse-based diabetes
model (Phang et al., 2021). The 3D printed of DFUs model
resembles human skin in anatomical structure, mechanical and
biochemical features, and transcriptomics and proteomics also
show similarities to human skin development (Admane et al.,
2019). The analysis of the 3D models is presented in Table 1.

3.2 3D organotypic skin models

3D printing-based skin models can accelerate wound healing by
reducing inflammation, inhibiting fibrosis or increasing
angiogenesis or regeneration (Kondej et al., 2024).3D skin
modelling is divided into scaffold and scaffold-free systems, with
scaffold modelling being widely used due to altered porosity, surface
chemistry and permeability. Scaffolds composed of biopolymers
mimic the extracellular matrix (ECM) and provide support and
signals to cells, creating organotypic models that mimic native
human skin (Phang et al., 2022). Cross-linked polymer hydrogels
and matrix gels are commonly used scaffold materials, in addition to
nanofibers, collagen sponges, agarose peptide microgels, polystyrene
and polycaprolactone (Mohandas et al., 2023). Stent materials
function differently and are used to replicate disease outcomes.
3D printed scaffolds are convenient, support high cellular loads and
remain viable to accelerate healing, and also deliver stable antibiotics
for effective treatment of chronic wounds (Sun et al., 2018; Glover
et al., 2023). Intini et al. fabricated chitosan (CH) porous 3D printed
scaffolds for skin regeneration. They loaded normal human dermal
fibroblasts and keratin-forming cells into the scaffold holes to form a
skin-like layer. The CH scaffolds promoted wound healing in
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diabetic rats compared to commercial patches and self-healing
(Intini et al., 2018). Furthermore, the scaffold-free system serves
as a scaffold alternative structure that alleviates poor
biocompatibility. Such systems are essential for analyzing ECM
protein regulation in human skin and can transfer cells from two
to three dimensions, inducing deep upregulation of matrix body
proteins and generating complex tissue-like ECM (Vu et al., 2021).
Engineered skin substitutes cannot fully mimic the complex native
environment of wound healing. However, 3D printed scaffolds offer
a solution to the recurrent problem of limited donor tissues and high
donor site morbidity seen in tissue transplantation, while in vitro
their fragile structure may lead to tissue damage, and in vitro
bioprinting and artificial implantation carry the risk of
contamination (Tan et al., 2022; Singh et al., 2020).

3.3 3D hyperglycemic wound models

Fibroblast growth factor (FGF) is an important factor to
consider in the design of DFU models. 3D human skin
equivalent (HSE) models consisting of cells from DFU patients
can induce an inflammatory response and have been used to study
diabetic inflammation, drug testing, and to reduce reliance on
animal-derived ECM (Smith et al., 2021; Smith et al., 2020). The
researchers also developed a three-dimensional hyperglycemic
wound model of normal human keratinocytes, demonstrating
common phenotypes of DFU such as re-epitheliazation,
granulation and damage caused by keratinocyte over-proliferation
(Phang et al., 2021). Induced pluripotent stem cells (iPSCs) were
generated from fibroblasts of patients with diabetes and from
fibroblasts of healthy persons harvested from skim. They were
modified and induced to differentiated into fibroblasts. Research

has found that the gene expression and characteristic matrix
composition exhibited by iPSC-derived fibroblasts in 3D dermal-
like tissues were similar to those of primary fibroblasts, and they
continuously promoted matrix remodeling and wound healing in
chronic wound environments, demonstrating therapeutic potential.
IPSC reprogramming is considered effective in promoting cell
healing to eliminate genetic traits (Pastar et al., 2021; Kashpur
et al., 2019). Currently, there are still challenges in printing
biological models in high permeability and high glucose
environments. Based on existing studies progress, we need to
develop more mature DF trauma models.

3.4 3D angiogenesis model

DF vascular injury and impaired healing of diabetic ulcers are
associated with poor angiogenesis of granulation tissue (Lin et al.,
2019). Hyperglycemia induced increased production of reactive
oxygen species and the exacerbation of apoptosis during ischemia
(Han et al., 2021) which it is also considered an influential factor in
the injury of DFUs. The 3D endothelial cell germination test is more
reflective of the angiogenic process of endothelial cells than the
traditional 2D test and can be used as a screening tool for
hyperglycemic applications (Phang et al., 2021). 3D printed
endothelial progenitor cell skin patches together with adipose-
derived stem cells accelerate wound closure, re-epithelialization,
neovascularization and blood flow (Kim et al., 2018). 3D printing
not only significantly improves the flexibility and precision of
in vitro modelling, but also dramatically reduces costs and
shortens development cycles through high customisation, rapid
fabrication of complex structures, and the use of a wide range of
biocompatible materials. This technology facilitates

FIGURE 1
Flow chart of literature search.
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interdisciplinary integration and strengthens collaboration between
biology, medicine and engineering, making it a key tool to support
innovation inmultiple fields such as clinical research, drug screening
and disease modelling. The application of joint 3D printing
technology to manufacture experimental models is presented
in Figure 2.

