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Introduction: Cough is a common symptom of respiratory diseases, and
prolonged monitoring of cough can help assist doctors in making judgments
about patients’ conditions, among which cough frequency is an indicator that
characterizes the state of the patient’s lungs. Therefore, the aim of this paper is to
design an automatic cough counting system to monitor the number of coughs
per minute for a long period of time.

Methods: In this paper, a complete cough counting process is proposed,
including denoising, segment extraction, eigenvalue calculation, recognition,
and counting process; and a wearable automatic cough counting device
containing acquisition and reception software. The design and construction of
the algorithm is based on realistically captured cough-containing audio from 50
patients, combined with short-time features, and Meier cepstrum coefficients as
features characterizing the cough.

Results: The accuracy, sensitivity, specificity, and F1 score of the method were
93.24%, 97.58%, 86.97%, and 94.47%, respectively, with a Kappa value of 0.9209,
an average counting error of 0.46 counts for a 60-s speech segment, and an
average runtime of 2.80 ± 2.27 s.

Discussion: This method improves the double threshold method in terms of the
threshold and eigenvalues of the cough segments’ sensitivity and has better
performance in terms of accuracy, real-time performance, and computing speed,
which can be applied to real-time cough counting and monitoring in small
portable devices with limited computing power. The developed wearable
portable automatic cough counting device and the accompanying host
computer software application can realize the long-term monitoring of
patients’ coughing condition.
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1 Introduction

Cough is a common symptom of respiratory diseases, which is
caused by inflammation, foreign bodies, chemical or physical
stimulation of trachea, bronchial mucosa, or pleura. It is a
protective reaction for the human body, which can help
discharge the foreign body in the airway and remove the
secretion. However, if the cough continues and turns to chronic
cough from acute cough, it often brings great pain to the patient,
such as chest tightness, pharyngeal itching, and wheezing.

Recent years, medical academic groups such as the British Thoracic
Society, the American College of Chest Physicians, the European
Respiratory Society, the Japanese Respiratory Society, and the French
Society of Otolaryngology have issued guidelines for cough diagnosis
and treatment, acknowledging the importance of cough diagnosis.
However, most of them focus on the subjective evaluation of cough,
that is, through the cough visual analog scale (VAS), cough severity
index (CSI), cough questionnaire, and other tools to evaluate the
patient’s cough condition (Cho et al., 2019; Birring and Spinou, 2015).

The cough sound detection algorithm mainly focuses on the
feature extraction and recognition of cough sounds (Ijaz et al., 2022;
Serrurier et al., 2022). In the aspect of feature extraction, researchers
mainly calculate acoustic features of cough sounds. Mel frequency
cepstrum coefficients (Sun et al., 2011; Larson et al., 2012; Drugman
et al., 2013; Miranda et al., 2019; Barata et al., 2023) and short-time
energy parameters (Drugman et al., 2013; Drugman et al., 2020;
Monge-Alvarez et al., 2019) are used as eigenvalues to reflect the
information of cough sound signals. Other features such as
spectrogram (Amoh and Odame, 2016; Cesnakova et al., 2019),
non-negative matrix factorization (You et al., 2017), spectral
entropy, and Hu moment (den Brinker et al., 2021) also have a
small number of applications. It is common to use the neural
network (Miranda et al., 2019; Cesnakova et al., 2019; Barry
et al., 2006), support vector machine (SVM) (Liu et al., 2013;
Bhateja et al., 2019), and hidden Markov model (Shin et al.,
2009; Drugman et al., 2012) for cough sound recognition or
classification.

At present, the automatic cough recognition and counting
system mainly includes Leicester Cough Monitor (LCM),
VitaloJAK, and LEOSound, and LCM is widely used. Based on
MFCC parameters and hidden Markov model, the system realizes
24-h continuous dynamic cough recording (Matos et al., 2007;
Birring et al., 2008; Kulnik et al., 2016). VitaloJAK is composed
of a microphone and a recording device, which can evaluate the
cough frequency of patients objectively (McGuinness et al., 2012).
LEOSound is a portable mobile system for automatic long-term
recording and analyzing respiratory sounds. It realizes long-term
lung sound recording (including cough, wheezing, etc.) through a
bioacoustic sensor attached to the human body (Koehler et al., 2014;
Krönig et al., 2017). Such systems can automatically identify and
record cough frequency, but the correlation between the results and
the subjective cough severity is weak and still needs to be combined
with other cough assessment methods. Shin et al. (2009) designed a
HMM hybrid model using ANN-improved MFCC parameters to
identify cough sounds and realize automatic detection of the
abnormal health status of the elderly. Amrulloh et al. (2015)
developed a method for automatic identification of cough
segments from children’s recordings. Non-Gaussianity, Shannon

