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Introduction: The study aims to predict tooth extraction decision based on four
machine learning methods and analyze the feature contribution, so as to shed
light on the important basis for experts of tooth extraction planning, providing
reference for orthodontic treatment planning.

Methods: This study collected clinical information of 192 patients withmalocclusion
diagnosis and treatment plans. This study used four machine learning strategies,
including decision tree, random forest, support vector machine (SVM) andmultilayer
perceptron (MLP) to predict orthodontic extraction decisions on clinical examination
data acquired during initial consultant containing Angle classification, skeletal
classification, maxillary and mandibular crowding, overjet, overbite, upper and
lower incisor inclination, vertical growth pattern, lateral facial profile. Among
them, 30% of the samples were randomly selected as testing sets. We used five-
fold cross-validation to evaluate the generalization performance of the model and
avoid over-fitting. The accuracy of the fourmodelswas calculated for the training set
and cross-validation set. The confusion matrix was plotted for the testing set, and
6 indicators were calculated to evaluate the performance of the model. For the
decision tree and random forest models, we observed the feature contribution.

Results: The accuracy of the four models in the training set ranges from 82% to
90%, and in the cross-validation set, the decision tree and random forest had
higher accuracy. In the confusion matrix analysis, decision tree tops the four
models with highest accuracy, specificity, precision and F1-score and the other
three models tended to classify too many samples as extraction cases. In the
feature contribution analysis, crowding, lateral facial profile, and lower incisor
inclination ranked at the top in the decision tree model.
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Conclusion: Among the machine learning models that only use clinical data for
tooth extraction prediction, decision tree has the best overall performance. For
tooth extraction decisions, specifically, crowding, lateral facial profile, and lower
incisor inclination have the greatest contribution.

KEYWORDS

orthodontic treatment, tooth extraction decision, decision tree, machine learning, cross
validation

1 Introduction

Whether to extract teeth is one of the most important
decisions in orthodontic treatment planning. Its frequency has
fluctuated over the years, the extraction percentage was 30% in
1953, reached 76% in 1968, and declined to 28% in 1993, this
variation was due to considerations in outcome stability, facial
esthetics, and technological changes (Proffit, 1994). To date,
scholars have been studying and exploring orthodontic
extraction decisions to obtain healthier, more stable and more
esthetic orthodontic outcomes (Jackson et al., 2017; Proffit,
1994). Occlusion, stability and esthetics are the three goals for
a successful treatment plan, but no single rule can give the
orthodontist a simple way to decide how to reach these goals,
the extraction decision is multi-factorial, involving crowding
(Janson et al., 2014; Boley et al., 2003), overjet and overbite
(Janson et al., 2003), Bolton ratio (Hasija et al., 2014), Angle and
skeletal classifications (Ker et al., 2008), transverse dimension
(midline discrepancy, facial asymmetries) (Chang et al., 2011),
incisors angulation, presence of root resorption (Maués et al.,
2015), soft-tissue profile (Konstantonis et al., 2013), etc. The
extraction plan embodies the experience and wisdom of
orthodontists, which is difficult and confusing for young or
general practitioners (Liu et al., 2021).

With the popularization of big data and artificial intelligence, more
and more studies are trying to use machine learning algorithms to assist
in extraction decision-making (Khanagar et al., 2021). Commonly used
machine learning methods in decision prediction include linear
regression (Köktürk et al., 2024), tree models (Köktürk et al., 2024;
Etemad et al., 2021; Suhail et al., 2020), support vector machines
(Köktürk et al., 2024), neural networks (Köktürk et al., 2024; Jung
and Kim, 2016; Li et al., 2019; Xie et al., 2010), etc. from simple to
complex. They usually includedmodelmeasurements and cephalometric
data to train the models. Different validation strategies for over-fitting
were applied in the previous studies. We took categorical variables that
are often recorded in clinical diagnosis, so we chose tree models, support
vector machines, and neural networks. Since the number of variables in
this study is not very large, we hope to include features to the maximum
extent, so we chose the random forest while also trying the decision tree.