4 Combined 3D-printed therapies

4.1 Autologous minimal manipulation of
homologous adipose tissue (AMHAT)

Adipose tissue contains high levels of cell growth factors that can
promote angiogenesis and wound remodeling (Lavery et al., 2007).
Furthermore, anti-inflammatory cytokines and healing-related

peptides may positively affect wound healing (Pallua et al., 2009).
Thus, autologous micro-fragmented adipose tissue can significantly
improve the healing of small amputations following DFU surgery
(Lonardi et al., 2019). For patients, subcutaneous liposuction to
extract fat cells is relatively simple and less painful (Gimble et al.,
2007). In a single-arm pilot study, ten patients with chronic DFUs
were treated with autologous minimally manipulated homologous
adipose tissue (AMHAT). During follow-up, the patient wounds
healed well (Armstrong et al., 2022). 3D printing was combined with
minimally manipulated ECM (MA-ECM) to create bio scaffolds that
increase the speed of wound healing in patients (Kesavan et al., 2021;
Kesavan et al., 2024; Yoon and Song, 2024). Fibrin gel is
biocompatible and mimics the clotting process, reduces
inflammation, and promotes cell adhesion and proliferation to
accelerate healing. In addition, it has good mechanical strength.
Thus, Fibrin gel was added to a 3D-AMHAT scaffolds, which not

TABLE 1 Analysis of the 3D models.

Study Objective Evaluated
parameter(s)

Main conclusion Research
direction

Tan et al.,
2022

Evaluate the efficacy of 3D printing for the
treatment of severe skin wounds

Conducting dialectical summaries 3D printed scaffolds is an effective approach to
managing cutaneous wound healing

3D model

Phang et al.,
2021

Study of different in vitro 3D skin models and 3D
angiogenesis models

Feasibility and applicability of 3D
model

Bio-3D printing and skin microarray models as
diabetic wound models has good research

prospects

3D model

Vu et al.,
2021

Scaffold-based and scaffold-free 3D cell culture
systems that mimic in vitro environments

Construct Biological Scaffolds and
analysis of ECM protein

regulation

Scaffold-free system suit for analysing ECM
protein regulation

3D model

Smith et al.,
2021

Surveyor present a 3D HSE model Cellular analysis and assessment 3D HSE model is used to study macrophage-
related inflammation in diabetes and as a drug
testing tool to evaluate new treatments for the

disease

3D model

Singh et al.,
2020

In situ bioprinting versus conventional printing The need and utility for in situ
bioprinting

In situ bioprinting may be favored when tissues
are to be fabricated or repaired directly on the
intended anatomical location in the living body

3D model

Smith et al.,
2020

Importance of human-derived ECM for
constructing 3D skin models

controlled trial This humanized skin-like tissue decreases
dependency on animal-derived

ECM while increasing cellular complexity can
enable screening inflammatory responses in

tissue models of human skin

3D model

Lin et al.,
2019

To investigate the expression of miR-217 and
HIF-1α/VEGF pathway in patients with diabetic
foot ulcer and its effect on angiogenesis in DFUs

rats

Animal experiments, genetic
testing and pathway analysis

Inhibiting miR-217 could upregulate HIF-1α/
VEGF pathway to promote angiogenesis and
ameliorate inflammation of DFU rats, thereby
effectively advancing the healing of ulcerated

area

3D model

Admane
et al., 2019

Application of 3D cell culture system to diabetic
diseases

Feasibility and applicability of 3D
system

3D models offer a advantage in obtaining
physiologically relevant information

3D model

Sun et al.,
2018

A case evaluates the safety and effectiveness of
3D-printed scaffold in chronic wounds

controlled trial 3D-printed scaffold was convenient to use, have
the potential to improve wound healing rates
and provided a safe and effective way for treating