entropy, and cepstrum coefficients were extracted as characteristic
parameters to describe cough, and the artificial neural network was
trained to realize automatic counting of children’s cough. Peng et al.
(2023) designed a lightweight cough detection system based on
CNN, using the hardware and software co-design method;
developed a dedicated hardware accelerator to perform
calculations efficiently; and achieved lower complexity and power
consumption. Pahar et al. (2023) proposed a bed occupancy
detection system based on LSTM, which combines the signals
obtained by the three-axis accelerometer to perform automatic
long-term cough monitoring.

Due to the lack of public cough speech data with sufficient
samples and no recognized gold standard, although the judgment
methods of cough fragments emerge in an endless stream, it is still
impossible to objectively evaluate the detection effect. Most of the
researchers focus on the distinction between cough and non-cough
segments or use computer processors as a computing tool for the
system, which lacks the method construction in the actual
application environment, and thus unable to achieve real-time
monitoring; however, the detection system based on the actual
environment lacks high accuracy, and the detection effect is
unsatisfactory. In addition, with the rapid development of voice
analysis technology, accurate cough detection systems will be widely
used in home care and clinical trials in the near future.

Cough frequency represents the number of coughs over a period
of time, which can be used as a discriminant index for long-term
monitoring of lung status in patients with respiratory diseases. It has
an important reference value in the early stage of the disease (Hall
et al., 2020; Turner et al., 2018; Yousaf et al., 2013) and enables
monitoring of respiratory diseases such as COPD in a non-invasive
manner. Based on the above background, an improved double-
threshold cough tone counting method is proposed, and a wearable
portable automatic cough counting device with accompanying host
computer software is designed and developed in this article. The
main contributions of this article are as follows:

(1) An improved dual-threshold cough tone counting method
considering the eigenvalue of extra threshold is proposed to
extract potential cough segments from the audio, which
improved the sensitivity, the computational speed, and
balanced real-time and accuracy.

2) A set of wearable automatic cough counting device is
developed to realize long time monitoring of patient’s
cough, which improved the accuracy in low-power devices.

The rest of this work is organized as follows: the data-obtaining
method, process method, and system design are proposed in Section
2. The processing results are given in Section 3. Section 4 presents
the discussion. Section 5 presents the conclusion and future work.

2 Materials and methods

2.1 Methods and process of obtaining
raw data

All the data used in this paper were collected from clinical
patients in Guangdong Medical University, including 10–45 min of
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audio recorded by 50 patients in their daily state. The audio data
used in the trial were obtained by placing the Philips Sound Recorder
VTR5000 at the patient’s bedside, recording the patient’s mouth
sounds, and assessing the quality of the audio when collection was
complete, removing audio that had no coughing sound or was
extremely unclear.

2.2 Specific methods

The corresponding processing algorithm is designed according
to the collected cough sound data above, including signal denoising,
rough division and double threshold endpoint detection, feature
extraction, cough sound recognition, and cough counting process
per minute, which is shown in Figure 1.

2.2.1 Denoising
Compared with the in vivo cough sound collected during

tracheal intubation, body surface acquisition has the advantages
of convenience and speed, with simple operation methods, low
collection equipment requirements, and relaxed environmental
requirements. However, due to its exposure to the open
environment, there may be noise signals unrelated to cough
sounds during the recording process, such as voices generated by
patients and others during daily activities, talking voices during
conversations, and environmental background noise, which may, in
turn, cause interference in the recognition of cough sounds.

The production of a cough consists of three phases, namely,
inhalation, pressurization, and exhalation, and the cough sound can
be similarly divided into three phases: the initial, intermediate, and
ending phases. The initial phase is the burst of coughing at the
beginning, which is shorter in duration but rapidly increasing in
energy. The middle phase is relatively smooth, when it is longer in
duration and decreases in energy. The ending phase is the second
burst before the end, which represents the periodic vibration of the
vocal folds, when the energy is weaker than in the initial phase and
which does not occur each time.

