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Bone has the capability to adapt its density in response to mechanical stimuli
through a process known as bone remodeling, which has been simulated in silico
using various algorithms in several studies, with Strain Energy Density (SED) being
a commonly used driving parameter. A spatial influence function has been
introduced in addition to the remodeling algorithm, which accounts for the
influence of neighboring regions on local mechanical stimuli, thereby reducing
artificial mesh dependency and mimicking cellular communication in bone.
However, no study has implemented the SED-driven algorithm with spatial
influence function on a macroscopic 3D bone structure, and there is no
physiological explanation on the value used in remodeling parameter. The
goal of this study was to assess the effect of the spatial influence function’s
parameters on the resulting 3D simple cubic structure under compressive loading
through a sensitivity analysis. The results demonstrated that the spatial influence
function enabled the density distribution to propagate in directions not only
aligned with external loads, thus simulating the work of cellular communication.
This study also underscores the importance of selecting appropriate parameter
values to accurately reflect physiological conditions in bone remodeling
simulations, since different parameters influence not only bone mineral
density but also the architecture of the resulting bone structure. This work
represents a step forward in understanding the interplay between mechanical
stimuli and bone remodeling in three dimensions, providing insights that could
improve the accuracy of computational models in simulating physiology and
pathophysiology.
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Introduction

Bone has the self-optimizing capabilities to control its mass, density, and structure in
direct response to the mechanical stimuli exerted onto it, in a process known as bone
remodeling (Frost, 1994). Bone remodeling can be accomplished through bone formation
by osteoblasts and bone resorption by osteoclasts, and it is mediated by osteocytes, which
are thought to function as “sensing cells”. Various in silico bone remodeling algorithms have
been proposed to simulate the relationship between density changes and the amount of
stimulus induced by mechanical loading, using variables such as effective stress (Doblare
and Garcia, 2002), strain (Turner et al., 1997), microdamage (Carter et al., 1989), and Strain
Energy Density (SED) (Huiskes et al., 1987), representing the effect of osteoblasts,
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osteoclasts, osteocytes and the interplay between them. SED is the
most commonly chosen driving parameter for bone-remodeling
algorithms in the literature (Giorgio et al., 2019; Gong et al., 2013;
Lian et al., 2010; Mullender et al., 1994; Weinans et al., 1992), due to
(a) its ability to capture the integral measure (magnitude and
distribution) of the two main mechanical stimuli that regulate
load-induced bone adaptation (Rosa et al., 2015): mechanical
strain from cell deformation and stress from fluid flow), (b) its
high correlation with osteoblastic and osteoclastic activity (Webster
et al., 2015), and (c) its capacity to allow density adaptation in
response to functional requirements (Andreaus et al., 2014; Carter
et al., 1989). Given a specific mechanical scenario, the SED can be
estimated and input into the remodeling algorithm through the use
of finite element (FE) analysis. The ability of FE analysis to
accurately simulate a wide range of in vivo scenarios of healthy
and abnormal bone structures is well documented.

The spatial influence function was introduced by Mullender
et al. (1994) to reduce the discontinuous density distribution found
in previous FE simulation (Weinans et al., 1992). This function
effectively means that the mechanical stimulus experienced by a
region is also influenced by the one of the neighboring regions,
simultaneously attenuating the artificial mesh dependency induced
by the FE analysis (Sigmund and Petersson, 1998) and mimicking a
form of cellular communication akin to the role of osteocytes in vivo
(Schaffler et al., 2014). Furthermore, bone cell signaling, facilitated
by soluble chemokines, has been shown to enable non-local bone
remodeling regulation (Khosla, 2001). The spatial influence function
in bone remodeling simulation has been used in several studies
(Kumar et al., 2011; Ruimerman et al., 2005; Tsubota and Adachi,
2006; Zhang et al., 2023) and has demonstrated a stabilizing effect in
dynamic spatial contexts compared to bone remodeling simulations
without the spatial influence function (Ryser and Murgas, 2017).
The impact of this spatial influence function on computational bone
remodeling algorithms is the specific focus of the present study.