chronic wounds

3D model

Intini et al.,
2018

The fabrication of porous 3D printed chitosan
scaffolds for skin tissue regeneration and their
behavior in terms of biocompatibility and
toxicity toward human fibroblasts and

keratinocytes

Cellular experiments with co-
staining and other assays

3D printed scaffolds improve the quality of the
restored tissue with respect to both commercial

patch and spontaneous healing

3D model

a3D: Three-dimensional.
bECM: extracellular matrix.
cHSE: human skin equivalent.
dDFU: diabetic foot ulcer.
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only promote wound healing, were easily absorbed without
interfering with the healing process, but were also strong enough
to withstand changes in mechanical stress during the healing
process, thus further accelerating wound healing (Bajuri et al.,
2023). By combining autologous adipose tissue and 3D printing
technology to create a biocompatible and mechanically robust
scaffold, the effectiveness and speed of diabetic foot wound
healing can be significantly improved. 3D printing combined
with autologous fat grafting helps DF wounds healing and is
considered a new approach to treatment at DFUs.

4.2 Combined 3D printed guide-guided
lateral tibial transport

Transverse tibial bone transfer (TTBT) is a novel surgical
approach to treat DFUs, and several clinical trials have
confirmed its efficacy (Godoy-Santos et al., 2017; Kallio et al.,
2015). However, during conventional bone transfer, the
periosteum may be damaged, and deviations in the angle of
screw placement can result in the direction of bone transfer that
is not perpendicular to the slice, which can lead to postoperative
spatial heterogeneity on both sides of the body and affect the growth
of the microvascular network (Randon et al., 2010). Yuan-Wei

Zhang et al. performed TTBT under the guidance of a 3D-
printed guide plate with DM patients. This new technique is
effective in preserving the relative integrity of the bone window
and periosteum. Moreover, surgeons can simulate the surgical plan
on a 3D model, improving the accuracy of the operation (Wang
et al., 2023).

4.3 Functional dressings in conjunction with
3D printing

DFU is characterized by persistent chronic inflammation,
granulation tissue formation, and reduced vascularization (Hu
and Xu, 2020). Single dressings have limited effect, DFU
dressings are enhanced with bioactive molecules. Hydrogels are
considered to be excellent wound dressings (Tran et al., 2023; Feng
et al., 2023; Sarkar and Poundarik, 2022; Glover et al., 2021; Gomes
et al., 2020). Multifunctional bioprinter dressing increase the
thickness of wound granulation tissue and promote the
formation of blood vessels, hair follicles and collagen fiber
networks (Huang et al., 2022). For examples: The addition of
VEGF to 3D-printed dressings enhanced the proliferation of
endothelial cells, promoted the formation of blood vessels in the
body, and accelerated wound healing. Interleukin four and

FIGURE 2
3D printing of experiment models.
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TABLE 2 Analysis of the 3D-printed therapies.

Study Objective Evaluated parameter(s) Main conclusion Research
direction

Bajuri et al.,
2023

To determine the efficacy of 3D-
bioprinted autologous adipose tissue

grafts on DFUs

Post-intervention regular observation of
wounds in diabetic patients

Autologous adipose tissue grafting using 3D
bioprinter promotes wound healing with

high-quality skin reconstruction

3D-printed
therapies

Tran et al.,
2023

Assessing the role of nanomaterials and
other biomaterials in wound healing

Feasibility and applicability of new materials Novel Biomaterial Prevents/Treats
Infections, accelerates wound healing and

monitors wound healing status

3D-printed
therapies

Jin et al., 2023 To explore the effects of 3D bioprinting
methacrylate gelatin hydrogel loaded
with nano silver on full-thickness skin

defect wounds in rats

Animal experiments one-way analysis of
variance

Bonfroni correction and independent samples
t-tests were used to statistically analyse the

data

Silver-containing methacrylate gelatin
hydrogel has good biocompatibility and
antibacterial properties. Its 3D bioprinted
double-layer structure can better integrate
with new formed tissue in the skin defect
wounds in rats and promote wound healing

3D-printed
therapies

Huang et al.,
2023

Therapeutic efficacy Platelet-rich
plasma-loaded bioactive multi-layer

shell-core fibrous hydrogels

Frequency of administrationwound healing
rate angiogenesis rate analysis

The bioactive fibre hydrogel effectively
reduces inflammation, promotes

granulation tissue growth and angiogenesis,
facilitates the formation of high-density hair
follicles, and generates a regular network of

high-density collagen fibres

3D-printed
therapies

Tian et al.,
2024

Providing a new solution for
manufacturing personalised DF insoles

A three-step protocol for the development and
evaluation of this therapeutic footwear

