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Clinical insights into tooth
extraction via torsion method: a
biomechanical analysis of the
tooth-periodontal ligament
complex
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Traditionally, extracting single, flat- or curved-rooted teeth through twisting is
unfeasible. However, our clinical practice suggests that such teeth can be
extracted efficiently through moderate twisting in a minimally invasive
manner. Given the lack of studies on biomechanics of the tooth—periodontal
ligament (PDL) complex during torsion, which has further constrained its
application, we assessed the feasibility of the torsion method for extracting
single-rooted teeth and evaluated its minimally invasive potential. Using three-
dimensional finite element analysis, we examined the stress distribution of the
tooth and PDL during torsion. Then, we examined changes in the optimal torsion
angle (OTA) and stress distribution across various anatomical scenarios. During
torsion loading, stress concentration was primarily observed on the sing-rooted
tooth surface near the alveolar crest, whereas molars at the root furcation. The
OTA was found to increase under conditions such as narrowing of root width,
decrease in the root apical curvature, change from type | to IV bone, alveolar bone
loss, and shortening of root length. Moreover, the clinically validated model
demonstrated that 74% of outcomes fell within the standard OTA range. In
conclusion, the decrease in PDL area necessitated a larger angle for complete
PDL tearing. Single-rooted teeth with root width-to-thickness ratios of >0.42 and
apical curvatures of <30°are suitable for extraction using the torsion method. This
study confirms the feasibility of the torsion method for minimally invasive tooth
extraction and expands its indications, laying the theoretical foundation and
essential insights for its clinical application.

KEYWORDS
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Graphical abstract: This is a graphical representation of the abstract. During torsion, the highest stress is concentrated at the cervical region
of the single-rooted tooth. The impact of various anatomical conditions on the optimal torsion angle (OTA) is illustrated on the left side of the
figure. As the root narrows, the apical curvature angle decreases, the Type of bone | to IV, the alveolar bone loss occurs, or the root shortens, and

the required optimal torsion angle increases.

Introduction

Various dental conditions, such as malocclusion and severe
periodontitis, can cause irreversible damage to teeth, often
necessitating their extraction (McCaul et al, 2001; Jain et al,
2024). Traditional extraction tools, such as bone chisels and bone
hammers, often lead to severe complications including tissue
inflammation, (Daly et al., 2022) nerve injury, (Khavanin et al.,
2019; Bailey et al., 2020), and even alveolar bone fractures (Zhao
et al,, 2023). Since Cyrus Fay’s pioneering invention of extraction
forceps in 1827, (Moskow, 1987) they represent the most
fundamental and extensively used instruments. With rapid
advancements in precision medicine and minimally invasive
principles, minimally invasive extraction techniques have gained
high popularity (Kelly et al., 2016; Spinato et al., 2016; Nehme et al.,
2021). In this context, minimally invasive tooth extraction has
increased the demand for forceps that are minimally invasive.
Extraction of the affected tooth by using dental forceps involves
twisting, swinging, and applying traction, which can cause damage
to the alveolar bone and even to the surrounding teeth or
periodontal tissues with improper use (Bailey et al., 2020; Zhao
et al, 2023). However, the variability in tooth and periodontal
anatomy, combined with a lack of quantitative research on tooth
extraction biomechanics, has hindered progress in achieving
consistently successful outcomes.
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The periodontal ligament (PDL) and alveolar bone are pivotal in
supporting, transmitting, and distributing forces within the mouth
(Beertsen et al., 1997; Lin et al., 2020). Efficiently severing the PDL
and minimizing damage to the alveolar bone are crucial for
successful tooth extraction. Conventional wisdom suggests that
teeth with a single, round root, such as the maxillary central
incisor and canine, can be extracted using torsional forces.
However, during the extraction of teeth with flat, curved, or
multiple roots, improper application of torsional force often leads
to root fractures and other complications (Ciccit et al., 2013).
Torsional loading, a technique involving repeated rotation along
the longitudinal axis of the tooth root, (Moga et al., 2022) generates
substantial shear forces on the PDL. According to our clinical
experience with dental forceps, teeth with single, flat or curved
roots can be moderately twisted during extraction without
substantial complications, such as root fractures. We hypothesize
that applying torsion for the extraction of single-rooted teeth can
make the process efficient and less traumatic. Based on
biomechanical analyses of the tooth-PDL bone complex are
instrumental in addressing clinical problems in dentistry.