This SED-driven algorithm with the spatial influence function
has been previously implemented in simplified 2D geometries (Jang
et al., 2009; Lian et al., 2010; Mullender et al., 1994; Rosenberg and
Bull, 2018). Although 2D FE models are computationally efficient,
their simplification lies not only in geometry but also in loading,
being incapable of simulating bending and torsional loads. The
spatial influence function has been previously applied in 3D
trabecular meshes with a porous voxel microstructure (Gerhard
et al., 2009; Ruimerman et al., 2005; Tsubota and Adachi, 2006),
which has voxel size smaller than the trabecular thickness. However,
this approach may limit the potential for simulating new trabecular
bone growth in empty spaces, making it more difficult to represent
accurately communication within the osteocytic network.
Validating microstructure FE models against experimental data is
challenging due to the lack of comprehensive in vivo measurements
at the microscale and the difficulty in replicating complex
physiological conditions in laboratory settings. No studies in the
literature have implemented the SED-driven algorithm with spatial
influence function on a macroscopic 3D bone structure; a
continuous solid volume approach rather than modeling
individual trabeculae; and so it is still unknown if the parameter
values used in 2D applications can effectively recreate trabecular
structures in 3D applications. Using a macroscopic 3D bone model,
the application can be scaled up to larger domains, enabling more

efficient computational time and the incorporation of more
physiological boundary conditions.

The aim of this study was to implement an SED-driven
remodeling algorithm, with a spatial influence function into a
simple 3D geometry, specifically a cube, and to run a sensitivity
analysis to quantify the effect of the function’s parameters under
multiaxial loading on the resulting 3D-bone structure. This analysis
enables the quantification of the dependency between the function’s
parameters and bone density, helping to choose the appropriate
parameters for the application of interest.

Methods

An FE model of a simple, reference geometry comprising a 5 ×
5 × 5 mm cube was developed in Marc Mentat (2022.4, MSC
Software, United States). The model comprised 8,000 identical
cubic elements, 0.25 mm in edge length (Figure 1). A bone
remodeling algorithm was implemented in Fortran, in which the
relationship between the SED, the spatial influence function, and the
density rate of change was governed by Equation 1.

dρ x( )
dt

� τ∑N
j�1

f j x( ) Ua,j

ρj
− k⎛⎝ ⎞⎠ (1)

where ρ is a finite element’s density, k is a constant reference value
corresponding to homeostasis, τ is a fixed time constant, Ua,j is the
apparent SED, and fj(x) � e−

dist(x,j)
D is the spatial influence function

as proposed by Mullender et al. (Mullender et al., 1994). dist(x, j)
describes the distance between the jth element in the sum and the
location of interest, x, whose local stimulus is being computed. The
value D is the spatial influence parameter that equals the value
needed to result in fj(D)/fj(0) � e−1.

The initial condition in all simulations was a homogeneous
density 0.87 g/cm3, with a new density being calculated based on the
SED condition after every remodeling iteration (Equation 1). Each
element was linear, elastic, and isotropic with a Poisson’s ratio of 0.3
(Duchemin et al., 2008) and a Young’s Modulus being dependent
upon the density (Table 1). A compressive stress was applied to the

FIGURE 1
Boundary conditions of the cube.
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FE model that decreased linearly from 10 N/mm2 (left) to 0 N/mm2

(right) on the whole top face of the cube (Jang et al., 2009; Lian et al.,
2010; Mullender et al., 1994; Rosenberg and Bull, 2018; Weinans
et al., 1992), while the bottom face of the cube was fixed in the
vertical direction (Figure 1). The results of the FE model informed
the bone remodeling algorithm, which was called to calculate a new
density; the new density was used to update the material properties
of the FE model before rerunning the loading condition (Figure 2).
The convergence criteria defined as meeting two conditions: the
incremental density change, averaged over all the elements in the
model, was below 0.01 g/cm3, and the simulation reached
200 iterations. This second criterion was added following
preliminary simulations showing promising density evolutions
early on but ending up in unsolvable structures for the FE software.