The frequency range of cough sounds is widely distributed,
which is as low as 30 Hz and as high as 4,000 Hz. The frequency
distribution of cough sounds is relatively uniform in its frequency
range. In this paper, the patient’s self-recorded audio is used, and
there will be noise such as environmental noise and speech, so the
noise reduction process is carried out on the collected audio under
the premise of retaining effective information on cough sound. The
wavelet thresholding method is used for filtering and denoising by
separating the useful information from the energy of the noise. Since
the useful information is concentrated in the larger wavelet
coefficients and the noise is mostly distributed in the smaller
coefficients, filtering can be realized by removing the noise
distributed in the smaller coefficients by setting a suitable threshold.

First, wavelet decomposition of one-dimensional signal is
performed, the sym8 wavelet is selected, the wavelet
decomposition level is 3, and the decomposition coefficients of
each layer of the signal are calculated. A threshold is set for each
layer coefficient, the signal above the threshold is retained, and the
wavelet coefficients below the threshold are set to 0. Finally, wavelet
reconstruction is performed, and the signal is recovered according to

the low-frequency coefficients and high-frequency coefficients of
each layer, and the denoised audio is obtained.

2.2.2 Segmentation
Due to the long time of the collected audio data (more than

10 min), in order to ensure the computational speed of the
subsequent segment extraction, feature recognition, and other
processes, it is necessary to first carry out a coarse segmentation
of the coughing sound, which is divided into a 20-s segment of short
audio by time, and pad zeros at the end of data which is less than 20 s
to ensure that each segment of the data after segmentation is 20 s.

A dual-threshold endpoint detection algorithm based on short-
time energy and a short-time zero crossing rate is used for the
segmented short audio data. Since the speech signal is generally
divided into a silent segment, a clear segment, and a turbid segment,
the silent segment is mainly background noise with the lowest
average energy; the turbid segment is the corresponding speech
signal segment emitted by the vibration of the vocal cords and has
the highest average energy; the clear segment is the speech signal
segment emitted by the friction, impact, or bursting of the air in the
oral cavity and has an average energy between the two. By
calculating the short-time energy and short-time zero crossing
rate of the speech signal in each frame, the preliminary extracted
segments are obtained by judging whether the speech segments are
voiceless segments, clear-tone segments, or turbid-tone segments.
Then, according to the duration and explosive characteristics of the
cough segment, the restriction conditions of segment duration and
maximum short-time energy are increased to preliminarily screen
the segments that meet the characteristics of the cough sound and
remove the wrongly extracted non-cough segments.

2.2.3 Feature extraction
Since the segments extracted by the double threshold method

may be false cough segments such as impact sound and ambient
noise that are misrecognized, it is necessary to judge the potential
cough segments after the endpoints are extracted. The candidate
eigenvalues proposed to be used in this algorithm are mean
amplitude, short-time zero crossing rate, short-time energy, Mel
frequency cepstrum coefficient, and linear predictive cepstrum
coefficient. After calculating the results of the above eigenvalues
for some of the segments to be recognized, correlation analysis is
carried out for each of these features according to the manually
labeled labels of each segment, and a combination of the eigenvalues
with higher correlation is determined for subsequent classification
and recognition.

The average amplitude is the average value of signal’s amplitude
over a period of time, and in this paper, the average amplitude of the
extracted potential cough segments is calculated to reflect the
magnitude of the sound intensity within the segment, which is
calculated by the formula 1.

�x| | � 1
N

∑N
i�1

xi| |. (1)

The short-time zero crossing rate is the number of times the
signal crosses the zero value per frame of speech, which can reflect
the frequency information on the signal (Bachu et al., 2010; Taquee
et al., 2021), and its calculation formula is shown in Formula 2.
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Compared with other speech signals, cough sounds are
characterized by a significant increase in the short-time zero
crossing rate within the whole speech segment and larger than
the zero crossing rate of general sound signals, so they can be used as
a feature parameter for recognition.