This study investigated the biomechanical behavior of the
tooth-PDL  complex during torsion and examined the
applicability of employing torsion extraction under diverse
anatomical conditions. We performed three-dimensional finite
element analysis to determine the distribution of stress within the
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FIGURE 1

(A) This flow chart outlines the key steps in our study. (B) Front view and detail of a 3D FE model. (C) Load conditions. (D) Boundary conditions (green
region). (E) Modeling based on different anatomical structures: Root width group (from left to right: original width, 4/5, 3/5, and 2/5 width of original);
Root length group (from left to right: Elongation by 1/3, original length, 2/3 length of the original; Root apex curvature group (from left to right, apical
curvatures of 30°, 15°, and 5°); Type | to IV bone group (from left to right: Type | to IV bone); Alveolar bone loss group (from left to right: bone loss as
none, 1/3, 1/2, and 2/3 bone loss); FE, finite element; PDL, periodontal ligament.

tooth-PDL complex during torsion, and the effect of torsion IV bone, alveolar bone loss and root length groups) based on the
speed on the optimal torsion angle (OTA). Furthermore, we  PDL failure criteria and observed the differences in stress
determined the OTA and its variation pattern under five distribution to clarify the feasibility of the torsion method.
anatomical models (root width, root apex curvature, Type I to  The reliability of our results is further validated through
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TABLE 1 Materials properties of the finite element model.

Coefficients

Material

10.3389/fbioe.2024.1479751

Reference

Cortical bone Elastic E = 13,700 MPa, v = 0.26

p = 1,400 kg/m’

Trabecular bone Elastic E = 1,370 MPa, v = 0.3

p = 1,400 kg/m’

Elastic E =231 MPa, v=0.3

p = 1,400 kg/m’

Low-density trabecular
bone

Tooth Elastic E = 19,600 MPa, v = 0.30

p = 2,200 kg/m’

Elastic E = 0.667 MPa, v = 0.45

p = 1,100 kg/m’

Periodontal ligament

Viscoelastic G; = 0.0897, G, = 0.1093
G; = 0.7852 MPa
71 = 0.1548, 7, = 0.0038

73 = 3,521 x 107°

Tanne et al. (1991); Chatvanitkul and Lertchirakarn (2010); Morgan et al. (2018)

Geramy (2000); Chatvanitkul and Lertchirakarn (2010); Tsouknidas et al. (2016); Tribst et al.

(2024)

Tsouknidas et al. (2016)

Tanne et al. (1991); Chatvanitkul and Lertchirakarn (2010)

Tanne et al. (1991); Rudolph et al. (2001); Toms et al. (2002)

Chatvanitkul and Lertchirakarn (2010); Toms et al. (2002)

Note: E: elastic modulus; v: Poisson’s ratio; p: density.
G(t) = Gie ™! + Gye ™ + Gse ™!, (G: reduced relaxation function; T: decay constant).

clinical case data. The findings of this study can enhance our
understanding regarding the biomechanical foundation of
torsion extraction in clinical practice and provide a novel
strategy to advancing minimally invasive extraction technology
and refining extraction instruments.

Materials and methods

The study protocol was approved by the Ethics Committee of the
School of Stomatology, Lanzhou University (No. LZUKQ-2024-046)
and was performed in accordance with the guidelines of the
Declaration of Helsinki (2013 revision). The written informed
consent was obtained from subjects for each CBCT data. The
study design is illustrated in Figure 1A and element and node
statistics are shown in Supplementary Tables S1, S2.

