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Introduction: Research on head impact characteristics, especially position-
specific investigations in football, has predominantly focused on collegiate
and professional levels, leaving a gap in understanding the risks faced by high
school players. Therefore, this study aimed to investigate the effect of three
factors—player position, impact location, and impact type—on the frequency,
severity, and characteristics of impacts in high school American football.
Additionally, we examined whether and how player position influences the
distribution of impact locations and types.

Methods: Sixteen high school football players aged 14 to 17 participated in this
study. Validated mouthguard sensors measured head impact kinematics,
including linear acceleration, angular acceleration, and angular velocity
across ten games, and were used to identify impact locations on the head.
Video recordings verified true impacts, player position, and impact type at the
moment of each recorded impact. Head impact kinematics were input into a
head finite element model to determine the 95th percentile of the maximum
principal strain and strain rate. Several novel and systematic approaches, such
as normalization, binning, and clustering, were introduced and utilized to
investigate the frequency and severity of head impacts across the three
aforementioned factors while addressing some of the limitations of
previous methodologies in the field. To that end, the number of recorded
impacts for each player position during each game was divided by the number
of players in that position, and then averaged across ten games. Instead of
averaging, impacts were categorized into four severity bins: low, mid-low,
mid-high and high. Clusters for the three factors were also identified
according to the characteristics of impacts.

Results and Discussion: Results revealed that offensive linemen and running
backs experienced a higher normalized frequency and more severe impacts
across all head kinematics and brain tissue deformation parameters. Frontal
impacts, resulting from “head-to-head” impacts, were the most frequent and
severe impact locations. The distributions of impact location and type for each
specific position were distinct. Offensive linemen had the highest proportion
of frontal impacts, while quarterbacks and centerbacks had more impacts at
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the rear location. These findings can inform interventions in game regulations,
training practices, and helmet design to mitigate injury risks in high school
football.
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1 Introduction

Sports- and recreation-related traumatic brain injury (TBI) is an
important public health concern with an incident occurring every
4 minutes in the United States, with the majority of reported TBI
classified as mild TBI, commonly known as concussions (Control
and Morbidity, 2007; Gilchrist et al., 2007). The Centers for Disease
Control and Prevention reports that 5%–10% of athletes experience
a concussion during a sports season, with an even higher risk for
contact sports. American football has long served as a natural
laboratory for studying Sport-Related Concussion (SRC), focusing
on aspects such as occurrence, biomechanical causes, prevention,
diagnosis, and both short- and long-term behavioral consequences
(Collins et al., 1999; Kelly, 1999; Pellman and Viano, 2006; Rowson
et al., 2009; Crisco et al., 2011; Rowson and Duma, 2011; Kerr et al.,
2014; Kerr et al., 2017). While concussive head impacts receive
significant attention, repeated head impacts, even without
immediate clinical symptoms, can make the brain more
vulnerable to future injuries and lead to changes in brain
structure and function over time when they occur repeatedly.
These impacts have also been linked to reduced cognitive reserve,
and may accelerate age-related cognitive decline and increase the
risk of neurodegenerative conditions such as chronic traumatic
encephalopathy (CTE) (Gavett et al., 2011; Baugh et al., 2012;
Breedlove et al., 2012; Bahrami et al., 2016; Mainwaring et al.,
2018; Ntikas et al., 2022; McAlister et al., 2023). The
consequences can lead to subsequent injuries and accelerated
cognitive decline, particularly if repetitive head exposures occur
at a younger age, as studies indicate the higher vulnerability of the
youth brain to injury (Guskiewicz et al., 2005; Bahrami et al., 2016;
Griesbach et al., 2018; Taylor et al., 2018). Despite the higher
vulnerability of younger age groups to head injuries, the majority
of studies on football-related TBIs focus on collegiate and
professional levels (Guskiewicz et al., 2003; Crisco et al., 2010;
Funk et al., 2012; Myer et al., 2014; Baugh et al., 2015; Lessley
et al., 2018). This focus is partly due to the consistency in players’
positions compared to youth or high school football, as well as the
higher media attention on collegiate and professional levels.
However, it is critical to increase research efforts examining head
impact exposures in youth and high school football to address this
gap, improve safety protocols, develop protective devices,
implement injury-prevention strategies, and gain a
comprehensive understanding of the risks faced by athletes in
these formative stages of participation.

The emerging availability of wearable sensors provides an
opportunity to address this need and monitor and characterize
the kinematics of repeated head impacts and their cumulative
effects. Among the various wearable devices developed for
detection and measurement of head impacts, including sensor-

embedded helmets (Crisco et al., 2010), mouthguards (Gennarelli
et al., 1972; Ono et al., 1980; Gennarelli et al., 1982; Rowson and
Duma, 2013), headbands (Swartz et al., 2019), and skin patches
(Swartz et al., 2015), mouthguards, while not free from errors, have
demonstrated higher accuracy in head kinematic measurements due
to their lower motion artifacts compared to headbands or skin
patches (Kieffer et al., 2020). However, despite all of the recent
advancements in mouthguard technologies and their kinematic
measurement accuracy, many false impact readings are still
reported, mainly caused by players’ chewing habits, the
movement of mouthguard in the mouth, and sensor malfunction
(Kuo et al., 2018; Kieffer et al., 2020; Jones et al., 2022) that
necessitate validating the true impact by cross-referencing the
mouthguard-recorded events with the corresponding video
footage. Despite these challenges, the integration of impact-
sensing mouthguards offers a valuable tool for closely monitoring
head exposures in football and investigating the severity and
frequencies of impacts each player experiences during each game
and season.