The current study aimed to predict tooth extraction decision based
on fourmachine learningmethods and analyze the feature contribution.
This study invited senior specialists of the orthodontic department of
Shanghai Stomatological Hospital to note down the diagnosis and tooth
extraction plan of the patients, and applied four machine learning
method for prediction of extraction decision-making. We used cross-
validation to measure the generalization ability of the model and avoid
over-fitting, and calculated feature contribution to explain the key
variables that clinicians value when determining extraction planning.

2 Materials and methods

2.1 Data collection

The clinical materials were collected from consecutive patients
visiting the department of orthodontics of Shanghai Stomatological
Hospital from 2018 to 2020, including pre-treatment plaster models,
clinical examination data, and treatment plans for malocclusion.
Plaster models were scanned and stored in STL format.

Two senior doctors were asked to fill in a standardized form to
record the patient’s Angle classification, skeletal classification, maxillary
and mandibular crowding, overjet, overbite, upper and lower incisor
inclination, vertical growth pattern, lateral facial profile. Angle’s
classification, crowding, overbite and overjet were measured from
dental models. And lateral facial profile was observed from facial
photographs. Skeletal classification, upper/lower incisor inclination,
and vertical growth pattern were measured in the cephalometric
radiographs, using Steiner analysis (SNA SNB ANB U1-SN U1-NA
L1-NB MP-SN), Tweed analysis (FMA IMPA FMIA), Wit’s appraisal,
Ricketts’s analysis (lower lip to E plane). Experts’ decisions were
comprehensive judgments based on the combination of objective
measurement indicators and clinical observations.

As for the extraction decisions, only the consensus of the two
experts was recorded, otherwise a third expert was invited and the
majority opinion prevailed. An endodontic expert was invited to
evaluate the preservation value of the residual crown. We marked
the non-extraction cases, and then for the extraction cases, we recorded
the specific teeth that are to be extracted, although the prediction of the
extraction pattern was not involved in this study. The research plan has
been approved by the Institutional Review Board of Shanghai
Stomatological Hospital [Hu Kou Fang Lun Shen (2017) No. 0005].
Written informed consent was obtained from all the participants.

2.2 Inclusion and exclusion criteria

(1) Complete permanent dentition;
(2) No congenitally missing teeth or impacted teeth;
(3) The tooth extraction in the treatment plan is the classic

extraction mode, that is, symmetric extraction of premolars;
(4) Complete pre-treatment model, clinical examination data and

orthodontics treatment plan information;
(5) Informed consent signed by the patient or the parent (for

teenager under 18).

In total, 192 patients with complete information were included,
among whom, 30%were randomly selected as testing set and the rest
were divided as training set (Figure 1).
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2.3 Model training

Four machine learning frameworks were applied for prediction
of extraction and non-extraction planning, including decision tree
(DT), random forest (RF), support vector machine (SVM) and
multilayer perceptron (MLP) (Figure 1).

Decision Trees are built by continuously splitting the data into
binary nodes that acquire the largest information gain until the
terminal node outputs the predictions of classification (Suhail
et al., 2020).

Random Forest is an ensemble of decision trees. Each decision
tree performs the same classification prediction individually, and the

FIGURE 1
Flowchart of data allocation, model training, cross-validation and model testing.

FIGURE 2
Confusion matrix and six measurements for evaluation of model performance (positive cases represent extraction classification and negative cases
represent non-extraction classification).
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final classification, or output, is determined by taking the most
common predictions for discrete variables or the average of
predictions for continuous variables (Etemad et al., 2021). The
number of trees was set to 1,000 in our study.

Support Vector Machine (SVM) can efficiently perform a non-
linear classification using what is called the kernel trick, representing

the data only through a set of pairwise similarity comparisons
between the original data points using a kernel function, which
transforms them into coordinates in the higher dimensional feature
space (Leavitt et al., 2023).

Multilayer Perceptron (MLP) is one of the simplest forms of
artificial neural network (ANN), composed of input layer, output
layer and hidden layer(s). Each layer consists of multiple nodes,
called neuron, fully connected with nodes at adjacent layers (Etemad
et al., 2021).

Due to the limited number of features, we removed data
containing missing values. And convert continuous data into
discrete data using the commonly used classification in
orthodontics. Since age and gender nearly had no contribution
(0%) to the model in the preliminary experiment, they were
removed from the features in the formal study. Finally, nine
feature variables were Angle’s classification, skeletal classification,
crowding, overbite, overjet, upper and lower incisor inclination,
vertical growth pattern and lateral facial profile (Table 1) and one
classification variable was extraction/non-extraction decision.