Zn � 1
2
∑n−1
m�0

sgn xn m( )[ ] − sgn xn m − 1( )[ ]∣∣∣∣ ∣∣∣∣. (2)

The short-time energy (Formula 3) reflects the energy size of the
speech signal in each frame, which can describe the change in the
speech signal in the time domain and the strength of its bursting
ability (Taquee et al., 2021). For cough tones, the strength of the
explosive power of the signal reflects the intensity of cough, and in
the initial explosive phase, due to the sudden increase in the volume
of sound so that the short-time energy will have a significant rise,
and its rise will be significantly higher than that of the cough tones
and therefore can be used to distinguish between general sound
signals and cough tones.

En � ∑∞
m�−∞

x m( )w n −m( )[ ]2. (3)

When w(n) is a rectangular window and N is the frame length,
the above equation can be expressed as Formula 4.

En � ∑N−1

m�0
x m( )[ ]2. (4)

Mel frequency cepstrum coefficients (MFCCs) are based on the
results of human hearing experiments to analyze the spectrum of
speech, describing the characteristics of the envelope (Duckitt et al.,
2006). According to the conversion formula of Mel frequency to actual
frequency Fmel � 1125 log(1 + f

700), the extraction of parametric
features is performed by combining many frequency groups divided
by the basilar membrane of the human ear as aMel filter bank. TheMel
filter bank is a triangular filter bank composed of M filters with a center
frequency of f(m), which are equal-bandwidth in the Mel frequency
range. The transfer function of each filter is as formula 5.

Hm k( ) �

0 k<f m − 1( )
k − f m − 1( )

f m( ) − f m − 1( ) f m − 1( )≤ k≤f m( )

f m + 1( ) − k

f m + 1( ) − f m( ) f m( )< k≤f m + 1( )

0 k>f m + 1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0≤m≤M,

(5)
where f(m) � (Nfs

)F−1
mel(Fmel(fl) +mFmel(fh)−Fmel(f1)

M+1 ).
The FFT transform is performed on each frame of the signal to

calculate the spectral line energy, which is then passed through the
Mel filter, and the Mel inverse spectral coefficients are obtained by
calculating the DCT after taking the logarithm of the Mel filter’s
energy S (i, m), which is shown is Formula 6.

mfcc i, n( ) �
��
2
M

√ ∑M−1

m�0
log S i, m( )[ ] cos πn 2m − 1( )

2M
[ ]. (6)

The linear predictive cepstrum coefficient (LPCC, which is
calculated by Formula 7) is obtained by doing a Fourier inverse

transform of the frequency response H(ejω) after logarithmically
obtaining log |H(ejω)| (Mammone et al., 1996). Since H(ejω)
reflects the frequency response of the sound channel and the
spectral envelope of the analyzed signal, the LPCC is also
considered to contain the envelope information on the signal
spectrum, which can be viewed as an approximation of the
short-time inverse spectrum of the original signal. Linear
prediction coefficients are generally utilized to obtain the LPCC,
which is computationally small and easy to implement.

ĥ 1( ) � a1

ĥ n( ) � an +∑n−1
i�1

1 − i

n
( )aiĥ n − i( ) 1< n≤p

ĥ n( ) � ∑p
i�1

1 − i

n
( )aiĥ n − i( ) n>p

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (7)

2.2.4 Recognition
Support vector machine is a binary classification model that

achieves classification by finding an optimal decision boundary
among many instances, which is suitable for dealing with
classification tasks on small and medium-sized complex datasets
(Sharan et al., 2019). In speech system recognition, its recognition
results are better than the hidden Markov model, and it runs faster
and has better generalization ability in the case of small sample
datasets, so SVM is used for classification.

The double threshold method can only distinguish the voiceless,
clear, and turbid sounds in a segment of speech and cannot
distinguish the specific categories of sounds in the voiced
segment, such as speaking, sneezing, impact, vibration, and
background noise, and they have some differences in the above
characteristics, among which the waveforms, short-time energies,
and short-time over-zero rates of the speaking sound, the impact,
the background noise, and the coughing sound are shown in
Figure 2. It can be seen that compared with other sounds, the
amplitude, short-time energy, and short-time zero crossing rate of
coughing sound are higher, and the trend of its change is to increase
rapidly to a larger value first and then slowly decrease. The
amplitude, short-time energy, and short-time zero crossing rate
of the speaking sound are lower; the impact sound only has higher
amplitude and short-time energy, and the trend of short-time energy
is similar to that of the cough sound, while the short-time zero
crossing rate is basically 0; the amplitude, short-time energy, and
short-time zero crossing rate of the background noise are all
gradually increasing from low, and the degree of change in its
short-time energy is relatively smooth.