Basic geometry modeling

CBCT (KAVO, Germany, 120 kVp, 5 mA, 0.3 mm) images data
from a 22-year-old female with healthy periodontal tissue, no
impacted opsigenes, no extra teeth, and an intact and regular
dentition were selected. Mimics (21.0, Materialise, Belgium) and
Geomagic Wrap (2021, 3D Systems, SC, United States) were utilized
to create individual three-dimensional solid models for the maxilla,
mandible, and all 28 teeth, respectively. SolidWorks (2017, Dassault
Systemes, France) was employed to create PDL models with a
thickness of 0.25 mm (Qian et al., 2009; Begum et al, 2015;
Cattaneo and Cornelis, 2021). The parts of the teeth, PDL,
maxilla, and mandible were assembled separately without
interference, and a geometric model was obtained (Figure 1B).
Then Ansys Workbench (2019R2, Ansys, PA, United States) was
imported to set the teeth-PDL and PDL-alveolar bone as a bonded
contact relationship and assigned the material properties through
parameters (Table 1). (Chatvanitkul and Lertchirakarn, 2010; Tanne
et al.,, 1991; Morgan et al., 2018; Tribst et al., 2024; Geramy, 2000;
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Tsouknidas et al., 2016; Toms et al., 2002; Rudolph et al., 2001)
Given the irregular shape of the model, the mesh was primarily
composed of hexahedrons, supplemented by tetrahedrons. After
mesh independent study, the mesh was divided into 0.7 mm size.
The sphere that shared the center with the tooth axis further refined
the grid of alveolar bone around the teeth. Based on the
aforementioned foundational model construction process, built
the following grouped models.

Modeling of the type | to IV bone group

Based on the differences in the thickness and components of
cortical and trabecular bone (Supplementary Table S3), the jaw is
categorized into four bone types according to previous studies:
Type I bone primarily consists of cortical bone; Type II bone
comprises a 1.5 mm thick external layer of cortical bone and an
internal layer of trabecular bone; Type III bone features an outer
layer of cortical bone with an inner layer of 0.75-mm-thick
trabecular bone; and Type IV bone is composed of a 0.75 mm
thick outer layer of cortical bone and internal low-density
trabecular bone (Morgan et al., 2018; Tribst et al., 2024). The
initial step involved offsetting the processed jaw bone model as a
whole using Geomagic Wrap, with the thickness determined by
the bone type. This process yielded a preliminary trabecular bone
model. Following this, both the original jaw bone model and the
trabecular bone model were imported into SolidWorks to
generate the cortical bone model. The obtained models of
cortical bone, trabecular bone, teeth, and PDL were assembled
and examined to confirm that there was no interference between
the models, and the Type I to IV bone group models were
obtained (Figure 1E). Studies have demonstrated that human
jaws are predominantly composed of type II bone (53.33%),
followed by Type III bone (26.67%) (Geramy, 2000).
Following the principle of controlling variables, we subdivided
groups of root width, root apex curvature, alveolar bone loss, and
root length, based on Type II bone.
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Modeling of the root width group

The normal tooth models were imported into Geomagic Wrap,
we measured the cervical root widths using the Distance tool in
Geomagic Wrap and created models of different root widths after
deleting the excess according to the desired width, resulting in tooth
models with original widths of 2/5, 3/5, and 4/5, and the root cervical
width-to-thickness ratio (mesial and distal diameter/buccolingual
diameter) was measured. The rest of the procedure was the same as
for the basic model (Figure 1E).

Modeling of the root apex curvature group

Apex curvature is a common anatomical variation of teeth. The
Unigraphics NX (10.0, Siemens PLM Software) was used to determine
the position of the apical third of the root. The original angle of the root
tip at this location was measured. Subsequently, the apical third of the
root was selected as the moving object and the tip was bent in the distal
direction to obtain apical curvature models of 5°, 15°, and 30,
respectively. The combined perfect models were then imported into
Geomagic Wrap, where subsequent steps followed the procedures
outlined in the basic model above (Figure 1E).

Modeling of the alveolar bone loss group

Age-related physiological alveolar bone resorption occurs,
(Baima et al., 2022), and factors such as smoking, periodontal
disease, and systemic illnesses have been linked to pathological
alveolar bone loss (Albandar, 1990; Yu X et al., 2022). To discern
the impact of alveolar bone loss on OTA, we modeled teeth with no
loss of alveolar bone and with bone losses of 1/3, 1/2, and 2/3 of the
root length. The root length was measured using the Distance tool
within Geomagic Wrap from the tooth cervix to the apex. The
Deform Region tool was employed to define the corresponding
alveolar crest area. Subsequently, the alveolar crest was reduced
based on each root’s length to create the absorption model. The
remaining steps were the same as the basic model (Figure 1E).