Since there is a difference between the proportion of tooth
extraction cases (144 cases) and non-tooth extraction cases
(48 cases) in the dataset, in order to deal with the problem of
imbalanced classification, we adopted the threshold moving method
(Collell et al., 2018). According to the ROC curve of the training set,
we select the optimal classification threshold to prevent the model
from being “occupied” by the classification with more data.

2.4 Cross-validation

Cross-validation is often used to measure the generalization ability
of a model (Jonathan et al., 2000; Karkkainen, 2014). In order to ensure
adequate number of samples in the cross-validation set, this study used
a five-fold cross-validationmethod. It divided the dataset into five parts,
taking turns to use four of them as training set and one as validation set.
In each validation, the four training sets will generate a model, and the
validation set will be input into the model for classification task. The
proportion of the number of times the classifier decision matches the
ground truth to the total number of tests is calculated as the accuracy of
each validation. The average accuracy of the five validations is taken as
the accuracy of a five-fold cross-validation.

2.5 Model testing

In the dataset, 30% (58 samples) of all patients were randomly
selected as the testing set. The above four machine learning models
were used for testing. The results of the testing set were represented
by confusion matrix, and the following indicators were
calculated (Figure 2):

• Accuracy: correctly classified data points in the testing set.
• Balanced accuracy: the average of sensitivity and specificity.
• Sensitivity/recall: positive data points correctly classified
as positive.

• Specificity: negative data points correctly classified as negative.
• Precision: data points classified as positive that are
actually positive.

TABLE 1 Definitions of nine feature variables.

Variables Labels Definitions

Angle’s classification 1 Class I

2 Class II

3 Class III

Skeletal classification 1 Class I

2 Class II

3 Class III

Crowding 0 Less than 2 mm

(Maximum of upper and lower crowding) 1 2–4 mm

2 4–8 mm

3 Over 8 mm

4 Spacing

Overbite 0 Less than 1/3 overlap

1 1/3–1/2 overlap

2 1/2–2/3 overlap

3 Over 2/3 overlap

4 Open bite

Overjet 0 Less than 3 mm

1 3–5 mm

2 5–8 mm

3 Over 8 mm

4 Edge to edge

5 Cross bite

Upper incisor inclination 1 Buccal inclination

2 Vertical

3 Lingual inclination

Lower incisor inclination 1 Buccal inclination

2 Vertical

3 Lingual inclination

Vertical growth pattern 1 Hyperdivergent

2 Normal

3 Hypodivergent

Lateral facial profile 1 Convex

2 Straight

3 Concave
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• F1-score: the harmonic mean of precision and sensitivity.
Precision and sensitivity may affect each other. Although it
is ideal for both to be high, but in reality, it is often the case that
the precision is high and the sensitivity is low, or otherwise.
Therefore, F1-score is an indication of both at the same time.

We also plotted the receiver operating characteristic (ROC)
curve to visually demonstrate the performance of the model and
calculated the area under the curve (AUC).

2.6 Feature contribution

Feature contribution in tree models can be measured by the
number of times a feature participates in building the tree and the
cumulative value of information gain when it is used as a split node.
In the process of building a tree, the more times the feature is used to
split nodes, the more important role the feature plays in the decision
process. Cumulative value of information gain represents the
amount of reduction in information entropy when the feature is
used for node splitting. The greater the information gain, the greater
the contribution of the feature to improving the predictive ability of
the model. In addition, early participation of a feature (at the upper
nodes of the tree) is usually considered more important than late
participation and the cumulative sum was calculated in a weighted
manner to reflect the contribution of the features.

3 Results

3.1 Descriptive statistics

The dataset of this study includes 48 non-extraction cases and
144 extraction cases. The proportion of each feature variables is
shown in Figure 3.

Since crowding often changes in similar directions in the upper
and lower dentitions, we combined it into one variable-crowding, by
calculating the maximum of crowding in upper and lower
dentitions. However, the inclination of the upper and lower
anterior teeth can appear completely opposite trends, such as
buccal inclination in upper incisor and lingual inclination in
lower incisor, so they were considered separately in this study.
Open bite and deep overbite reflect different degrees of vertical
discrepancy of the upper and lower anterior teeth in different
directions, so they were combined into one variable as overbite
(Table 1; Figure 3).