Ten 20-s short audio segments (500 segments in total) from each
patient were randomly selected and subjected to filtering, cough
segment extraction, and other operations to obtain 977 speech
segments including cough tone sounds and noises (speech,
sneezes, crashes, vibrations, background noises, etc.). According
to the feature value calculation process in 3), mean amplitude (M),
mean short-time zero crossing rate, maximum short-time zero
crossing rate within the segment (ZCR), mean short-time energy,
maximum short-time energy within the segment (E), 12-
dimensional mean Mel frequency cepstrum coefficients (MFCC),
and 13-dimensional linear predictive cepstrum coefficients (LPCC)

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Wang et al. 10.3389/fbioe.2024.1477694

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1477694


FIGURE 1
Algorithm flow chart.

FIGURE 2
Waveforms, short-time energies, and short-time zero crossing rates of speaking voice, impaction, background noise, and cough fragments.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Wang et al. 10.3389/fbioe.2024.1477694

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1477694


are calculated as the to-be-selected feature values and are labeled
“Cough” or “Noise” according to the audio label content, forming
the label vector of the dataset.

In order to reduce the amount of computation in the actual
algorithm, the above to-be-selected eigenvalues are analyzed for
correlation, different combinations of eigenvalues are selected for
the training of the classifier, and combinations with higher accuracy
are selected to form the final eigenvalue matrix.

2.2.5 Counting
Define cough frequency as the number of coughs in 1 min,

which can be calculated by Formula 8 since the duration of each
segment of coarse segmented audio is 20 s.

FC � ∑i�1
3

Ni. (8)

2.3 System design

The system includes a wearable acquisition device and a
receiving host computer, and the above counting algorithm is
built into the acquisition device; the system block diagram is
shown in Figure 3.

The wearable acquisition device using the STM32 series chip as
the main control chip completes the system control processes such
as acquisition, counting, data sending, and receiving. The data
acquisition part of the 3.5-mm microphone interface can be
connected to the AKG C417 lavalier mini microphone. The
weight and volume of the microphone is small and does not
give a foreign body feeling when wearing, so this can be
maximized close to the source of sound acquisition. The
Bluetooth transmission module is the HC-04 Bluetooth serial

communication module; the working frequency band is
2.4 GHz ISM; using GFSK modulation, Bluetooth transmission
can be realized within 10 m. The power module adopts a 1,200-
mAh rechargeable lithium battery with a rated power of 4.4 Wh
and output voltage of 3.7 V, and is equipped with a type-c port as
the charging interface. The device adopts SD card for data storage,
buzzer, and LED light as on/off and power and Bluetooth
connection status indication. The device can be secured to the
arm, waist, etc. or placed in a backpack by attaching it to an elastic
band. The microphone is secured to clothing by a collar clip.

The receiving upper computer is a Huawei HONOR Pad
X8 tablet with a built-in automatic cough counting APP, which
is capable of realizing data transmission with the acquisition device
via Bluetooth and displaying and playing back the acquired data and
counting results. Since the acquisition device only has a power
button, the APP can remotely control the device, including
controlling the start of acquisition and setting the acquisition
mode (normal mode or calibration mode).

3 Results

3.1 Filtering result

The original and filtered audio signals are shown in Figure 4A,
and both are analyzed spectrally, as shown in Figure 4B. It can be
seen that after wavelet denoising, the high-frequency interference
present in the original signal is filtered out and the frequency band
contains the frequency range in which the cough tone exists.

By calculating its average signal-to-noise ratio and comparing it,
the average signal-to-noise ratio of 50 raw audio data is −28.4134,
which is improved to 8.038 after filtering by the wavelet
thresholding method.

FIGURE 3
Block diagram of the wearable automatic cough counting system. Themicrophone is secured to the collar near the patient’s mouth, and the device
can be secured to the patient’s waist or upper arm with a strap.
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3.2 Segmentation result

The results of cough segment extraction based on the double-
threshold method are shown in Figure 5, which demonstrates the
segment extraction results of several random segments from
different audios.