The involvement of end-users (diabetic
patients) will enable the definition of user
requirements and contexts of use to develop

design solutions for the footwear

3D-printed
therapies

Armstrong
et al., 2022

AMHAT therapies to support good
quality basic care

Clinical trials with timed observation of
wounds

Treatment of bioprinted AMHAT appears
to be a safe and potentially effective
treatment modality for patients with

chronic DFUs

3D-printed
therapies

Huang et al.,
2022

Evaluation of the effectiveness of
multifunctional medical dressings

Inflammation analysis and wound healing
analysis

The multifunctional 3D dressing reduced
inflammation, effectively increased the

post-healing thickness of granulation tissue,
and promoted the formation of blood
vessels, hair follicles and highly oriented

collagen fiber networks

3D-printed
therapies

Bahmad et al.,
2021

Find alternatives to traditional
treatments with 3D printed therapies

Summary analysis of studies related to
database searching

Nanofiber-skin substitutes hold promise for
treatment of patients suffering from DFUs
and inspire novel strategies that could be
applied to other organ systems as well

3D-printed
therapies

Kesavan et al.,
2021

The efficacy of MA-ECM prepared from
autologous homologous adipose tissue by

using 3D bioprinting in DFUs

Reduction of wound size and the appearance
of epithelialization were evaluated

MA-ECM-based treatment accelerates
wound healing

3D-printed
therapies

Tan et al.,
2020

Improvement and development of
effective dfu-specific wound dressings

and treatments

Summary analysis of studies related to
database searching

Co-development of 3D bioprinting
technologies with novel treatment

approaches to mitigate
DFUs

-specific pathophysiological challenges will
be key to limiting the healthcare burden
associated with the increasing prevalence

of DM

3D-printed
therapies

Hu and Xu,
2020

Efficacy based on polysaccharide
hydrogels

Summary analysis of studies related to
database searching

Polysaccharide-based hydrogels can
provide suitable moisture for the wound

and act as a shield against bacteria

3D-printed
therapies

Gomes et al.,
2020

The efficacy of dual antimicrobial peptide locally delivered into the model The local application of the dual-
antimicrobial peptides biogel constitutes a
potential complementary therapy for the

treatment of infected DFUs

3D-printed
therapies

Mashkova
et al., 2019

3D skin printing mimics the effects of
native wound environments

Summary analysis of studies related to
database searching

3D-bioprinting plays a vital role in
developing a complex skin tissue structure
for tissue replacement approach in future

precision medicine

3D-printed
therapies

(Continued on following page)
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antioxidant-rich autologous bio gel protected fibroblasts in patients
with diabetic foot ulcers (DFUs) and facilitated wound healing (Tan
et al., 2020; Mashkova et al., 2019; Yang et al., 2022). In another
development, a silver vinyl-based 3D-printed antimicrobial ultra-
porous polyacrylamide (PAM)/hydroxypropyl methylcellulose
(HPMC) hydrogel dressing was designed with a porosity of
91.4%. It featured open channels that allowed it to absorb water
rapidly, taking in up to 14 times its own weight. The large pores
helped reduce swelling, minimized the risk of dressing dislodgment,
and promoted the healing of infected wounds (Liu et al., 2021).
Furthermore, 3D-printed silver gelatin dressings demonstrated good
antimicrobial properties and promoted wound healing. A hydrogel
infused with nanofibers was used to synthesize tissue-like structures
and was applied to rat skin breaks, showing excellent
biocompatibility and antibacterial effects (Bahmad et al., 2021;
Jin et al., 2023; Wan et al., 2019). Additionally, the encapsulation
of antimicrobial peptides and PDGF-BB into porous 3D radially
aligned nanofiber scaffolds (RAS) allowed for the recruitment of
fibroblasts, endothelial cells, and keratinocytes to clear bacterial
infections and enhance granulation tissue formation (Li et al., 2024).
The researchers also undertook a technological update to develop a
coaxial microfluidic 3D bioprinting technology combining flow-
assisted dynamic physical crosslinking and calcium ion chemical
dual crosslinking method, designing a biologically active multilayer
core-shell fibrous hydrogel loaded with PRP. The prepared hydrogel
exhibited excellent water absorption and retention capabilities, good
biocompatibility, and broad-spectrum antibacterial effects (Huang
et al., 2023). The combination of 3D printing technology and
biomaterials such as cytokines enables wound dressings to be
personalized, with precise control of the material structure,
multifunctional, and effective in promoting angiogenesis, tissue
regeneration and optimizing drug release. This significantly
improves wound healing efficiency and therapeutic efficacy. The
analysis of the 3D-printed therapies is presented in Table 2. And The
application of 3D printing technology combined with biological
materials in surgery and wound care was presented in Figure 3.