Modeling of the root length group

In Geomagic Wrap, the root length was adjusted based on the root
length measurement data, resulting in the creation of the root length
variation model using the basic method mentioned above (Figure 1E).

Construction of the theoretical clinical
validation model

In this study, CBCT images were selected from patients over
20 years at the Department of Radiology, Lanzhou University
Stomatology Hospital, Lanzhou, China, from June 14 to 30 June
2024, and a total of 31 teeth were enrolled. The inclusion criteria
required subjects to possess a minimum of 28 teeth (excluding third
molars) and for these teeth to be free from dental conditions such as
caries, defects, and malformations. The data of root length, root
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width, root apex curvature, root perimeter six-point cortical bone
thickness (Supplementary Figure S1), and alveolar bone height
absorption for the teeth under study were obtained based on the
CBCT. Three clinicians with 5 years of clinical experience grouped
the teeth based on criteria including Type I to IV bone group,
alveolar bone loss group, root apex curvature group, root length
group, and root width group. Modeling was performed using the
same methods as described above (Supplementary Table S4).

Loading and boundary conditions

Due to the high symmetry of homonymous teeth in the same jaw,
we selected right-side teeth for analysis. Although applying a force couple
at the midpoint of the clinical crown on the buccal and lingual sides of
the tooth for mechanical analysis was feasible, a uniform matching
relationship between the magnitude of the force couple and the torsion
angle could not be achieved. Therefore, using displacement loading was
considered more appropriate and accurate. In this study, rotational
loading of 15° (maxillary teeth in counterclockwise, mandibular teeth in
clockwise) was set to be carried out independently along the long axis of
the teeth (Figure 1C). The sub-steps settings were set ensuring that the
change in time and the torsion angle corresponded linearly in the
analysis process, that is, the torsion process was a uniform motion so that
the stress value of the corresponding angle at any time in the torsion
process could be obtained.

In this process, the upper area of the maxillary model was fixed, and
the mandible model was fixed from the surface of the condyle on one
side along the ascending mandibular branch, the inferior border of the
mandible, and the ascending mandibular branch of the contralateral
side to the surface of the contralateral condyle to ensure that the jaws
were stationary during tooth torsion (Figure 1D).

Failure criterion

We assumed that the PDL would be completely torn when the
minimum von Mises stress in the PDL model exceeded the
established threshold of 0.026 MPa. (Tribst et al, 2024; Lee,
1965; Lee et al., 2018; Youssef et al, 2020). Furthermore, we
monitored 0, and o, in the tooth root area to ensure they
did not exceed the ultimate tensile strength (52.9 MPa) and ultimate
compressive strength (260 MPa), respectively. (Morgan et al., 2018;
Lee, 1965; Watts et al., 1987; Hou and Tsai, 1997). The specific angle
at which these conditions were met—representing the minimum
angle of unidirectional rotation around the tooth’s long axis
necessary to fully tear the PDL—was identified as the OTA. This
angle satisfies the established failure criteria for tooth extraction.

Results
Stress concentrates near the alveolar crest
on the tooth surface (molars at
root furcation)
In the upper jaw (Ul, U2, and U3), stress was the most

concentrated on the labial tooth cervix. However, in the lower
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FIGURE 2

The maximum principal stress distribution of the tooth during 5°-15 torsion. U: upper jaw; L: Lower jaw.

jaw (L1, L2, and L3), this stress was predominantly concentrated on
the mesial-distal tooth cervix. In upper premolars (U4 and U5), the
stress was concentrated on the mesial-distal tooth cervix. A similar
pattern was observed in lower premolars (L4 and L5), with stress
being concentrated at the mesial-distal tooth cervix. The stress of
U6, U7, L6, and L7 was concentrated at the root furcation. The
minimum stress point for all the aforementioned teeth was located at
the root apex (Figures 2, 3). Except for U6 and U7 where the PDL
exhibited stress concentration at the palatal root apex, the remaining
PDL  behaved their teeth
(Supplementary Figure S2).