It can be seen that the double-threshold method with extra
threshold limits is able to extract most of the cough segments,
exclude as many non-cough segments as possible, and there is no
misrecognition of long-time voiceless segments, which improves the
specificity of the initial extraction for cough sounds and reduces the
number of segments, for which the feature values need to be calculated
subsequently. However, there are still some abnormally identified short
silent segments (generally noise in the background environment), and it
is not possible to distinguish cough segments fromnon-cough segments
in the audible segments (speaking, sneezing, crashing, vibrating, and
wheezing at the end of coughing), so the extracted segments need to be
further analyzed with the help of other eigenvalues and SVM classifiers.

3.3 Counting result

The partial counting results for the different audios are shown in
Figure 6, where the red line represents the starting point of the

segments recognized as coughs, the green line represents the
endpoint of the segments recognized as coughs, and the black
line represents the segments that were extracted but not judged
to be coughs.

Through the above processing flow, most of the cough segments
can be extracted by the first double-threshold method, but contain
some misclassified noise segments, and finally, the other sound
segments that are mistakenly extracted can be removed after
recognition by the SVM classifier.

4 Discussion

4.1 Verification of accuracy

The accuracy (ACC, which is calculated by Formula 9),
sensitivity (SEN, which is calculated by Formula 10),
specificity (SPE, which is calculated by Formula 11), Matthew
correlation coefficient (MCC, which is calculated by Formula 12),
positive predictive value (PPV, which is calculated by Formula
13), negative predictive value (NPV, which is calculated by
Formula 14), and F1 score (which is calculated by Formula
15) are calculated for the different combinations with the
following formula.

FIGURE 4
Signal waveform and spectrum after denoising. (A) shows the waveforms of the signals before and after filtering by wavelet transform, where blue
represents the signal before filtering and purple represents the signal after filtering; (B) shows the spectrograms of the signals before and after filtering,
where blue represents the signal before filtering and purple represents the signal after filtering, and it can be seen by comparison that the denoising
process filters out the high-frequency noises above 3,000 Hz.
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ACC � TP + TN

TP + FN + TN + FP
, (9)

SEN � TP

TP + FN
, (10)

SPE � TN

TN + FP
, (11)

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ , (12)

PPV � TP

TP + FP
, (13)

NPV � TN

TN + FN
, (14)

F1 � 2 ×
TP

TP+FP ×
TP

TP+FN
TP

TP+FP + TP
TP+FN

, (15)

where TP is the true case, FN is the false negative case, FP is the false
positive case, and TN is the true negative case.

It can be seen from Table 1 that the method using①M+ ZCR +
E + MFCC as the feature matrix has the best recognition effect, with
an accuracy of 93.24% and a correct recognition rate of 97.58% for
coughs, and its Kappa value is calculated to be 0.9209, which is a
good system consistency. Compared with②M + ZCR + E + LPCC
group, the correlation between actual classification and predicted
classification is strong, and the classification performance is better;
compared with ③ M + ZCR + E + MFCC + LPCC group, the
classification performance of both of them is close to each other, but
① adopts the eigenvalue matrix with a lower dimension, which
reduces the computational complexity.

4.2 Comparison with previous work

Comparing our approach with previous works (Monge-Alvarez
et al., 2019; You et al., 2017; Sharan et al., 2019; Matos et al., 2006), as

FIGURE 5
Segmentation results for different audio segments. The figure shows the segment extraction results for four random segments (lots of cough
sounds, presence of cough sounds and interference, and no sound segments), with the start and end of potential cough segments identified using the
double-threshold method marked by red and green lines.
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FIGURE 6
Results of different audio counts (partial). The figure (A–E) shows the recognition results of 5 different audios, the segmentsmarked by red and green
lines are those judged by the algorithm to be coughs, and the segments marked by black lines are those judged by the algorithm to be non-coughs. The
recognition algorithm accurately recognizes the start and end points of coughs [in (A,C)] and removesmis-extracted segments such as coughing endings
(which is very short and may cause double counting) (B), noises (E), and speaking sounds (D).

TABLE 1 Classification results under different combinations of eigenvalues.

Combination ACC (%) SEN (%) SPE (%) MCC (%) PPV (%) NPV (%) F1 score (%)

M + ZCR + E + MFCC 93.24 97.58 86.97 86.10 91.56 96.12 94.47

M + ZCR + E + LPCC 90.58 95.67 83.21 80.52 89.19 93.00 92.32

M + ZCR + E + MFCC + LPCC 91.91 97.58 83.71 83.44 89.67 95.98 93.45

TABLE 2 Comparison of others’ work.