5 Auxiliary tools for joint 3D printing

5.1 3D assisted insoles

3D printing-assisted customized insoles can reduce the
incidence of DFUs and reduce plantar pressure, thereby

mitigating the risk of DFUs and infections (Leung et al., 2022).
Below we present the application of 3D printing-assisted
manufacturing of insoles in diabetic foot management.

5.1.1 Auxiliary materials
The 3D printed circular honeycomb structure insole can

withstand large deformations, improve energy absorption and
breathability, and adapt to different foot shapes. After finite
element analysis, the addition of a hemispherical heel pad
effectively reduces contact force and pressure (Leung et al., 2022).
Personalized metamaterials have the characteristics of the substrate
and the lattice microstructure inside. The features can meet
individual needs and reduce plantar stress (Muir et al., 2022).
Pressure-reducing shoes are thought to impair balance, but
researchers have developed a 3D-printed rocker midsole and self-
adjusting insole that can reduce plantar pressure and maintain
balance (Malki et al., 2024).

5.1.2 Graded unloading pressure
Pressure unloading is a method of relieving pressure on the foot

and promoting wound healing. There are several offloading devices,
such as walkers, half-shoes, orthotics, felt foam and total contact
casts (TCC) (Nabuurs-Franssen et al., 2005). TCC has the
disadvantage of continuous irritation of the skin and skin ulcers
on the plaster and a risk of muscle atrophy (Armstrong and Lavery,
1998; Caravaggi et al., 2000). Felt and foam conditioning dressings
applied over and proximal to ulcers and applied to the foot are more
effective (Meneses et al., 2020). Felt and foam dressings are not as
effective at reducing pressure as casts, walkers or half-shoes. Walkers
and half-shoes, although convenient and inexpensive, are not as
effective at reducing pressure as TCC (Lavery et al., 1996). For
neurogenic and neurochemical foot ulcers patients, increased
biomechanical stress is one of the most important ways leading
to ulceration (Nabuurs-Franssen et al., 2005). Localized generation
of high loads in the soft tissues at the site of stress concentration can
lead to cell and tissue damage. This, in turn, increases the risk of
secondary ulceration in these areas (i.e., where the insole material
passes between the insole and the holes) (Shaulian et al., 2023). The
Graded-Stiffness (GS) method is a novel unloading solution that
combines 3D printed polygonal heels and stiffness distribution
designed to redistribute plantar pressure to prevent and treat heel
ulcers. The structure is progressively stiffened from the inside to the
outside, optimizing the unloading position through graded stiffness
and material properties. Finite element analysis shows that this

TABLE 2 (Continued) Analysis of the 3D-printed therapies.

Study Objective Evaluated parameter(s) Main conclusion Research
direction

Lonardi et al.,
2019

Injection of autologous microfragment
adipose tissue compared with standard

treatment

Assessment of wound healing in terms of
safety, feasibility technical success, recurrence

rate, skin deviation and pain intensity

The local injection of autologous micro-
fragmented adipose tissue is a safe and valid
therapeutic option able to improve healing

rate following minor amputations of
irreversible DFUs

3D-printed
therapies

a3D: Three-dimensional.
bAMHAT: autologous minimal manipulation of homologous adipose tissue.
cMA-ECM: minimally manipulated autologous extracellular matrix.
dDFU: diabetic foot ulcer.
eDF: diabetic foot.
fDM: diabetes mellifluous.
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multi-material device effectively reduces heel pressure and
distributes stress (Shaulian et al., 2023; Shaulian et al., 2022). The
optimal stiffness of the sole is correlated with the user’s body weight
(BMI), in order to minimize foot pressure (Chatzistergos et al.,
2020). Combining mechanical with kinematic measurements can
better detect plantar loading in specific foot regions (Giacomozzi
et al., 2014). The cone-beam computed tomography (CBCT) was
employed to generate a 3D skeletal model of the foot. They
performed image segmentation and conducted precise angular
measurements in various anatomical planes. The objective was to
establish a relationship between bone structure and plantar loading
(Belvedere et al., 2020). The analysis of the auxiliary tools is
presented in Table 3.