To study the behavior of the SED-based bone remodeling
algorithm combined with the spatial influence function, a
sensitivity study was conducted. Three different relationships
between Young’s modulus and density: E1 = 1904ρ1.64 MPa
(Wirtz et al., 2000), E2 = 2038ρ2.5 MPa (Miller et al., 2002), and
E3 = 3227ρ3.0 MPa (Andreaus et al., 2012), were implemented and
investigated in this study. The spatial influence parameter D was
varied around a baseline number of 0.20 mm; this value is similar to
the finite-element length (Mullender et al., 1994; Rosenberg and
Bull, 2018) and the length scale of trabecular thickness reported in
imaging studies (Moon et al., 2004; Liu et al., 2010), resulting in D
values of 0.10, 0.15, 0.20, 0.25, and 0.30 mm. The constant reference
value k was varied: 0.005, 0.015, 0.025, 0.035, and 0.045 J/g, which
represents values around the steady state condition of bone
(Badilatti et al., 2016; Schulte et al., 2013) with a 1 g/cm3 bone-
density assumption. Variation of rate constant τ �
0.5, 1.0, and 2.0 (g/cm3)2/MPa.time unit was also chosen around
the established baseline value (Chen et al., 2007; Jang et al., 2009;
Lian et al., 2010; Mullender et al., 1994). Details of the applied
parameter values are summarized in Table 2 for all simulations.

Results

The density distributions for the baseline simulation with the
three different Young’s modulus–density relationships are shown in
Figure 3. The Young’s modulus relationships with higher powers, E2
and E3, resulted in more discrete areas than those with the lower
power, E1. However, E1 provided a stable density distribution over a
larger number of iterations, whereas E2 and E3 resulted in
distributions unsolvable for the FE analysis before iteration 100.
Therefore, the subsequent results used the E1 relationship and are
presented after iteration 200 (unless otherwise specified), at which
point the absolute average change of density between one iteration
and the next reached below 0.01 g/cm3.

The implementation of the SED-based spatial influence function
in the 3D cube geometry for various spatial influence parameters is
shown in Figure 4. For the sake of clarity and completeness, the
entire part of the cube and several of its cross-sections are displayed.
Higher values of D resulted in a reduction of the checkerboard
pattern on density distributions. There were also variations in
trabecular branching visible in all three sections (xy, yz, and xz),
even though the load was only applied in the y direction.

The density distribution resulting from the remodeling
algorithm is also sensitive to the constant reference value k
(Figure 5). The final density distribution for the lowest k value
shows thicker but blurrier struts than those with higher k value. The
highest k value resulted in thin branches that also spread to the
vertices of the geometry. As seen from the top face of each cube in
Figure 5, the higher k value resulted in smaller trabecular struts than
did the lower k value.

The rate constant, τ, in the bone remodeling algorithm impacts
the evolution of the bone density distribution (Figure 6). Similar
density distributions were reached in a shorter iteration time for a
higher rate constant (1.0 (g/cm3)2/MPa.dt) compared to a lower rate
constant (0.5(g/cm3)2/MPa.dt). However, at the highest value
(Figure 6C), the density distribution also concentrated at the
corner of the geometry.

Discussion

This is the first study to implement an SED-driven bone
remodeling algorithm combined with a spatial influence function
following Mullender’s work (Mullender et al., 1994), to create

TABLE 1 Baseline parameters used in the test of the governing algorithm.