3.2 Evaluation of model accuracy

The accuracy of the four models in the training set and cross-
validation set is shown in Figure 4. The accuracy of the four models
in the training set ranges from 80% to 93%, and in the cross-
validation set, the decision tree and random forest had higher
accuracy. We can evaluate the generalization ability of the model
by comparing the difference between the accuracy of cross-
validation set and training set. Generally, over-fitting is often
seen if the accuracy in the cross-validation set is significantly
lower than that in the training set, but there is not a definite
border (Xu and Goodacre, 2018). In this study, random forest
and SVM showed a tendency of, but not absolute, over-fitting.
The performance of decision tree and MLP was acceptable, and
the accuracy of decision tree was greater than that of MLP.

For the testing set, we list the confusion matrices of the four
models, in which, positive cases represent extraction classification
and negative cases represent non-extraction classification (Figure 5).
In the random forest and SVM, the accuracy of the testing set was
also significantly lower than the training set (Figures 4, 6). Among
the performance of these four models, the decision tree showed the
best overall prediction performance with the best accuracy, balanced

FIGURE 3
Proportion of each feature variables.
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accuracy, specificity, precision and F1-score (Figure 6). It is worth
noting that in a more detailed analysis, RF and MLP showed a low
specificity, indicating that they tended to classify too many non-
extraction cases into extraction group (Figure 6).

From the ROC curve, we can see that the decision tree model
performs best, followed by SVM, and MLP is the weakest (Figure 7).

3.3 Evaluation of feature contribution

The tree model has strong interpretability and is significantly
better than support vector machines and neural networks. In the
decision tree model, crowding is the most important indicator for

tooth extraction (30.20%), followed by lateral facial profile (26.00%),
lower incisor inclination (13.30%), overbite (9.20%), upper anterior
lip inclination (8.10%), and skeletal classification (7.30%) (Figure 8).
In the random forest model, the most important indicator is lateral
facial profile (29.4%), followed by overbite (6.80%), crowding
(11.90%), upper (10.9%) and lower incisor inclination (10.20%),
vertical growth pattern (7.90%), etc. (Figure 8).

Figure 9 shows one of the decision tree models generated in this
study, which facilitates intuitive analysis of the specific role of each
feature. The feature selection standard of the decision tree in this
study is set to information gain (entropy). Entropy represents the
uncertainty of the information of the node, taking a value between
0 and 1. The larger the entropy, the greater the uncertainty. That is to

FIGURE 4
Accuracy of the four machine learning models in training sets, cross-validation sets and testing sets.

FIGURE 5
Confusion matrix of the testing sets of the four machine learning models.
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say, for the training set of this tree, the closer the entropy is to 0, the
greater the confidence of this classification.

The root node, or 0-layer node, used in the tree in Figure 9 are
lateral facial profile, upper and lower incisor inclination, crowding,
overbite, vertical growth pattern, skeletal classification. The root
node is the lateral facial profile. The model is divided into two
categories according to straight, convex and concave lateral facial
profile. However, it is unable to make a tooth extraction prediction
based on the lateral facial profile alone, so node splits into two
branches as first-layer nodes. A more detailed analysis shows that
the most commonly used feature was crowding (grey box in
Figure 9), and when we look at the most left and right boxes in
the second-level nodes, if the crowding score was between 1 and 3
(larger than 2 mm crowding), it tends to extraction decision, and
when it is greater than 3 or equal to 4 (spacing), it tends to non-
extraction decision. For vertical growth pattern (orange box in the
third-level node), a score over 2 (hypodivergent) indicates non-
extraction decision. Moreover, Class II and Class III classification
(pink box, scored 2 and 3) points to tooth extraction and buccal
incisor inclination (blue box in the fourth-level node, scored 1)
suggests the tendency to tooth extraction.