similarly ~ to respective

Narrow roots require a large OTA

We focused on single, flat-rooted teeth to construct and analyze
tooth models with original root widths reduced to 4/5, 3/5, and 2/
5 of their full size. As the root width decreased, all models required a
larger OTA to achieve complete PDL rupture (Figure 4C). No root
fractures occurred when the root width was reduced to 3/5 of its
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original size. However, reducing the root width to 2/5 of the original
size resulted in fractures in all roots before the incidence of complete
PDL rupture (Figure 4B). With the narrowing of the root, stress
concentration on the teeth gradually increased, shifting from the
tooth surface near the alveolar crest to the middle of the root,
whereas the apical region continued to experience the least stress
(Figure 4A; Supplementary Figure S3).

Large root apex curvature necessitates a
small OTA

We included six teeth, each modeled with apical curvatures of 5°,
15°, and 30°. We observed that as the apical curvature increased, the
required OTA tended to decrease for all models (Figure 5C). None of
the roots experienced fractures when the PDL was completely
ruptured (Figure 5B). During torsion, the maximum stress was
consistently located at the alveolar crest, whereas the minimum
stress was centered on the root shifted from the apex to the curved
convex surface (Figure 5A; Supplementary Figure S4).
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FIGURE 3

The minimum principal stress distribution of the tooth during 5°-15° torsion. U: upper jaw; L: Lower jaw.

OTA increases from type | to IV bone

We selected four teeth from the anterior and premolar regions of
both the upper and lower jaws, representing bone Types I through
IV. These types indicate a progression from denser to less dense
bone, characterized by decreasing cortical bone thickness and
trabecular bone density. As we transitioned from Type I to Type
IV bone, we observed a consistent increase in the required OTA
across all models (Figure 6C). None of the teeth experienced
fractures when the PDL was completely torn (Figure 6B). The
stress distribution observed aligned with the predictions of the
basic model (Figure 6A; Supplementary Figure S5).

Alveolar bone loss increases the
required OTA

We selected four teeth and categorized them based on the extent
of alveolar bone loss into four groups, namely none, 1/3, 1/2, and 2/
3, for modeling purposes. As the degree of alveolar bone loss
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increased, the required OTA also showed a consistent upward
None of the teeth
experienced fractures when the PDL was completely torn
(Figure 7B).
concentration consistently occurred on the tooth surface near the

trend across all models (Figure 7C).
In addition, with increasing bone loss, stress

alveolar crest (Figure 7A; Supplementary Figure S5).

Long roots require a small OTA

To eliminate the effect of the maxillary sinus on our root
elongation model, we simulated the roots of lengths 2/3 of the
original, original length root, and elongation by an additional 1/3.
We observed a decreasing trend in the OTA as the root length
increased (Figure 8C). No tooth fractures occurred in any of the
groups when the PDL was completely ruptured (Figure 8B).
Throughout the variations in length, the stress concentration
remained primarily on the tooth surface near the alveolar crest,
whereas the minimum stress consistently appeared at the root apex
(Figure 8A; Supplementary Figure S7).
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(A) Principal stress distribution in teeth of root apex curvature group at the optimal torsion angle. (B) Principal stresses on root apex curvature
group. (C) The optimal torsion angle of root apex curvature group. C-U/L: Root Apex Curvature group-Upper/Lower jaw.
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(A) Principal stress distribution in teeth of Type | to IV bone group at the optimal torsion angle. (B) Principal stresses on Type | to IV bone group. (C)
The optimal torsion angle of Type | to IV bone group. B-U/L: Type | to IV Bone group-Upper/Lower jaw.

Theoretical analysis of clinical case data

The PDL was successfully ruptured in all cases, none of which
exhibited root fracture when subjected to torsion. Notably, 74% of
these cases fell within the OTA range, aligning with the patterns
observed under various anatomical conditions. This consistent
pattern provides a clinical rationale for using this method.
Furthermore, stress distribution observed in the teeth and PDL
corresponded closely with the patterns described in our anatomical
structure models (Figure 9; Supplementary Table S4).