Parameter Value References

Initial density ρo 0.87 g/cm3 Andreaus et al. (2012)

Density range ρmin ≤ ρj ≤ ρmax 0.0174 ≤ ρj ≤ 1.74 g/cm3 Andreaus et al. (2012)

Spatial influence parameter D 0.20 mm Moon et al. (2004); Liu et al. (2010)

Constant reference value k 0.025 J/g Badilatti et al. (2016); Rosenberg and Bull (2018); Schulte et al. (2013)

Rate constant τ 1.0 Chen et al. (2007); Jang et al. (2009); Lian et al. (2010); Mullender et al. (1994)

Poisson’s ratio 0.3 Duchemin et al. (2008)

Young’s modulus 1904ρ1.64 MPa Wirtz et al. (2000)

FIGURE 2
Feedback loop of adaptive FE.
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trabecular structures in simple 3D geometries. In comparison to 3D
bone remodeling studies without a spatial influence function
(Belinha et al., 2013; Shefelbine et al., 2005), this study enabled a
density distribution that also propagated in directions not aligned
with the external load. This study simulates the work of osteocytes in
3D, creating a non-local remodeling process due to spatial
communication (Zhang et al., 2023). A sensitivity study was
conducted on remodeling algorithm parameters, quantifying how
different parameters influence not only bone mineral density but
also the architecture of the resulting bone structure.

The relationship between Young’s modulus and density
influences the resulting density distribution (Figure 3). At the
same initial density, a higher power relationship results under
stress in a higher Young’s modulus, which in turn creates a
higher strain energy density (SED) and yields a higher density in
the subsequent iteration. The dense region becomes denser with a
higher power of Young’s modulus relationship, as indicated by a less
blurry area (Figure 3C). These self-reinforcing mechanisms are at
the core of the bone adaptation algorithm and are only exacerbated
by higher power relationships between the Young’s modulus and the
density, which could explain why the rule E1, with the lowest
exponent, was the only one to convergence to a solution. Indeed,
albeit seemingly displaying satisfactory density distributions
(Figure 3), E2 and E3 resulted in “unstable” bone architectures
which the FE solver could not reconciliate and could therefore
not be considered to have achieved convergence. An important
finding of this study is therefore that the presented bone remodeling
algorithm is sensitive to the material law, making it a crucial design
choice of such models. A higher power relationship (which means a
higher value of Young’s modulus in this case) is suitable to represent
cortical bone, or regions that consist mostly of cortical bone, such as

in the mid-shaft of femoral bone [18 GPa (Cuppone et al., 2004)],
which has a dense bone architecture (Suen et al., 2015). Lower values
of Young’s modulus, such as in the trabecular bone of the femur
[7.8 GPa (Mente and Lewis, 1989)], are associated with less dense
bone architecture, shown as a blurry region in Figure 3A.

A spatial influence parameter D represents the power of
influence delivered from one sensor to another sensor. Mullender
et al. (1994) first introduced this as a distance from a sensor (which
does not necessarily means the distance between osteocytes) at
which its effect has reduced to 36.8 percent and assumed this
influence domain has a similar order of magnitude than a
trabeculae’s thickness, which varies from 0.20 to 0.40 mm (Moon
et al., 2004; Liu et al., 2010). These values are the ones investigated in
the sensitivity analysis of this study. A higher spatial influence
parameter means that neighboring elements have a greater effect
on the actual stimulus experienced by a particular region of the bone.
This reduces the mesh dependency (Mullender et al., 1994) and
mitigates numerical instabilities due to the checkerboard pattern
(Gubaua et al., 2022; Mullender et al., 1994) as shown in the xy
section of Figure 4. In agreement with Mullender et al. (1994), as
long as the spatial influence parameter is higher than the element
size, the checkerboard pattern is mitigated, and osteocyte function is
able to be represented. Conversely, a lower value for D restricts the
influence of the surrounding elements, which results in a model
where the Mullender “sensing cell” assumption was absent
altogether (Figure 4), with the density distribution only following
the direction of the external load.

This study shows that when the “sensing cell” assumption is
applied, which is represented by a higher value of spatial influence
parameter, there is a density distribution that also “propagates” in a
direction not directly aligned with the external load (xz and yz

TABLE 2 Details of parameter’s value in each simulation.