Instrumented mouthguard systems, equipped with
accelerometers and gyroscopes, measure and report the
translational and rotational head kinematics of every event,
including head angular acceleration (AA), linear acceleration
(LA), and angular velocity (AV). While traditional assessments
in the literature have predominantly relied on linear kinematics
to evaluate the severity of impacts and risk of SRC (Gennarelli et al.,
1972; Ono et al., 1980; Gennarelli et al., 1982; Rowson and Duma,
2013), the attention in the studies has shifted to angular head
kinematics as the primary cause of brain damage and
concussion. The focus on angular kinematics has grown
alongside advancements in finite element modeling, which has
become an essential tool for simulating brain tissue responses
and deepening our understanding of trauma mechanisms
(Margulies and Thibault, 1992; King et al., 2003; Zhang et al.,
2004; Takhounts et al., 2011; Hajiaghamemar et al., 2019;
Hajiaghamemar et al., 2020; Ji et al., 2022). The main reason lies
in the direct effect of rotational kinematic parameters on tissue
deformation parameters, such as maximum principal strain and
strain rate, which are recognized as the primary driving cause of TBI
and concussion (Hajiaghamemar et al., 2019; Hajiaghamemar et al.,
2020; Carlsen et al., 2021; Hajiaghamemar and Margulies, 2021; Wu
et al., 2021; Ji et al., 2022). Therefore, finite element (FE) modeling
of the brain as a complementary tool provides insights into the brain
tissue deformation responses by extracting the kinematic traces
experienced by the head during the exposure. FE modeling plays an
important role in elucidating the underlying mechanism of SRC and
provides more detailed information about the severity, risk, and
potential location of damage (Sahoo et al., 2016; Ghajari et al., 2017;
Hajiaghamemar et al., 2020; Ji et al., 2022).
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The head kinematic parameters mentioned above are highly
correlated with characteristics of the impact which are influenced by
the patterns of impacts experienced by players, including the head
impact location, player position, and type of impacts. This highlights
the necessity for a detailed analysis from different perspectives. The
majority of studies on the National Football League (NFL), collegiate
football, and high school reported head-to-head impacts as high-risk
types of impacts in terms of frequency and intensity. Regarding the
positions, linemen are commonly reported to be associated with a
higher frequency of impacts but lower severity, whereas the trend is
reversed for skill positions. Despite the valuable insights provided by
studies on NFL and college football into the risk associated with
specific impact types and playing positions, the number of studies on
head impacts in high school football is limited (Broglio et al., 2011;
Broglio et al., 2013; Kerr et al., 2014; McAlister et al., 2023), which
limits our understanding of individual risk and the promotion of
safety at this level. A major challenge for such studies is the frequent
position switching by players in high school football, in contrast to
college and the NFL levels where players typically maintain a single
position throughout a match. However, monitoring each player and
tracking their positions throughout the season aids in assessing SRC
risks associated with different player positions and the position
combinations in high school football, ensuring their safety while
fostering engagement.

As reported in the literature, the risk of concussions is highly
correlated with the magnitude of head kinematic and tissue
deformation parameters resulting from encountered impacts
(Crisco et al., 2010; Broglio et al., 2011; Crisco et al., 2011; Baugh
et al., 2015). In addition to the magnitude of impacts, the frequency
of impacts is another effective factor contributing to brain injury,
posing a significant risk to long-term brain health (Bazarian et al.,
2014; Wilson et al., 2017). Studies focusing on high school football
have shown a correlation between the frequency of repeated head
impacts and the short- and long-term neurophysiological changes in
players (Breedlove et al., 2012; Montenigro et al., 2017). Therefore, a
comprehensive study should not only consider the magnitude of
head impacts but also the frequency/number of head
impact exposures.

Another consideration in on-field head kinematics research is
the techniques used to analyze and interpret the collected data. A
major limitation within the existing literature is the reliance on
averages of kinematic parameters as metrics for evaluating the
risk associated with impacts (Crisco et al., 2011; Cecchi et al.,
2021). A fundamental issue with the averaging approach is that a
large number of low-severity impacts significantly reduce the
overall kinematics average. To address this limitation, a novel
approach using data binning has been developed that enables the
assessment of impact frequency in each severity bin (Karton
et al., 2020; Seidi, 2023). The key advantage of this method is its
ability to prevent the dilution of high-severity impacts by a large
number of low-severity ones, a significant drawback of the
averaging method. Another challenge highlighted in the
literature is accurately interpreting the risk associated with
each player position. Many studies investigating concussion
risk at each position count the number of head impacts
experienced by the team in those positions but often overlook
the number of players playing in each position (Lessley et al.,
2018). This oversight can skew the perceived risk, as not

accounting for the actual number of players disproportionately
influences impact statistics. While some epidemiological studies
have incorporated this factor (Tsushima et al., 2019; Karton et al.,
2020; Mack et al., 2021), it has not been considered in kinematic
studies. To address this, recorded impacts should be normalized
based on the player count in each position. This approach enables
a more accurate evaluation of the risk profiles associated with
specific player positions.

Given all the aforementioned considerations, this pilot study
investigates head impact characteristics in high school American
football, an underrepresented demographic compared to
collegiate and professional levels. Existing research often lacks
comprehensive assessments of head impact patterns in younger
athletes, particularly regarding the interplay between player
positions, impact locations, and impact types. Leveraging
kinematic data from wearable sensors, the response of a head
finite element model, and employing novel binning and
normalizing approaches, this pilot study explores how these
factors influence the frequency and severity of impacts. This
study addresses the limitations of averaging methods by
categorizing impacts into severity bins and accounting for
variations in player counts per position. These methods are
essential to accurately capture the frequency and severity of
impacts without dilution from low-severity events.
Furthermore, the relationships among player positions, impact
locations, and impact types are examined to provide a clearer
understanding of their patterns and distribution. We hypothesize
that specific player positions, impact locations, and impact types
will demonstrate distinct patterns of frequency and severity of
head impacts. These findings aim to provide preliminary insights
into head impact exposure in high school football, guiding future
research and interventions to enhance player safety.

2 Methods

2.1 Data collection and categorization

Sixteen football players, aged 14–17 years, from a high school
football team in San Antonio, TX, participated in an IRB-approved
study (#FY20-21–238). None of the participants had a documented
history of spinal injuries, neurological disorders, or head injuries
within the 6 months preceding the study. The inclusion criteria
required participants to be active football players and wear
instrumented mouthguards throughout the season. Validated boil
and bite mouthguard head monitoring systems (Prevent Biometrics,
MN, Figure 1A) (Kieffer et al., 2020) were used to measure head
impact kinematics parameters, including peak and temporal traces
of linear acceleration (LA), angular acceleration (AA), and angular
velocity (AV) throughout the season in ten games. Only recordings
with resultant PLA greater than 10g, an accepted threshold in the
field (Cecchi et al., 2021; Choi et al., 2022), were considered impact
exposures. Video recordings of all the games were reviewed to verify
true impacts, remove false reads, and identify the position of the
players and the type of impact at the moment of each impact
occurrence. The locations of impacts on the head were extracted
from the sensor location detection algorithm. A sample of video
recorded impact along with a sample of resultant and X, Y, and Z
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components of LA, AA, and AV traces are shown in Figures
1B, D–F.