Discussion

In this study, we utilized finite element analysis to elucidate the
stress distribution within the tooth-periodontal complex during the
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torsion process of tooth extraction. By different anatomical
conditions of the tooth and periodontal structures, we identified
change patterns and ranges of OTA, thereby confirming the safety
and broad applicability of the torsion method.

Force application in tooth extraction: impact
on the stress state of the tooth-PDL-alveolar
bone complex

In the context of tooth extraction, PDL tearing is critical in
facilitating tooth dislocation (Qian et al., 2009). Traditional dental
forceps utilize a combination of swinging, twisting, and traction
forces to tear the PDL. These methods are governed by unique
mechanical principles that yield varying outcomes when combined
with minimally invasive extraction instruments (Coulthard et al.,
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2014). The swing force relies on the principle of alveolar bone
flexibility, involving repeated compression and expansion of the
alveolar socket, tearing the PDL in the direction opposite to that of
the applied force and loosening the tooth for extraction (Ojala and
Lehtinen, 1980). However, the swing method applies pressure to the
buccal and lingual alveolar bone, it is easy to cause the height of the
buccal and lingual alveolar bone wall to be destroyed. In cases
involving the lingual side of the mandible or older patients with
thinner bone plates due to resorption, significant deformation of the
bone plate is more likely to cause alveolar bone fractures (Baniwal
et al,, 2007). By contrast, the twisting method involves inserting
dental forceps into the tooth cervix and gently twisting them along
the tooth’s long axis to effectively disrupt the horizontal group in the
PDL (Menchini-Fabris et al., 2022). Torsion minimizes the excessive
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enlargement of the alveolar socket, thus reducing postoperative
complications (Lehtinen and Ojala, 1980; Al-Khateeb and
Alnahar, 2008). Moreover, our stress distribution analysis
indicated that torsion led to a more uniform stress distribution
across the root surface, effectively reducing the risk of inadvertent
root fractures. Some studies applied torque to teeth during
orthodontic treatment, and the tooth-periodontal ligament
complex exhibited a stress distribution pattern similar to that
observed in our study (Cheng Y et al.,, 2022; Zhu GY et al,, 2023;
Meng X et al., 2023). Given these advantages, the torsion method has
wider application potential in single-rooted teeth. Further
understanding of stress distribution in different anatomical
structures, along with mastering the pattern of OTA, will define
the scope of the torsion method’s application clearly.
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(A) Principal stress distribution in teeth of root length group at the optimal torsion angle. (B) Principal stresses on root length group. (C) The optimal

torsion angle of root length group. L-L: Root Length group-Lower jaw.

Impact of anatomical structure on
extraction feasibility

In clinical and dental education, the torsion method has been
limited to flat and curved roots (Hupp et al., 2018). We analyzed the
performance of the torsion method on flat and curved roots with
varying degrees of variability and found interesting results. Flat-
rooted teeth have more pronounced root surface depressions on the
mesial and distal surfaces, where stresses are mainly concentrated.
As the root narrows, the stress concentration area gradually moves
downward. However, flatter single-rooted teeth (L1, L3) in the full
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dentition fractured only at 2/5 of the original width (width-to-
thickness ratios of 0.34). Flatter roots required a greater angle of
twist to tear all the PDL, creating greater stresses in progressively
weaker areas and leading to fractures. Notably, this extreme model is
rare in clinical (Martins et al., 2020; Nelson, 2019). Based on these
results, we concluded that single-rooted teeth with root width-to-
thickness ratios of 0.42 (3/5 width) or more can be extracted using
the twisting method. In studying curved-rooted teeth, we found that
stress concentration was not at the curved part of the root but at the
cervical part of the tooth. As the bending angle increased, stress in
the apical region rose but remained much lower than in the cervical
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region. This indicates that the torsion method is still viable for teeth
with apical bending angles of 30° or less. This optimizes the
mechanical efficiency of the extraction and reduces the potential
risk of root fracture.