5.2 Wearable testing appliances

Bymeasuring the temperature difference between the same parts
of the feet, we can find the potential risk of DFUs and the common
alert threshold is 2.2°C (Lavery et al., 2004). Patients doing self-care
at home are often unable to accurately self-assess their condition,
and are often treated too late when their feet become necrotic. The
researchers used foot sensors to measure differences in skin
temperature, which alerts when the temperature reaches an alarm
threshold, and the data can be displayed, stored, or transmitted.
However, existing devices are unable to study the complex dynamics
of temperature changes over time (Martín-Vaquero et al., 2019).
Recent studies have used 3D printed insoles equipped with
personalized anatomical sensors to continuously monitor foot
temperature, taking into account individual differences. A study
showed that foot temperatures rose significantly faster in diabetic

patients than in controls in the sitting position, at the bunion and at
the head of the fifth metatarsal. This was the first time that foot
temperature changes between two groups was quantified and may
reveal new biomarkers associated with differences in soft tissue and
angiogenesis (Beach et al., 2021). Furthermore, sensor-based insoles
should also consider humidity parameters when detecting pressure
and temperature (Tian et al., 2024). In another study, the
multifunctional Janus membrane (3D chitosan sponge-ZE/
polycaprolactone nanofibers-ZP) is thought to monitor and treat
diabetic wounds, with its unidirectional water transport and strong
antimicrobial capacity aiding wound healing. The membrane also
monitors wound status through color and fluorescence changes,
providing a basis for early intervention in diabetic patients (Liu
et al., 2024).

5.3 3D wound detection camera

According to international guidelines, effective assessment of
the size and depth of diabetic foot ulcers improves treatment success.
Current assessment methods include the use of disposable rulers and
metal probes (Monteiro-Soares et al., 2020). However, there are
several drawbacks, including subjective error, variability in
measurement time, horizontally transmitted infections and
clinical waste (Fernández-Torres et al., 2020). In response to
changes in ulcer size, the researchers developed the WAM 3D
monitoring camera for wound assessment, which is not limited
by wound size, is particularly effective in measuring heels, toes, and
curved areas of the body, and is a non-invasive means of reducing
the risk of infection, with digitized images suitable for telemedicine
applications (Jørgensen et al., 2018; Rasmussen et al., 2015). A study

FIGURE 3
Combined 3D-printed therapies.
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analyzed 63 ulcers in 38 diabetic foot patients and found that a 3D
camera effectively measured the ulcerated area and that the
measurements correlated linearly with healing time, which could
be used as a prognostic marker and an early identification criterion,
as well as an indicator of medication efficacy (Lasschuit et al., 2021;
Malone et al., 2020; Vangaveti et al., 2022). However, we still need
new experiments to establish this modality.

5.4 3D imaging detection technology

Thermal imaging technology provides early warning and
prevention of DFU by monitoring temperature changes in the
feet of diabetic patients. However, commonly used infrared
cameras can only capture 2D images, requiring multiple shots to
obtain a complete ulcer view. Such operation is not feasible in an
already busy clinical practice and at home (van Doremalen et al.,
2020; Liu et al., 2015; Rismayanti et al., 2022). Therefore, the
researchers used 3D infrared imaging to overcome the
shortcomings of two-dimensional imaging. The technique clearly
shows the temperature difference between ulcers and normal tissue,
identifies potential ulcers and danger zones, and also detects diffuse
temperature elevation, suggesting inflammation or infection. It is

able to analyze information about ulcers and differentiate between
background and normal tissue, and the camera’s viewing angle and
distance have a low impact on imaging (Liu et al., 2015). 3D optical
cryo-imaging was used to assess the redox state of DFU wounds. In
experiments, wound redox status in diabetic mice was quantified by
in vivo fluorescence and 3D optical cryo-imaging and found to be
correlated with mitochondrial dysfunction and increased oxidative
stress, as well as the wound size. This technique can be used as a non-
invasive indicator to assess complex wound healing (Mehrvar et al.,
2019). Specific benefits of 3D printing technology in the
manufacture of assistive devices include: individualized
customization for patients, providing unparalleled comfort and
functionality; orthopedic appliances designed to better fit the
patient’s bone and muscle structure, reducing pressure points
and enhancing orthopedic performance; rehabilitation devices
such as gait trainers, which are customized to incorporate
biomechanical modelling to improve the efficiency of
rehabilitation; and sports aids such as knee pads and insoles,
which reduce the risk of sports injuries and enhance sports
performance through precise fit. In addition, 3D printing can
also facilitate the upgrading and updating of diabetic foot testing
equipment. These innovations not only enhance the functionality
and user experience of assistive devices, but also promote the

TABLE 3 Analysis of the auxiliary tools.