4 Discussion

Orthodontic treatment planning embodies experience and
wisdom of orthodontists, and the formulation of tooth extraction
plans is one of the most critical decisions in orthodontic practice,
and it is also one of the biggest challenges for young doctors and
general practitioners (Liu et al., 2021). Although there are many
factors that may influence orthodontic tooth extraction decisions.
For most orthodontic cases, orthodontic experts have relatively
consistent judgments on tooth extraction planning (Suhail et al.,
2020; Xu and Huang, 2002). In this context, it is meaningful to
perform automatic decision-making assisted by machine learning.

Because natural prevalence of different categories of
malocclusion differs among different populations (Lombardo
et al., 2020). At the same time, patients’ motivation to seek

orthodontic treatment also varies. For example, Chinese patients
may have stronger will to correct convex facial profile (Yin et al.,
2014). Therefore, each category of malocclusion in this study cannot
be completely balanced. If the proportion of each category of
malocclusion is calibrated during the inclusion process,
randomization cannot be ensured, and it may be difficult for the
model to adapt to clinical reality.

Classification algorithm is an important technology in data
mining. In this study, the decision tree was very effective in
classifying the sample set. In orthodontic tooth extraction
decisions, random forests usually perform better than decision
trees (Prasad et al., 2022; Etemad et al., 2021). Random forests
may randomly select a certain proportion of features to be included
in each model (Belgiu and Dragut, 2016). When the scale of the
decision tree is too large, it may lead to over-fitting. Therefore, this
study appropriately limited the depth and number of nodes of the
tree during the parameter adjustment process. Random forest is
suitable for most types of datasets, but in this study, no matter how
the parameters are adjusted, random forest still shows some over-
fitting tendency. Neural networks are more suitable for large and
complex datasets. In the analysis of the confusion matrix, RF, SVM
and MLP all showed low specificity (<0.4) at the first experiment,
showing a strong preference to the tooth extraction decision. This
may be attributed to the imbalance of the classification variable of
the dataset. Among the consecutive patients in our hospital, the
number of extraction treatment is larger than non-extraction,
resulting in more positive cases in the testing set. Therefore, we
adopted threshold moving method to select an optimal classification
threshold (Collell et al., 2018). As a result, the specificity improved in
SVM. Still, in RF and MLP models, adding the judgment of the
extraction decision may improve the accuracy, resulting in decision
bias. However, the decision tree shows better discernment of non-
extraction cases. The more complex the model, the greater the
possibility of over-fitting. Decision tree is more resistible to
uneven category in this study. Decision tree is based on
information entropy for classification, so it essentially looks at
the correlation between features and categories. Even if there is
little data in this category, as long as its correlation with the features

FIGURE 6
Performance of the four models in testing set.
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is strong, it will not be misclassified. Random forest has a step of
random sampling of data. If the category distribution is uneven, this
class may not exist in some sub-sampling, which will affect
the results.

There is occasionality in the generation of the model, and high
accuracy in a single test does not mean stable performance of the
model. In order to evaluate the generalization of the model, we
conducted cross-validation. In cross-validation, each sample will
appear once in the validation set, therefore, the model needs to have
good generalization ability for all samples in the dataset in order to
achieve a high average cross-validation accuracy (Jonathan et al.,

2000; Karkkainen, 2014). Xie et al. (2010) used an artificial neural
network model to predict the extraction plan and obtained an
accuracy of 100% in the training set and 80% in the testing set,
indicating over-fitting of the model. Köktürk et al. (2024) used
multiple machine learning methods for tooth extraction decision-
making, and the best algorithm was Gradient Boosted Trees, with an
accuracy of 83.3%. We obtained an accuracy of 81.5% using MLP. Li
et al. (2019) and Jung and Kim (2016) both used deep neural
networks to train tooth extraction prediction models on samples
of 156 and 302 patients, respectively, achieving an accuracy rate of
over 93%, but their study did not specify the validation method they

FIGURE 7
Receiver operating characteristic (ROC) curve and area under the curve (AUC) of the four models in testing set.
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used. However, Köktürk et al. (2024), Etemad et al. (2021) and the
current study also used the MLP method, but none of the accuracy
exceeded 82%. They further divided the dataset into a correctly
predicted group and an incorrectly predicted group according to the
classification results of this preliminary model, and used the same
method to calculate the accuracy, which was improved in both
groups (Etemad et al., 2021). However, such a division has no
clinical implication, and therefore impossible to find the
corresponding external testing set, so it cannot be said that this
result can be generalized. Interestingly, Etemad et al. (2021) found
that the accuracy of the model obtained by using 117 variables did
not improve compared with that using 22 variables. Our study only
used 9 variables and obtained an accuracy exceeding their study.