Sensitivity study parameter Label D k τ E

Young’s modulus E Baseline 0.20 0.025 1 E1

S1 0.20 0.025 1 E2

S2 0.20 0.025 1 E3

spatial influence parameter D S3 0.10 0.025 1 E1

S4 0.15 0.025 1 E1

Baseline 0.20 0.025 1 E1

S5 0.25 0.025 1 E1

S6 0.30 0.025 1 E1

constant reference value k S7 0.20 0.005 1 E1

S8 0.20 0.015 1 E1

Baseline 0.20 0.025 1 E1

S9 0.20 0.035 1 E1

S10 0.20 0.045 1 E1

rate constant τ S11 0.20 0.025 0.5 E1

Baseline 0.20 0.025 1 E1

S12 0.20 0.025 2 E1
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section of Figure 4). Studies that did not implement the spatial
influence concept (Belinha et al., 2013; Shefelbine et al., 2005) were
unable to show the interaction of osteocytes, and resulted in the

direction of the density distribution being only dependent on the
direction of the external loading. The spatial influence function also
enables the architecture type of trabecular bone to be mimicked.

FIGURE 3
Convergence of mean of absolute density difference for three different Young’s Modulus relationships (A). Baseline at iteration 200, (B). S1 (higher
power) at iteration 83, and (C). S2 (highest power) at iteration 62 (Legend unit in g/cm3).

FIGURE 4
Sensitivity of bone trabecular shape to the spatial influence parameterDwith increasingmagnitudes from simulation (A). S3, (B). S4, (C). Baseline, (D).
S5, and (E). S6 at iteration 200. (Legend unit in g/cm3).
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Trabecular bone has been classified into plate-like bone (flatter bone
architecture) and rod-like bone (elongated and cylindrical bone
architecture) (Salmon et al., 2015). “Plate-like” density architecture

is shown in the xz section of the baseline simulation (D = 0.20 mm),
meanwhile the “rod-like” density is shown in S6 (D = 0.30 mm) in
the same xz section. Different spatial influence parameter values

FIGURE 5
Sensitivity of bone trabecular shape to the reference value kwith increasing magnitudes from simulation (A). S7, (B). S8, (C). Baseline, (D). S9, and (E).
S10 at iteration 200. (Legend unit is g/cm3).

FIGURE 6
The evolution of density distribution resulting from various rate constants in (g/cm3)2/MPa. time unit. (A). τ � 0.5, (B). τ � 1.0, and (C). τ � 2.0.
(Legend unit is g/cm3).
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may, therefore, be applied to different sites. For example, the D =
0.20 mm scenario (if a fine mesh is feasible) that represents “plate-
like” bone is likely suitable for simulating the detailed view of the
femoral head (Figure 7), as the structure of femoral head observed by
micro-CT imaging is characterized by plates (Hildebrand et al.,
1999; Issever et al., 2003; Kothari et al., 1998) and has average
trabecular thickness of 0.194 mm (Hildebrand et al., 1999). For
larger domain FE applications, the value of D is suggested to be
similar to the element length, ensuring that the stimulus is neither
under- nor over-influenced. The effect of the spatial influence
parameter on trabecular structure illustrates how changes in bone
sensing, likely mediated by cellular signaling and biological
processes, can occur even in the absence of changes in the
loading environment. Felder et al. (2021) measured bone
architecture with the same local sensing (at the same site) but
under different loading conditions. An Ellipsoid Factor (EF) was
utilised to characterize the plate-to-rod transition in trabecular bone
at the proximal tibia under conditions of reduced loading (disuse
osteoporosis). The results support the notion that the plate-to-rod
transition does not coincide with the onset of bone loss.