Literature ACC (%) SEN (%) SPE (%) F1 score (%)

HMM + MFCC Matos et al. (2006) 82 — — —

SVM + NMF-G You et al. (2017) 81.50 84.40 85.40 80.70

SVM + short-time feature Monge-Alvarez et al. (2019) — 83.31 79.26 —

SVM + MFCC-CIF Sharan et al. (2019) 86.09 92.31 85.29 59.99

Our approach 93.24 97.58 86.97 94.47
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shown in Table 2, used the hidden Markov model to automatically
detect cough sounds from continuous dynamic recordings,
computed 39 MFCC features of cough events from nine patients,
and rescaled the parameters by inverse spectral boosting, which
yielded an accuracy of 82% and an error of seven coughs per hour.
You et al. (2017) extracted unique spectral features of cough
segments based on NMF and parameterized the spectral structure
of coughs using multiple Gaussian distributions and scaling
parameters and used SVM for classification, obtaining an
accuracy of 81.5%. Monge-Alvarez et al. (2019) proposed an
audio-based robust cough segmentation for the machine hearing
system to compute the set of short-time spectral features for
different frequency bands of cough segments of 13 patients under
different levels of noise environments and selected the short-time
features that were not affected by the environment as the feature
matrix of the SVM, which achieved a sensitivity of 83.31% and a
specificity of 79.26%. Sharan et al. (2019) used cochlear spectrogram
and linear MFCC for feature extraction to automatically segment the
cough recordings of 479 patients with various clinical diagnoses of
respiratory tract infections, and SVM was used to recognize coughs
in the extracted segments, achieving an accuracy of 86.09%, a
sensitivity of 92.31%, and a specificity of 85.29%.

Comparing the above methods, the method of this paper has
better results in 1) recognition effect, 2) feature dimension, 3)
data authenticity, and 4) practical applicability. 1) The method of
this paper performs the best in terms of accuracy, sensitivity, and
specificity compared to the literature (Monge-Alvarez et al., 2019;
You et al., 2017; Sharan et al., 2019; Matos et al., 2006) with more
than 90% accuracy, and it has the highest sensitivity, which is
5.27% more than that of Sharan et al. (2019) which indicates a
better recognition rate of cough segments. Although the
detection of non-cough segments is poorer, it still has a good
performance compared to the rest of the methods. 2) The
literature (Monge-Alvarez et al., 2019; You et al., 2017; Matos
et al., 2006) uses 39, 60, and 29 dimensional features, respectively.
In this paper, we use a lower number of dimensions
(17 dimensions) to achieve a high accuracy, and the
calculation method is simple, with a good correlation (>0.4)
and high significance (p < 0.01), which reduces the pre-
computational complexity. 3) The previous methods mostly
used cough segments collected by volunteers in the laboratory
or manually divided (Monge-Alvarez et al., 2019; You et al., 2017;
Matos et al., 2006); although different noise environments were
simulated (Monge-Alvarez et al., 2019) or volunteers were made
to simulate life scenarios, they still differed from the process of
cough detection carried out in real scenarios. In this paper, we

used the data captured in the patients’ real life (in which the
sound of other people communicating, keyboard sounds at work,
and other sounds occurring in life can be heard), which is highly
authentic. 4) The previous methods pay more attention to
judging the manually segmented cough segments and lack the
automatic extraction of the complete audio, and the literature
(Sharan et al., 2019) designed a method to automatically segment
the cough segments, but its accuracy and specificity are poor after
combining with a classifier. This paper carries out a complete
processing flow (preprocessing, segmentation, feature extraction,
classification and identification, and counting) for the original
audio that has been actually collected and not been processed,
without manually marking the segments. It can automatically
identify the segments to be tested and then divide them, realizing
the complete detection process, which has a good practical
application value.

4.3 Recognition effect

This method improves the relevance of the traditional
double-threshold method for the recognition of cough
segments and reduces the subsequent computational
complexity by the extra threshold value; according to the
characteristics of the cough segments, it constructs feature
values with a better correlation with the cough segments and
completes the differentiation between the cough segments and
the non-cough segments through the SVM classifier to realize the
cough count within 1 min.