Suhail et al. (2020), unlike previous studies, significantly reduced the
number of diagnostic features (nineteen) and demonstrated that
finite feature sets and machine learning algorithms can accurately
predict the extraction process. The ensemble of simpler models
outperforms more complex models, like neural network.

There is a huge difference in the tooth extraction rate between
Eastern and Western people. The tooth extraction and correction
rate of Western people is around 10%–30%, much lower than that of
East Asian people (Jackson et al., 2017). Economic, psychological,
physiological and anatomical conditions may cause various
extraction rate and complex influencing factors among different
countries (Del Real et al., 2022), resulting in distinct difficulty of
model training. Del Real et al. (2022) obtained an accuracy of more

FIGURE 8
Feature contribution in decision tree and random forest models.

FIGURE 9
One example of a decision tree generated in our study.
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than 90% in one of their models in a Chilean population, but in their
sample, cases of skeletal class I accounted for 65%, and skeletal class
III only 6%, and the average angle cases were also close to 50%, the
proportion of normal facial type was significantly higher than in
our study.

Tooth extraction plan can be affected by the patient’s own
factors. Some patients strongly resist tooth extraction, which may
lead to the actual number of tooth extraction classifications in the
final included data being less than the number of tooth extraction
classifications that should be, which may be one of the reasons for
the misclassification of the prediction model. Therefore, in this
study, we recorded the experts’ preferred plans rather than the actual
plans in the final dataset to predict the tooth extraction plan.

The interpretability of the tree models significantly outperforms
other models like deep neural networks. Since the decision tree
model worked better in this study, and a tendency of over-fitting
occurred in the random forest, the results of the decision tree should
be referred to in the feature contribution analysis. The most
important indicators of extraction treatment were crowding,
lateral facial profile, and lower incisor inclination. These features
can all reflect the tooth-bone volume discrepancy. On the other
hand, indicators such as Angle’s classification and overjet may
reflect the sagittal discrepancy of maxilla and mandible and does
not influence orthodontic extraction decisions from our study. Li
et al. (2019) found out that upper and lower crowding, and U1-NA°,
are the three most important features. Su et al. (2022) studied the
tooth extraction pattern of patients with skeletal Class II average
angle and deep overjet and showed that deep overjet and distal molar
relationship are the main reasons for tooth extraction in Class II
patients. Guo et al. (2014) founded that lower anterior crowding,
molar relationship, and growth pattern were the three most relevant
influential factors to the extraction decisions for Angle’s class II
division 1 malocclusions. The above three studies all found that
crowding is the most important influencing factor in determining
tooth extraction decisions, but other factors are slightly different
from this study. However, Bishara et al. (1995) pointed out that
tooth size-arch length discrepancy and lip protrusion are the main
reference factors for tooth extraction correction, which is highly
consistent with the results of our study.

It should be noted that the purpose of introducing machine
learning to assist in the classification of orthodontic tooth extraction
plans is not to pursue a wiser judgment than that of orthodontists in
critical cases, because whether it is expert judgment or machine
learning classifier, the plan formulation of critical cases needs to
weigh non-orthodontic indicators such as periodontal conditions,
patient’s own will, and public aesthetics, rather than just the
accuracy as a measurement standard. Machine learning methods
should be able to better summarize the logic and ideas of experts,
explain the causes and nature of malocclusion, and help doctors
formulate more comprehensive treatment plans. Any mathematical
principle that affects decision-making cannot be isolated from
clinical examination and communication.

5 Conclusion

The decision tree algorithm in machine learning outperformed
other machine learning models in predicting orthodontic extraction

plans, with an average accuracy of 86%. Crowding is the most
important factor for experts to decide on extraction treatment,
followed by lateral facial profile and lower incisor inclination,
indicating that tooth extraction is an important treatment
method for tooth-bone volume discrepancy. Clinically, lack of
space, protrusive anterior lips and convex facial profile indicates
the need for tooth extraction. Machine learning should not replace
but help doctors formulate more comprehensive treatment plans.
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