In the analysis of alveolar bone type, bone loss, and root length
groups, changes in periodontal tissue anatomy affect the OTA. From
Type I to Type IV bone, cortical bone thickness and trabecular bone
density decrease, and the loss of alveolar bone and shortening of the
root reduce PDL area. These factors diminish binding forces in the
alveolar socket, allowing less stress on the tooth-PDL-bone complex
for the same torsional force, enabling a greater twisting angle.

Theoretical analysis of clinical case data

In clinical settings, individual variations among patients directly
affect the choice of the extraction method. These differences
encompass the patient’s dental and periodontal conditions
compared with theoretical simulations. Therefore, establishing
clinically relevant case models and calculating the OTA are
valuable for determining the applicability of the standard OTA
range in diverse clinical scenarios. After CBCT-based modeling
analysis of clinical cases, we found 74% of results within the
standard OTA range, while 26% were not applicable. We

considered that the reason for the deviation could be the
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concomitant alteration of the tooth by multiple influencing
The OTA
The anatomical

factors or unexplored anatomical variations. is

determined based on a standard model.
morphology of each tooth is highly individualized. For example,
the bending direction of the root apex may deviate, and root surfaces
can have irregular depressions or protrusions. These factors can
cause stress imbalances during torsional loading, leading to shifts in
the optimal torsional angle. Moreover, in the clinical CBCT data
modeling verification, the anatomical conditions of the tooth and
periodontium reflect the patient’s actual situation. Although we
categorized the typical anatomical factors of these teeth, multiple
factors can still simultaneously affect the results, causing slight
deviations. Our findings indicate that these deviations are
minimal (less than 2.46°). The teeth in all 31 cases were safely
extracted without root fractures, suggesting that the OTA range
could bring meaningful clinical guidance.

The success of the torsion method on single-rooted teeth
prompted interest in its application to multiple-rooted teeth. We
found that the torsion method produced significant stress
concentrations in the root bifurcation region during loading,
under different anatomical conditions (Supplementary Figures
S8-S12). Anatomical studies have revealed the presence of
multiple ridges, peaks, and pits in the root furcation region,
resulting in a complex interplay between convex and concave
features. (Svirdstrom and Wennstrom, 1988; Brand et al., 2023).
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Stress concentrations in these weak regions increase the risk of root
fracture. Therefore, caution is needed when applying forces to
multiple-rooted teeth with either method.

In tooth extraction under clinical settings, torsion force is often
applied alongside traction force, allowing tooth dislocation without
tearing all the PDL by twisting. In our study, the loading process
involved only the torsion force, with complete PDL tearing as the
criterion for judgment. Therefore, the obtained OTA resulted in a
larger OTA than typically required in clinical, which is the
maximum rotational range of the tooth. Because of the
pioneering nature of this study, direct comparison with the
previous reports is not possible. We believe that these results
underscore the value of the torsion method, which provides clear
guidance for its wider adoption in clinical practice. However, this
study has limitations. We did not analyze the combined effects of
multiple factors on the torsion angle, and more complex clinical
scenarios need further exploration, there may be other influential
anatomical variations not considered. Accurately quantifying the
torsion angle using a specific tool or method in clinical practice
remains a challenge. The clinical application for the torsion method
can be further refined by more extensive clinical studies. Future
research efforts should focus on expanding clinical validation and
developing precise, minimally invasive, and quantifiable extraction
tools or digital devices to meet different clinical situations.

Conclusion

In this study, we performed biomechanical analysis to replicate
PDL tearing by using the torsion method. We have expanded the
application of the torsion method: single-rooted teeth with root
width-to-thickness ratios of >0.42 and apical curvatures of <30°are
suitable for extraction using the torsion method. Due to significant
stress concentration at the root bifurcation of multi-rooted teeth
during torsion, using a single force for extraction is not
recommended. Furthermore, we elucidated varying patterns in
torsion angles across various teeth and periodontal anatomical
structures that the decrease in PDL area necessitated a larger
angle for complete tearing. This study confirms the viability of
the torsion method for minimally invasive tooth extraction, laying
the theoretical foundation for its clinical application.
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