Three factors were studied: player position (factor 1), head
impact location (factor 2), and impact type (factor 3). Player
positions were categorized into ten groups: offensive line (OL),
running back (RB), linebacker (LB), defensive line (DL),
cornerback (CB), wide receiver (WR), quarterback (QB), tight
end (TE), Safety (S), and kick off (KO). Player positions were
determined for each play through a rigorous process. First, we
cross-referenced jersey numbers with on-field formations and the
team’s offensive or defensive status. Next, video footage was used to
track players during each play, enabling precise identification of
their movements and alignment. These observations were then
compared to the legal formations outlined in the official rule
book. This multi-step method allowed us to accurately identify
and record each player’s position during every play and
associated impact, even when players shifted between multiple
roles. For players who regularly played multiple positions, their
position for each specific impact was determined based on their role
at the time of that particular play. Additionally, head impact
locations were divided into ten categories: top-front, top-rear,
front-high, front-low, side-high, side-low, rear-high, rear-low,
bottom-front, and bottom-rear as shown in Figure 1C. Moreover,
impact types were categorized into six groups: head-to-head, head-
to-body, head-to-ground, body-to-body, body-to-ground, and
unknowns (for the impacts where the video recordings did not
clearly specify the type).

2.2 Finite element simulations and brain
tissue deformation parameters

Compared to head kinematics, deformation and deformation
rate of brain tissue are believed to be better predictors of brain injury
(Hajiaghamemar et al., 2019; Ji et al., 2022). Therefore, a
computational model was used to determine the maximum
overall tissue deformations of the brain due to each impact. Time
histories of head impact angular velocity components of the
collected and video confirmed impacts were used as inputs to the
Global Human Body Models Consortium (GHBMC) head FEM
(Mao et al., 2013; Hajiaghamemar et al., 2019; Wu et al., 2019),
shown in Figure 2, using LS-Dyna® software to determine brain
tissue deformation responses. Then, the 95th percentile values of the
maximum principal strain (MPS) and the maximum principal strain
rate (MPSR), as the time derivative of MPS (Zhan et al., 2024),
experienced by all elements in the brain during each head impact
simulation were extracted and used for further analysis. While the
50th percentile of MPS has shown slightly better predictive power in
one study (Fahlstedt et al., 2022), the 95th percentile remains the
standard in brain biomechanics due to its balance of accuracy and
practical relevance, enabling meaningful comparisons across similar
studies (Cecchi et al., 2021) and serving as the basis for most
concussion and traumatic brain injury risk curves in the
literature (Hajiaghamemar et al., 2019; Miller et al., 2021; Wu
et al., 2021; Zhan et al., 2021; Giudice et al., 2023; Nakarmi et al.,
2024). Additionally, the 95th percentile offers a reliable estimate of

FIGURE 1
(A) Prevent Biometric Mouthguard sensor used for measuring head impact kinematics. (B) a snapshot from video recordings of head impact. (C) Ten
impact locations of impact on the head detected by the sensor algorithm. (D) x-y-z and resultant traces of peak linear acceleration (PLA) of a head impact.
(E) x-y-z and resultant traces of peak angular acceleration (PAA) of a head impact. (F) x-y-z and resultant traces of peak angular velocity (PAV) of a
head impact.
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the highest strain experienced by brain tissue during an impact while
avoiding potential numerical errors of the absolute maximum. Only
the angular motion components were used for the FEM simulations
because angular motions have been shown to contribute the most to
the brain strain, while the effect of linear motion and the brain strain
caused by linear acceleration are negligible and small compared to
those caused by angular motion (Holbourn, 1943; Gabler et al., 2016;
Liu et al., 2020).

2.3 Normalization and binning approach:
investigating impact frequency and severity

For each recorded head impact, five outputs including peak
linear acceleration (PLA), peak angular acceleration (PAA), peak
angular velocity (PAV), MPS, and MPSR were used to represent the
magnitude/severity of impact.

First, the generalized estimating equation (GEE) statistical
method was utilized for overall investigation of the effects of
factors including player position (with nine categories), impact
location (with ten categories), and impact type (with five
categories) on the severity of PLA, PAA, PAV, MPS, and MPSR
outputs. Five separate GEE models were fit, each corresponding to
one of the five outcome variables. Player ID (sixteen players) was
used as the subject variable to account for the clustering of head
impacts within each player, and an exchangeable working
correlation structure was applied to address the correlation
between impacts within the same player. A robust estimator
(Huber-White sandwich) was used as the covariance matrix, and
an identity link function was selected in the GEE for direct
interpretability of the model coefficients. We assumed a Gamma
distribution for the positively skewed outputs (response variables).
P-values less than 0.05 were considered statistically significant in our
analyses, suggesting significance of the studied factors (player
position, impact location, and impact type) on the severity of
outputs (PLA, PAA, PAV, MPS, and MPSR). All GEE statistical
analyses were performed using SPSS version 28.

Then, to address the previously mentioned limitations of the
averaging approach and to comparatively analyze impact severity, a
binning approach was developed and utilized. To that end, impacts
were categorized into four severity bins (“low”<25th, “low-mid” 25th-
50th, “mid-high” 50th-75th and “high” ≥ 75th) for each of the five
studied outputs. The range of magnitude for each of these bins for all
five outputs is included in Table 1. Then, the average number of
impacts in each severity bin for each player position was calculated.
However, to ensure meaningful comparisons and maintain the
integrity of our findings, the number of impacts recorded in each
position needed to be normalized, considering the varying number of
players involved in each position per game throughout the season.
This adjustment or normalization is critical due to the nature of high
school football, where players frequently switch their positions. The
detailed steps of the normalization process based on each output are as
follows: First, the number of recorded impacts within each severity bin
for every position during each game was counted. These counts
represent all head exposures experienced by players wearing
mouthguards in a given position, categorized by severity levels
based on each specific output. Second, to normalize the data, the
calculated number in the first step was divided by the number of
players who participated in our study and were involved in that
position in that game. This step reflects the frequency of impacts per
position within each severity bin during each game. Finally, the
impact counts from the second step were averaged across the ten
games of the season, representing the average number of impacts per
position per game at each severity level (Figure 3; Supplementary
Table S1). The binning and normalization processes were repeated for
each of the five outputs.