Study Objective Evaluated parameter(s) Main conclusion Research
direction

Shaulian et al.,
2023

Development of insoles to
distribute plantar pressure

A novel offloading method The precise selection of graded stiffness
unloading helps to create personalized insoles

Auxiliary tools

Leung et al.,
2022

Pressure reducting
insoles in the DF

Re-entrant structure internal angle to peak
contact force, average heel pressure and heel to

gasket contact surface integral allowances

The honeycomb structure relieves pressure on
the foot and reduces the occurrence of ulcers

and wounds
exacerbation

Auxiliary tools

López-Moral
et al., 2022

Validate a novel 3D foot scanner
app for selecting the proper fitting

therapeutic footwear

Foot skeletal muscle analysis and foot scan
analysis

Enables deeper profiling of the DF Auxiliary tools

Muir et al., 2022 Advantages of personalised
materials for 3D printing

Analysis of maximum peak plantar pressure and
time to pressure in different states

The ability to manufacture the 3D printed
personalized metamaterials insoles and

demonstrates their ability to reduce plantar
pressure

Auxiliary tools

Lasschuit et al.,
2021

3D wound cameras Evaluating the accuracy of the device in terms of
wound depth, width and shape size

3D wound cameras provide a more
comprehensive understanding of the ulcer to

improve subsequent outcomes

Auxiliary tools

Belvedere et al.,
2020

Analysis of Skeletal Muscle by
Wearable

3D Printing Devices in DFUs

Analysis of dynamic temperature parameters
and rate of temperature change

Temperature rise time measured at the plantar
surface may be indicative biomarker for

differences in biomechanics and
vascularisation

Auxiliary tools

Malone et al.,
2020

3D wound imaging Intraclass correlation coefficient assessment,
linear regression and pearson correlation

coefficient test

3D wound imaging could be effective
prognostic markers to wounds progression to
healing and closure. It provide important early

identification of wounds

Auxiliary tools

Jørgensen et al.,
2018

3D-WAM camera Wound size, shape and depth analysis
2D,3D image analysis

the 3D-WAM camera is an accurate and
reliable method

which is useful for several types of wounds

Auxiliary tools

van Doremalen
et al., 2020

Infrared 3D thermography Concept certification analysis of infrared
imaging 3D maps

3D thermal foot images inform assessment of
3D skin temperature in the DF

Auxiliary tools

a3D: Three-dimensiona.
bDF: diabetic foot.
cDFU: diabetic foot ulcer.
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popularity and cost-effectiveness of personalized healthcare services.
The application of 3D printing technology in assistive devices and
ulcer monitoring is shown in Figure 4.

6 Material diversity in 3D bioprinting

3D bioprinting creates 3D functioning tissues/organs by
precisely depositing bioink made of matrix, biological
components and living cells (Xu et al., 2022). 3D printed
products combined with biomaterials could control the flexible
release of drugs or factors and protect sensitive biomaterials from
the harsh wound environment to ensure treatment effectiveness
(Pop and Almquist, 2017). Below I will introduce several common
bioprinting materials. Hydrogels, owing to their excellent
biocompatibility, biodegradability, and ability to mimic the
extracellular matrix, are crucial in bioprinting. They support cell
adhesion, growth, and crosslinking, with controllable degradation
rates, making them ideal materials for promoting cell proliferation
and tissue regeneration (Wang et al., 2022; Mandrycky et al., 2016).
Natural materials such as gelatin and fibrin-based materials have
good biocompatibility in 3D printing and can enhance cell function.
For bioinks without intrinsic binding sites, incorporating cell-
binding peptides (such as RGD sequences) could improve cell
adhesion and viability (Cadena et al., 2021; Cadamuro et al.,
2023). Biopolymers, such as gelatin methacryloyl (gelMA),
chitosan, and hyaluronic acid, were advantageous because they
mimicked the properties of natural ECM, had low
immunogenicity, and could be modified to include motifs in
their chemical structure to promote cell activity (Yue et al.,
2015). Nanofibers are sustainably renewable, non-toxic, have a
high specific surface area and aspect ratio and excellent