The constant reference value represents a balance condition where
the process of bone formation and resorption are in equilibrium. The
lower k allowed more bone formation and less resorption to occur, as
could be expected, resulting in thicker bony structures (Figure 5A).
Increasing k allowed less bone formation andmore resorption to occur,
resulting in a thinner structure (Figure 5E), that led to a decrease of
mass in the system (Lian et al., 2011; Su et al., 2019). This is similar to
the microstructure of post-menopausal bone (Badilatti et al., 2016;

Mueller andHayes, 1997), which exemplifies how adjusting themodel’s
mechanobiological parameters can help reproducing the physiological
imbalance between bone formation and resorption seen in real-life
scenarios. Setting the level of k is important, and although a value of
0.004 J/g has been used previously (Weinans et al., 1992; Mellal et al.,
2004; Zhang et al., 2016; Prochor and Sajewicz, 2018), this has not been
shown to lead to realistic trabecular bone configuration in 3D. The
result from the sensitivity analysis suggests that a value of k at the order
of 0.025 J/g results in adequate thickness across all branches (see the
middle column of Figure 8), making it suitable for representing
trabecular bone in 3D simulations. This is supported by CT
imaging data showing trabecular thickness varying from 0.2 to
0.4 mm (Moon et al., 2004; Liu et al., 2010), and being as large as
0.7 mm in distal forearm specimens (Issever et al., 2010), depending on
bone location and function.

The rate constant, τ, influences the rate of bone formation and
resorption, representing the work done by osteoblasts and
osteoclasts in vivo. The evolution of bone density in the
simulations, reaching the same value at different iterations
depending on the rate constant is demonstrated clearly in
Figure 5. This “delayed similarity” was more evident between the
lower two implemented rates (between iterations 100, 200 and 400 of
τ = 0.5 and iterations 50, 100 and 200 of τ = 1) than with the higher
ones (τ = 2), suggesting a non-linear relationship between the rate of
bone remodeling and the resulting density distributions, perhaps
indicative of different evolutionary patterns. If bone adapts too
quickly, it may not have enough time to balance properly, potentially
leading to damage, fractures, overgrowth, or structural instability,

FIGURE 7
(A) Density distribution after simulation S6 (D = 0.30 mm) at iteration 400. (B) Plot clipping the result of simulation S6 showing rod-like bone
architecture. (C) Density distribution after baseline simulation (D = 0.20 mm) at iteration 400. (D) Plot clipping the result of baseline simulation showing
plate-like bone architecture.
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consistent with the more disorganized and chaotic structure seen in
Figure 5C. A rate constant of 1 [(g/cm3)2/MPa. time unit] has been
used in previous studies to represent heterotopic ossification in
cervical total disc replacement (Ganbat et al., 2016), bone changes in
dental implants (Mellal et al., 2004), and osseointegration in
posterior lumbar interbody fusion (Zhang et al., 2016) and in the
femur when using an osseointegration prosthesis (Prochor and
Sajewicz, 2018). Although this value for the rate constant appears
to be accepted, different rate constants might be appropriate to
represent bone remodeling differences with age.

Future work could investigate the influence of mesh size in
trabecular structure, as this study did not include a mesh-
sensitivity analysis, despite the spatial influence function being
commonly cited for mitigating mesh dependency. Additionally, the
study only considers a single load case at the macroscopic, 5 mm cube
scale, even though various physiological loading scenarios are
possible. It was deemed appropriate to start by carrying out an
extensive analysis of a basic case under one loading condition.
Similar to other remodeling publications (Mullender et al., 1994;
Rosenberg and Bull, 2018) the findings of which suggest that the
learnings translate to more complex situations, the results from the
work presented here suggests that the algorithm has the potential to be
adapted to simulate successfully additional loading conditions and
geometries.

This methodology can be feasibly scaled up for larger domains,
such as long bones. To address the computational expense, future
studies could apply fine meshing selectively in regions of interest to
ensure accurate representation of trabecular thickness. Additionally,
this approach can be extended to non-Cartesian mesh models, such
as 3D adaptive tetrahedral meshes, as stimuli measure strain energy
density at the centroid integration points of elements, with spatial
influence values representing distances between neighboring

elements. Subroutines in finite element software can be utilised to
calculate these distances between integration points.

This study has implemented an SED-based bone remodeling
algorithm with a spatial influence function in simple 3D geometries
and shown to produce sensible bone structures. Key model
parameters were shown to affect the resulting bone structures,
and so, depending on application, appropriate parameters should
be chosen to reflect the physiological conditions modelled.
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