In addition to position-wise analysis of the data, the binning
approach, by considering the total impact number (in other words,
frequency) for each category averaged by the number of games, was
employed for the impact locations and impact types to investigate
the frequency and severity of impacts across different locations and
types (all impact types except unknowns) (Figures 4, 5;
Supplementary Tables S2, S3). The normalization process was
not necessary for the impact location and impact type factors.

FIGURE 2
(A) The global human body models consortium (GHBMC) human head finite element model used to simulate the impacts. (B) an example of
distribution of maximum principal strain in brain tissue in high severity bin.
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TABLE 1 Four severity bins ranges (“low” <25th, “low-mid” 25th-50th, “mid-high” 50th-75th and “high” >75th) for each of the five studied outputs: peak
angular acceleration (PAA), peak angular velocity (PAV), peak linear acceleration (PLA), 95th percentile of the maximum principal strain (MPS) and 95th
percentile of the maximum strain rate (MPSR).

PAA (rad/ŝ2) PAV (rad/sec) PLA (g) MPS MPSR (1/s)

Low <811 <8.4 <11.8 <0.07 <19.0

Low-Mid 811–1,112 8.4–10.9 11.8–14.5 0.07–0.09 19.0–27.4

Mid-High 1,112–1,591 10.9–14.9 14.5–19.2 0.09–0.13 27.4–37.0

High >1,591 >14.9 >19.2 >0.13 >37.0

FIGURE 3
Normalized frequency (number of impacts per player per game) and distribution of impacts across four severity bins for each specific position for all
five studied outputs: peak angular acceleration (PAA), peak angular velocity (PAV), peak linear acceleration (PLA), 95th percentile of the maximum
principal strain (MPS) and 95th percentile of the maximum strain rate (MPSR). Two clusters are shown by dotted boxes.

FIGURE 4
Frequency of impact (per game) and distribution of impacts across four severity bins for each specific head impact location for all five studied
outputs: peak angular acceleration (PAA), peak angular velocity (PAV), peak linear acceleration (PLA), 95th percentile of the maximum principal strain
(MPS) and 95th percentile of the maximum strain rate (MPSR). Two clusters are shown by dotted boxes.
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2.4 Clustering: impact characteristics based
on impact severity and frequency

Next, the K-Means clustering approach was employed
separately for each of the five parameters (PAA, PAV, PLA,
MPS, and MPSR) to uncover similarities in the impact
characteristics among specific player positions, impact
locations, and impact types. This method categorizes similar
groups considering both the magnitude and frequency of head
impacts, performing the analysis individually for each parameter
to reveal distinct patterns. This clustering approach aims to
determine if certain positions, head impact locations, and
impact types commonly exhibit similar characteristics.
Initially, the elbow method was used to identify the optimal
number of clusters, by calculating the percentage of reduction in
the within-cluster sum of squares (WCSS) for each additional
cluster. The difference in the reduction between successive
clusters was then calculated, and a 15% threshold was
applied, meaning clusters were added until the percentage of
reduction in WCSS fell below this 15% threshold. This threshold
was chosen to avoid overfitting and ensure accurate and effective
clustering analysis (Supplementary Figure S1). Subsequently, the
K-Means method was utilized to partition the data into a fixed
number of clusters based on attribute similarity characteristics
(results are shown in the added cluster boxes to the bin plots in
Figures 3–5).

2.5 Descriptive analysis: exploring
associations of player positions, impact
locations, and types on head
impact frequency

Next, the Chi-square test was used to determine if there is a
significant association or correlation (p-value<0.05) between the
studied factors including player positions (nine categories), head

impact locations (ten categories), and impact types (five categories),
based on the number/frequency of impacts recorded (Figures 3–5).
Following the determination of these associations, descriptive
analyses were performed to explore and illustrate these
associations by calculating the frequency of impacts experienced
at different categories of a factor across different categories of
another factor.

For example, the number of impacts recorded at each impact
location (factor 2) or impact type (factor 3) was calculated separately
for each player position (factor 1) (Figures 6A, C). This step
identifies the frequency of impact locations and types associated
with each specific position. To better illustrate the relative
distributions, the values were also divided by the total number of
impacts recorded at each player position, and the percentage values
were shown (Figure 6B; Supplementary Figures S2A-C;
Supplementary Tables S4, 5).

Similarly, the frequency of three impact types that involved head
impacts (factor 3: head-to-head, head-to-body, and head-to-
ground) across different categories of head impact location
(factor 2) was calculated (Figure 6D) and normalized to the total
number of impacts recorded at each impact location
(Supplementary Figure S2D; Supplementary Table S6). This
analysis determines the frequency of impact types for specific
impact locations.

2.6 Dominant direction of impacts:
components of kinematics parameters

To illustrate the dominant direction of impact force, moment,
and angular velocity for each player position, the x, y, and z
components of LA, AA, and AV parameters were extracted,
respectively, at the moment of their peak resultants and were
divided by their peak resultant magnitudes. For each player
position, these values were averaged in each specific direction (x,
y, and z) across all impacts to determine the prevalent direction of

FIGURE 5
Frequency of impact (per game) and distribution of impacts across four severity bins for each specific impact type for all five studied outputs: peak
angular acceleration (PAA), peak angular velocity (PAV), peak linear acceleration (PLA), 95th percentile of the maximum principal strain (MPS) and 95th
percentile of the maximum strain rate (MPSR). Two clusters are shown by dotted boxes.
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force, moment, and rotational motion during impact occurrence for
each specific position (Figure 7).

3 Results

3.1 Data summary

8,735 head exposure events were captured during 10 games, of
which 6,456 events were classified as false by the mouthguard
software, leaving 2,279 valid records. From these, merely
1,261 incidents displayed a PLA greater than 10 g. Video analysis
confirmed a total of 865 true impacts, of which only 766 impacts
recorded all kinematic components. The remaining impacts did not
record all kinematic components due to mouthguard sensor
malfunction. These 766 recorded impacts were included for
further analysis. Due to the limited number of recorded impacts
for the Safety (S) position (n = 8), we excluded this position from our
analysis to avoid drawing conclusions from insufficient data. The
cohort impact data demonstrated a mean ± SD of 17.1 ± 8.2 g for
PLA, 1,340.9 ± 903.0 rad/s2 for PAA, 12.4 ± 6.2 rad/s for PAV,
0.106 ± 0.056 for MPS, and 30.2 ± 15.3/s for MPSR. Moreover, no
athlete was clinically diagnosed with a concussion during the season.