The algorithm has high accuracy, high sensitivity, low
complexity, good counting effect, and small error from the actual
counting value, which can be applied to small portable devices with
poor computing power. The average counting error for 60-s length
audio is 0.46 times, and the average running time is 2.80 ± 2.27 s,
compared with the algorithm that requires 0.506 s of computing
time for the 1-s audio segment (Shin et al., 2009), which can generate
counting results in a timely manner, and has both strong real-time
performance and can be used for real-time cough counting. The
recognition effect of partial samples is shown in Table 3.

4.4 Limitations

As the patient may be recorded in the hospital ward, the
presence of other patients with similar conditions around them
may lead to different people’s coughs being recorded in, resulting in

TABLE 3 Mean counting error over 60 s for partial samples and running times for 20- and 60-s speech segments.

Sample no. Average counting error/60 s (time) Running time (20 s) (s) Running time (60 s) (s)

17 0.3 0.72 ± 0.49 4.85 ± 2.59

19 0.1 0.61 ± 0.32 2.09 ± 0.73

30 0.7 0.61 ± 0.34 3.42 ± 1.70

47 0.2 0.50 ± 0.21 2.91 ± 1.16

48 0.9 0.15 ± 0.03 0.75 ± 0.21
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inaccurate recognition of the number of coughs, which can be
achieved by judging the distance between the sound source and
the recording device according to the volume level of the cough
segment, thus distinguishing between the patient’s own cough and
the interfering cough. When the device is in a strong noise
environment, cough sounds cannot be clearly recorded; the user
can be informed whether the current environment is suitable for
monitoring by assessing the current ambient noise level.

When the cough sound appears to overlap with other sounds or
due to the presence of a loud interference source near the recording
device (e.g., cell phone vibration on the desktop), it is not possible to
identify the clip as a cough segment at this point, and this problem is
similar to the cough events that existed in Amrulloh et al. (2015) that
refused to be voice-corrupted, so the segment can be assumed to
have been voice-corrupted, and thus, it can be judged as a non-
cough segment.

This method ignores the effect of truncation of audio segment
boundaries and does not take into account the problem that coughs
are disconnected when they appear between two audio segments,
leading to segmentation, and thus cannot be recognized or
recognized repeatedly. In the future, a 2–5-s overlapping segment
will be added to the part between two audio segments, to reduce the
effect of the truncation of the speech boundaries on the counting of
cough sounds.

5 Conclusion

In this paper, an automatic cough counting method is proposed
to present a complete set of the cough counting process based on real
captured audio data, including noise reduction, segment extraction,
eigenvalue calculation, recognition, and counting process. The
accuracy, sensitivity, specificity, and F1 score of the algorithm are
93.24%, 97.58%, 86.97%, and 94.47%, respectively, and the Kappa
value is 0.9209, which is in good agreement.

The algorithm overcomes the problem of different resolution of
different recording devices and reduces the recording requirements
for the capture device to facilitate the capture in life. The sensitivity
of the double threshold method to cough segments is improved in
terms of threshold and eigenvalues, and the computational speed is
improved so that real-time and accuracy can be taken into account,
and the effectiveness of the algorithm is verified in real application
environments by real non-contact cell phone recordings. The feature
value dimension is low, and the computational complexity of each
feature is low, which realizes a better detection effect under low
dimension. The complete processing flow of real audio realizes the
automatic counting of audio, which has a strong application ability
and adaptability to the real scene.

In addition, a wearable automatic cough counting system was
designed based on the present algorithm, which is small, convenient,
and easy to wear, and combined with the accompanying application
software program, it is capable of realizing long-time real-time
monitoring of patients’ coughs inside and outside the hospital.
Patients wear the device for a long time without strong foreign
body sensation, and the device has no major impact on the
user’s daily life.

In the future, the number of coughs can be combined with the
intensity of coughing, the nature of coughing, and the peak time

period to diagnose the severity of the patient’s condition and to
realize a more comprehensive judgment and early warning of the
patient’s condition through real-time monitoring throughout the
day. By fixing this system on the upper arm of the patient with
respiratory disease, after collecting the data by a microphone, the
patient’s coughing frequency within 1 h is analyzed, and the
monitoring platform can be connected to upload the data to the
nurses’ station to complete the automatic monitoring of the patient’s
coughing frequency.
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