mechanical properties (Li et al., 2021). Moreover, nanomaterial-
based hydrogels have strong rheological properties, processability
and electrical stimulation responsiveness, and also promote tissue
regeneration (Tang et al., 2018; Hasan et al., 2018). Biomaterials are
widely researched for their unique and superior properties. Different
tissue-specific biomaterials containing cytokines and
immunomodulatory properties encouraging tissue regeneration
have been designed and implanted into locations of injured tissue
to increase the therapeutic effectiveness of tissue regeneration
(Xiong et al., 2022). Despite the great potential of bioprinting
technology, there are deficiencies in biomaterials, such as
insufficient mechanical strength of bioinks and challenges in
precisely controlling the degradation rates of hydrogels.
Additionally, some materials may be incompatible with
bioprinting technology, leading to issues like clogging and
reduced printing accuracy. The porosity of natural materials also
limits cellular penetration and tissue integration. Consequently, the
design and optimization of biomaterials still require further in-depth
research (Heinrich et al., 2019). In summary, biomaterials have
significant potential for development in the future.

7 Where is 3D printing going?

DM is a serious health problem that cannot be cured although
existing drugs can alleviate the symptoms there is an urgent need to
gain a deeper understanding of this pathology and to develop new
models of the disease. Organoid technology offers an important
opportunity to accurately mimic in vivo tissues by building 3D
structures (Tsakmaki et al., 2020). 3D technology accelerates skin
tissue regeneration and wound healing by accurately mimicking the
physiological microenvironment and enhancing the complex

FIGURE 4
Auxiliary tools for joint 3D printing.
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network of inter-cellular interactions and bio-signal transduction,
which allows the cells that promote wound repair to exhibit higher
levels of viability and differentiation (Choudhury et al., 2024).
Current 3D skin models, although partially successful in clinical
applications, still have limitations due to the lack of elements such as
immune cells, blood vessels, nerves and sweat glands. Secondly,
there is a growing demand from patients and physicians for
improved skin sensation and regeneration. Creating a unified
bioink model of the skin that incorporates all these elements
remains a major challenge (Ansaf et al., 2023; Tao et al., 2019).
Topical treatment with dressings as part of DFU management
practices creates a protective physical barrier, maintains a moist
environment, and drains exudate from DFU wounds (Jiang et al.,
2023). However, there are fewer types of clinically applied dressings,
which need to be changed frequently, consume a lot of manpower
and financial resources, and are ineffective, affecting the confidence
of doctors and patients. At the same time, the high price of dressings
also reduces patient compliance (Jiang et al., 2023). Moreover,
existing commercial applications struggle to meet the needs of
foot care and customized footwear. There is a need to improve
software quality to support accurate measurements, enhance foot
health awareness, and promote the prevention and treatment of foot
problems (Kabir et al., 2021). 3D printing technology can provide
personalized dressings and footwear solutions, improving fit and
protection, which is beneficial for better managing DFU. Overall, 3D
printing has great potential in DFU management, but development
has been slow due to insufficient research and lack of precision in
modelling for foot management. Therefore, we need a large number

of preclinical and clinical studies to validate the benefits of 3D
printing technology in DFU management.

8 Summary and outlook

3D printing technology offers unparalleled advantages,
particularly in the realm of personalized treatment. The
amalgamation of traditional treatment methods with 3D printing
has yielded favorable outcomes in decelerating the progression of
DFUs and facilitating wound healing. We summarize this in
Figure 5. However, there is a limited body of research regarding
the utilization of 3D printing technology in the domain of DFUs.
The development of a 3D in vitro ulcer model that accurately
simulates the hyperglycemic conditions in vivo is a significant
challenge. One of the key factors in addressing the lack of 3D
models is the promotion of keratogenic cell differentiation and
proliferation. The reprogramming of iPSCs has also offered
valuable insights for the construction of 3D skin models.
Zebrafish share 87% genetic similarity with humans, pending
development of experimental models close to humans. Effective
3D bioprinting dressings for chronic wounds are still lacking, in bi-
layered biological dressings as well as dual AMPs are worth
exploring by researchers. The development of wearable devices is
still in its infancy. The development of sensors has to synergistically
analyze the specificity of the skeletal and even the muscular structure
of the foot, in addition to physical detection to better assess DFU
diseases. There is a lack of awareness amongst medical professionals

FIGURE 5
3D printing application in diabetic foot management.
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regarding the application of 3D printing technology in the
management of DFUs.
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