3.2 Impact severity and frequency in
different player positions, impact locations,
and types

The results of GEE displayed the significant contribution of
player position, impact location, and type of impact to themagnitude
of all five response variables, including PLA, PAA, PAV, MPS, and
MPSR (all p-value <0.001). Following the severity binning and
normalization steps, the elbow method in the clustering analysis
identified three distinct clusters of player positions (Supplementary
Figure S1A) in terms of normalized impact frequency (per player per
game), along with the number of impacts at the four severity bins
across all five outputs (i.e., PLA, PAA, PAV, MPS, MPSR; Figure 3).
The first cluster, comprising OL and RB positions, demonstrated a
higher normalized impact frequency across all severity bins with an
average of 8.4 and 7.4 impacts per game in OL and RB positions,
respectively. OL and RB also showed a higher number of impacts at
“high” and “mid-high” severity bins across all parameters, ranging
from 3.2–3.8 impacts in OL and 3.7–4.5 impacts in RB positions at
these severity bins per game per player (Figure 3; Supplementary
Table S1). Although OL had a higher overall normalized impact
frequency than RB, the proportion of “high” and “mid-high” impacts
was greater in RB than in OL across all parameters, suggesting

FIGURE 6
Associations of player positions, impact locations, and impact types on head impact frequency. (A) the number of each head impact location
experienced by each player position. (B) Visual percentage representation of each head impact location experienced by each player position (C) the
number of each impact type experienced by each player position. (D) the number of impact types that involved head impacts (head-to-head, head-to-
body, and head-to-ground) across different categories of head impact location.
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slightly lower impact frequency but higher severity in RB than OL
position. The second cluster included LB, DL, CB, WR, QB, and TE,
characterized by lower normalized impact frequency and fewer
impacts at “high” and “mid-high” severity bins compared to
positions in the first cluster. The third cluster included only the
KO group with a significantly different pattern of receiving impacts,
with the lowest normalized impact frequency (Figure 3).

Similarly, the elbow method in clustering analysis
(Supplementary Figure S1B) identified two distinct clusters of

impact locations in terms of frequency (or in other words, the
number) of impacts at the four severity bins across all five
parameters (Figure 4). The first cluster, including “front-high”
and “front-low” locations, demonstrated a higher overall impact
frequency with 15.2 and 14.8 impacts per game on average for these
two locations, respectively. These two impact locations also showed
a higher number of impacts at the “high” and “mid-high” severity
bins across all parameters, ranging from 7 to 8.3 impacts per game in
“front-high” and 5.2–7.4 impacts per game in front-low (Figure 4;

FIGURE 7
(A) x, y, and z components of angular acceleration, angular velocity, and linear acceleration at peak resultant moments, normalized by peak
magnitudes, for each player position, illustrating the dominant direction of impact moment, angular motion, and force. (B) a graphical representation of
the distribution of peak angular acceleration vectors across different player positions for all impacts.
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Supplementary Table S2). The other eight locations with lower
frequency and fewer numbers of impacts at the “high” and “mid-
high” severity bins were included in the second cluster. Within the
second cluster, “side-high” exhibited the highest, while “rear-low”
and “rear-high” displayed the lowest overall impact frequency and
the lowest number of impacts at the “high” and “mid-high”
severity bins.

Furthermore, two distinct clusters were identified for the impact
type using the elbowmethod (Supplementary Table S1C) in terms of
overall impact frequency at the four severity bins across all five
parameters (Figure 5). The first cluster, including “head-to-head”
impacts, exhibited the highest overall impact frequency with
~32 impacts on average per game. This impact type also showed
the highest number of impacts at the “high” and “mid-high” severity
across all five parameters, ranging from 14.6–16.1 impacts per game
(Figure 5; Supplementary Table S3). The other four impact types
were incorporated in the second cluster, with lower overall impact
frequency as expected and fewer impacts at the “high” and “mid-
high” severity bins.

3.3 Associations between player positions,
impact locations, and impact types

The results of the chi-square test demonstrated that there is a
significant association between player position and impact location
(p-value <0.001), player position and type of impact
(p-value <0.001), and impact location and impact type
(p-value <0.001). This means that some specific positions are
more likely to experience a particular impact location and type,
indicating distinct patterns of impact based on player positions.

The distribution of impact locations across player positions
revealed a distinct pattern. For instance, the OL position
exhibited the highest proportion of frontal impacts, with 37% at
“front-high” and 38% at “front-low” (Figures 6A, B; Supplementary
Figures S2A, B; Supplementary Table S4). In contrast, the QB
position showed the lowest proportion of frontal impacts, with
just 23% at “front-high” and 8% at “front-low”. Notably, the QB
and CB positions experienced the greatest proportion of impacts at
the “rear” locations (27%), which is higher than for all
other positions.

In terms of the distribution of impact types across player
positions (Figure 6C; Supplementary Figure S2C; Supplementary
Table S5), the OL and QB positions recorded the highest (67%) and
lowest (11%) proportions of “head-to-head” impacts, respectively.
On the other hand, the QB and LB positions experienced the highest
proportion of “head-to-ground” impacts with 39% and 26%,
respectively. Furthermore, the highest proportion (33%) of
“body-to-body” impacts was recorded for the QB position
compared to other positions analyzed in this study.

The distribution of impact types across different impact
locations revealed that the majority of impacts from front
(“front-high”, “front-low”, “bottom-front”, and “top-front”) and
side (“side-high” and “side-low”) locations resulted from the
“head-to-head” impact type (Figure 6D; Supplementary Table
S2D; Supplementary Table S6). Conversely, most of the rear
impact locations (“top-rear”, “rear-high”, and “bottom-rear”)
were attributed to “head-to-ground” impacts.

3.4 Dominant direction of head impacts

Our data revealed that the predominant direction of impact
force (PLA) was x and predominant direction of moment (PAA) and
angular velocity (PAV) for all given positions was y direction, most
causing sagittal rotation (Figure 7A). These results imply that the
dominant plane for PLA is normal to frontal plane, while PAA and
PAV primarily manifest in the sagittal plane. Additionally, Figure 7B
provides a graphical representation of the distribution of PAA
vectors across different player positions for all impacts.

4 Discussion

4.1 Novel methodologies in high school
football head impact analysis

To enhance the investigation of head impact characteristics in
high school football, this pilot study introduced and utilized several
approaches, such as severity binning, impact characteristic
clustering, position-specific analysis, and normalizing impacts
based on the number of players in each position. This study is
aims at presenting novel methodologies and exploring trends rather
than making definitive conclusions in high school football. While
the findings are constrained in scope due to several factors—such as
the limited sample size, small number of games, dependence on a
single high school team, potential inaccuracies in mouthguard
sensors despite video validation, and the use of a generic adult
finite element brain model for all younger participants—this pilot
study provides a foundation and introduces novel approaches of
analysis for future, larger-scale research. The outcomes of this study
and advantages of these methodologies will be discussed further in
the following sub-sections.

4.1.1 The advantages of severity binning approach
Despite the common use of averaging kinematic data to assess

impact severity in the literature, the binning approach, used in this
study, addresses the limitation of the traditional method by ensuring
that high-severity impacts are not overshadowed by a large number
of low-impact events. The limitation with the averaging approach
affects the assessment of severity for line positions, as high number
of low impacts received by line position players throughout the
game, significantly decreases the average kinematic values. While
most kinematic studies using traditional methods reported line
positions as low-risk positions in high school (Schnebel et al.,
2007; Broglio et al., 2013; Cecchi et al., 2021), collegiate football
(Mihalik et al., 2007; Schnebel et al., 2007; Crisco et al., 2010; Crisco
et al., 2011; Campolettano et al., 2019; Lee et al., 2021), and NFL
(Karton et al., 2020), the OL position was identified as a high-risk
position using binning approach in our study, despite having the
lowest average kinematic values among all studied positions herein.
Similarly, the binning approach demonstrated that frontal impacts
have the highest frequency and represent a high-risk location due to
large number of “high” and “mid-high” severity impacts. While
previous studies reported frontal impacts as the most frequent
studies (Broglio et al., 2009; Crisco et al., 2010; DiGuglielmo
et al., 2021; Choi et al., 2022), their averaging methods
emphasized the top of the head as high-risk due to its higher
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average impact magnitude (e.g., mean PLA of 19.6 g for top impacts
vs 17.6 g for frontal impacts in our data). However, averaging hides
the high number of severe frontal impacts, as their higher frequency
includes many low-magnitude impacts, lowering the average. Our
binning approach captures this distribution, showing that frontal
impacts also involve many “high” and “mid-high” severity impacts,
making them a high-risk location alongside top impact location.

4.1.2 The advantages of normalizing impacts based
on the numbers of players in each position

The majority of kinematics studies in this field have primarily
focused on the total number of impacts received in each position,
without considering the number of players involved in each position
(Mihalik et al., 2007; Schnebel et al., 2007; Crisco et al., 2010; Crisco
et al., 2011; Broglio et al., 2013; Campolettano et al., 2019; Karton et al.,
2020; Cecchi et al., 2021; Lee et al., 2021), leading to neglect of the
probability of impacts that a player may experience in a specific
position. Despite the valuable insight these studies provide into the
frequency of impacts occurring in each position, they fall short as a
reliable metric for the assessment of the actual frequency and risk
associated with playing in a particular position. Several epidemiological
studies have attempted to address this issue through the normalization
of the data based on the number of players in each position using
techniques such as Game Positions and Athlete Exposures (Guskiewicz
et al., 2003; Pellman and Viano, 2006; Guskiewicz et al., 2007; Casson
et al., 2010; Myer et al., 2014). These approaches have the drawback of
potentially underestimating or overestimating the risk due to variations
in the number of players in each position, because they assume constant
team formation. Nathanson et al. (Nathanson et al., 2016) successfully
addressed this problem by considering the exact number of players
involved in each position, based on the number of concussions and
injuries. Expanding on their approach, our study assessed the risk
associated with playing specific positions based on the frequency and
severity of head impact kinematics experienced during matches. By
accounting for the precise number of players in each position, a more
comprehensive evaluation of the risks involved can be provided.

4.1.3 Position-specific study in high school football
Position-specific studies can yield significant contributions to

mitigating head injuries and concussions in football, thereby
enhancing player protection, and minimizing associated risks.
Although this field has been extensively researched in collegiate
football (Mihalik et al., 2007; Schnebel et al., 2007; Crisco et al., 2010;
Crisco et al., 2011; Campolettano et al., 2019; Lee et al., 2021) and the
NFL (Karton et al., 2020), the number of studies that focus
specifically on high school football positions is limited. The
frequent change of player positions at the high school level
presents a challenge for conducting position-specific studies. By
monitoring player positions at every recorded impact during
matches, this study performed a position-specific analysis in high
school football.

4.2 Factors influencing head impact
kinematics in high school football

In this study, three factors were studied: player position, head
impact location, and impact type. Our results revealed a significant

contribution of all these factors to the frequency and magnitude/
severity of head kinematics and brain strain parameters (e.g., PLA,
PAA, PAV, MPS, MPSR) (GEE, p-value <0.001). These results align
with previous studies indicating players’ positions, impact location,
and impact type significantly influence the frequency and severity of
head kinematics and brain tissue deformation parameters (Broglio
et al., 2009; Crisco et al., 2010; Crisco et al., 2011; Rowson andDuma,
2011; Cobb et al., 2013; Wong et al., 2014; Munce et al., 2015; Kuo
et al., 2018; Alois et al., 2019; Karton et al., 2020; Cecchi et al., 2021;
DiGuglielmo et al., 2021; Choi et al., 2022; Marks et al., 2022).

4.2.1 Player positions
Our findings imply that high school football players in OL and

RB positions are at higher risk of experiencing frequent and more
severe impacts compared to other positions. Previous studies
indicated that line positions, including OL and DL, experience
frequent impacts with lower severity (i.e., average magnitude),
while skilled positions, RB, LB, CB, WR, QB, TE, KO, experience
less frequent with higher severity (i.e., average magnitude) impacts
in terms of kinematics and tissue deformation parameters in high
school (Schnebel et al., 2007; Broglio et al., 2013; Cecchi et al., 2021),
collegiate football (Mihalik et al., 2007; Schnebel et al., 2007; Crisco
et al., 2010; Crisco et al., 2011; Campolettano et al., 2019; Lee et al.,
2021), and NFL (Karton et al., 2020). Aligned with our findings,
Broglio et al. (2011) reported that line positions experience the
highest magnitude of cumulative rotational and linear acceleration.
The high frequency of impacts for OL in our study (8.4 impacts per
player per game on average) aligns with previous findings in the
field, as OL players are involved in nearly every play at the line of
scrimmage where most contacts occur. When considering the
average magnitude in our dataset, it was found that OL has the
lowest severity of impacts compared to all other positions across all
five parameters. However, using the severity binning approach, the
OL position displayed a higher number of impacts at the “high” and
“mid-high” severity bins than other positions (except RB), a
perspective not often articulated in previous studies. While prior
studies have attributed the low-magnitude impacts endured by OL
to their short-distance and low-velocity collisions at the line of
scrimmage (Zanetti et al., 2013; Cecchi et al., 2021), it is important to
highlight that the typical larger physical size of these players
compared to other positions may result in increased momentum,
potentially leading to more severe impacts. Overall, the nature of
their play, their large physics, and close-proximity impacts can
explain their high frequency of impacts and diverse range of
severity, including a high number of impacts at our “high” and
“mid-high” severity bins. One would expect a similar pattern for the
DL as observed for the OL; however, the total frequency of impacts
for the DL was lower in our study, possibly due to the fact that our
cohort spent more time in the offensive phase of play than the
defensive. This is a limitation of our study and further studies with
larger and more diverse cohorts are needed to draw more general
conclusions.

The RB position, another position with considerable risk
according to our analysis, displayed the highest number of
impacts at the “high” and “mid-high” severity bin and high
overall normalized impact frequency (with 7.4 impacts per player
per game on average) among all positions studied. This observation
is aligned with previous studies, which reported that the RB players,
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as a skilled position, experience the greatest or among the greatest
magnitudes/severity of impacts compared to all other positions
(Mihalik et al., 2007; Crisco et al., 2011; Crisco et al., 2012). Our
previous discussion highlighted the importance of normalizing
impact frequency based on the number of players who played in
each position per game. This normalizing approach, a viewpoint not
often articulated in previous studies, revealed RB as a position with a
higher frequency of impacts, contrary to previous studies that
reported RB as a skill position with a lower frequency but higher
magnitude of impact (Crisco et al., 2011; Karton et al., 2020). In fact,
RB players have enough space to accelerate when carrying the ball in
the game, making them more likely to be tackled at high-velocity
impacts, resulting in high frequency and severe impacts. Although
OL has a higher normalized impact frequency than RB, RB exhibits a
greater proportion of impacts at “high” and “mid-high” severity bins
across all five parameters. This may be attributed to the nature of
their play, where RB players experience impacts with higher velocity,
leading to more severe impacts compared to OL players, who
typically encounter more frequent and close-distance impacts.

There is no uniform agreement regarding the relationship
between player positions and the risk of concussion and CTE in
epidemiological studies. While some studies found no association
between the player position and risk of concussion (Baugh et al.,
2015) or CTE (Schwab et al., 2021), there are many studies that
reported RB (Powell and Barber-Foss, 1999; Gessel et al., 2007;
Marar et al., 2012; Nathanson et al., 2016; Tsushima et al., 2019) and
OL (Guskiewicz et al., 2003; Mack et al., 2021) as offensive, and LB
(Powell and Barber-Foss, 1999; Guskiewicz et al., 2003; Gessel et al.,
2007; Marar et al., 2012) and CB (Marar et al., 2012; Nathanson
et al., 2016; Lessley et al., 2018) as defensive positions with the
highest risk of concussion in high school football, college football,
and NFL. This discrepancy may be attributed to the demographic
under study (high school, college, NFL) and the method used to
evaluate the concussion risk. Some studies just reported the
percentage of concussions for each position (Guskiewicz et al.,
2003; Gessel et al., 2007; Marar et al., 2012), while others
considered the standard number of players (Powell and Barber-
Foss, 1999; Guskiewicz et al., 2003; Pellman and Viano, 2006; Clark
et al., 2017), or the total number of players played in each position
(Powell and Barber-Foss, 1999; Guskiewicz et al., 2003; Nathanson
et al., 2016; Tsushima et al., 2019; Mack et al., 2021). Several studies
reported that OL is the position with the highest risk of concussion
(Guskiewicz et al., 2003; Mack et al., 2021) while others have
indicated that RB is the most susceptible position to concussions
among all offensive players in high school football (Powell and
Barber-Foss, 1999; Gessel et al., 2007; Marar et al., 2012; Kerr et al.,
2014; Tsushima et al., 2019). These studies align with our findings,
demonstrating that RB and OL experience more frequent and severe
impacts among all positions. The more frequent but less severe
impacts experienced by OL compared to RB may lead to sub-
concussive and undiagnosed concussion. Baugh et al. (Baugh
et al., 2015) reported that OL develops more post-impact
symptoms and undiagnosed concussion than other positions.

The second (LB, DL, CB, WR, QB, TE) cluster in our study
includes positions with lower normalized overall impact frequency
and fewer numbers of impacts at the “high” and “mid-high” severity
bins. In this cluster, LB and DL exhibited a higher overall impact
frequency compared to other positions. Previous studies have

repeatedly reported that DL, LB, and OL are among the positions
experiencing more frequent impacts (Crisco et al., 2010; Crisco et al.,
2011; Broglio et al., 2013; Karton et al., 2020). In fact, these two
positions are involved in many impacts as they actively strive to
oppose opponent offensive players. It is noteworthy that lower
frequency for a specific position does not necessarily indicate a
lower risk of injury. For instance, while CB and QB may experience
fewer impacts in the game, they still experience impacts at the “mid-
high” and “high” severity bins. This can explain why some studies
reported these two positions as having a high risk of concussion
(Powell and Barber-Foss, 1999; Guskiewicz et al., 2003; Gessel et al.,
2007; Marar et al., 2012; Nathanson et al., 2016; Lessley et al., 2018).

4.2.2 Head impact locations
Our results imply that high school football players are at a

greater risk of receiving more frequent and severe impacts on
front locations (i.e., “front-high” and “front-low” in the first
cluster) than other head locations. Most studies consistently
reported frontal head impact as the most frequent impact
location in youth (Cobb et al., 2013; Munce et al., 2015; Choi
et al., 2022), high school (Broglio et al., 2009; Rowson and Duma,
2011; Cecchi et al., 2021), and collegiate football (Crisco et al.,
2010; Crisco et al., 2011; Kuo et al., 2018; Choi et al., 2022).
However, there are mixed findings regarding the risk and severity
of impacts (i.e., average magnitude) for impact locations across
different studies. Several studies indicated that impacts to the top
locations had the highest PLA and the lowest PAA (Mihalik et al.,
2007; Broglio et al., 2009; Crisco et al., 2011; DiGuglielmo et al.,
2021; Choi et al., 2022), while others reported front impact
locations were associated with the highest PAA (Broglio et al.,
2009; Choi et al., 2022). Conversely, some studies reported that
impacts to the rear location had the highest PLA and PAA
(Fukuda et al., 2019). These discrepancies could be attributed
to several factors, including differences in the study demographic
(i.e., youth, high school, college), the method for obtaining
impact locations (i.e., video or sensor), and the accuracy of
sensor algorithms to pinpoint the location of impacts (Wu
et al., 2014; Kuo et al., 2018). Additionally, relying solely on
average magnitude as a measure of severity, as discussed earlier,
is an important limitation with some of previous studies. When
using average magnitude as severity, we found the top followed
by side locations to have higher values and severity compared to
other impact locations across all five parameters. However, our
severity binning approach demonstrates that “front-high” and
“front-low” are not only the most frequent impact locations but
also have the highest number of impacts with “high” and “mid-
high” severity. These findings can be due to the nature of the
sport, where players, especially in line positions (i.e., OL, DL),
frequently face their opponents directly, resulting in a high
frequency of frontal impacts with diverse severity. The
binning approach evidently exhibits superior effectiveness over
average magnitude in analyzing the severity of impacts across
different locations.

The second cluster includes locations with lower frequency and
severity. Within this cluster, “side-high” demonstrated the higher
frequency and severity compared to other locations, likely due to
common football maneuvers such as tackles and blocks involving
side impacts. Some studies also reported that following the front
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impacts, the side location is the most frequent impact location in
American football (Cecchi et al., 2021; Choi et al., 2022). In contrast,
“rear-low” and “rear-high” locations displayed the lowest frequency.

Our findings are consistent with epidemiological studies
indicating that most concussions in high school football are
primarily due to impacts from the frontal location, followed by
side impacts (Broglio et al., 2010; Kerr et al., 2014). Similarly, the
front or side of the head is identified as the highest risk location for
concussions in collegiate football (Guskiewicz et al., 2007; Beckwith
et al., 2013; Mihalik et al., 2020) and NFL (Clark et al., 2017; Lessley
et al., 2018).

4.2.3 Head impact types
Our findings indicate that high school football players are at an

elevated risk of incurring more frequent and severe “head-to-head”
impacts compared to other types of impacts. Our results regarding
the frequency and severity, based on the binning approach, align
with previous findings. Most research in this field consistently
indicated that “head-to-head” (i.e., helmet-to-helmet) impacts are
associated with the highest frequency and severity (i.e., average
magnitude) in youth (Alois et al., 2019; DiGuglielmo et al., 2021;
Marks et al., 2022) or high school American football (Wong et al.,
2014) and NFL (Karton et al., 2020). Moreover, epidemiological
studies reported that “head-to-head” impact causes concussion
more than any other type of impact in youth (Kontos et al.,
2013), high school football (Kerr et al., 2014) and NFL (Clark
et al., 2017; Lessley et al., 2018). The high frequency and severity
of “head-to-head” impacts could be attributed to several factors.
First, the prevailing misconception among players that helmets
provide comprehensive protection may lead them to engage in
riskier plays and use their heads to tackle or block their
opponents. Secondly, the nature of the sport and player tactics
play a significant role, where players lead with their heads to gain
leverage, disrupt an opponent’s path, and boost their aggressiveness
in intimidating their opponents.

4.2.4 Association of different influencing factors
Moreover, in this study, a significant association was found

between player positions, impact locations, and impact types (chi-
square, p-value< 0.001). This suggests that the position a player
adopts in high school football may determine the typical location
and type of impact they experience in the game. The result of
descriptive analysis demonstrated that the distribution of impact
locations across different player positions has a distinct pattern. For
example, OL experienced the highest proportion of frontal impacts,
while QB showed the lowest proportion of frontal impacts. This
pattern is consistent with the literature on collegiate football (Crisco
et al., 2011). In addition, the highest proportion of rear impact for
QB also aligns with finding from collegiate football (Crisco
et al., 2011).

The distribution of impact types across player positions was also
distinct. In our study at high school football level, OL and QB
recorded the highest and lowest proportions of “head-to-head
impacts, respectively, while QB and CB experienced the highest
proportion of “head-to-ground” impacts compared to other
positions. Similarly, at the NFL level, Karton et al. (2020)
reported OL as having the highest proportion of “head-to-head”,
with QB and CB having a high proportion of “head-to-ground”

impacts. This head impact frequency information may explain why
Lessley et al. (2018) found most OL concussions occurred from
“head-to-head” impacts. Additionally, in our study, CB recorded the
highest proportion of “body-to-body impacts, indicating a unique
pattern of impact for this position. Additionally, our result
demonstrated that the types of impacts would likely affect the
location of impact on the head (chi-square, p-value< 0.001). The
majority of frontal and side impact locations were caused by “head-
to-head impacts, while most of the rear impact locations were caused
by the “head-to-ground” impacts.

4.2.5 Dominant impact direction
Our findings revealed that the dominant direction of impact

forces (PLA) was the x-axis (i.e., forward and backward direction)
normal to the coronal plane, and the dominant direction of moment
(PAA) and angular rotation (PAV) was the y-axis (i.e., lateral
direction). This suggests that most impacts in our study occurred
from the front, causing rotation in the sagittal plane. The dominance
of moment and angular velocity in the sagittal plane in our recorded
high school football impacts, along with previous human studies
(Weaver et al., 2012) that found higher brain strain in this rotational
direction compared to others, underscores the importance of
managing sagittal rotation to mitigate brain injury at this level.

4.2.6 Comparison to injury thresholds and player-
specific data

To provide additional context regarding the severity of recorded
head impacts, we have incorporated a supplementary box-plot figure
(Supplementary Figure S3) that compares all collected head impact data
within each position category to the range of established injury
assessment reference values (in other words, injury thresholds) for
concussion at a 50% risk, as reported in the literature (Rowson et al.,
2012; Rowson et al., 2014; Campolettano et al., 2020; Siegmund, 2024).
In cases where high school/college thresholds were not available, we
adopted the thresholds established for the NFL as a reference (Kleiven,
2007; Kimpara and Iwamoto, 2012; Wu et al., 2021). This analysis was
performed for the PAA, PLA, and MPS, which are widely reported in
the literature and widely used for developing concussion risk curves.
The results indicated that almost all of the recorded impacts fell below
these thresholds, consistent with the lack of reported concussions
during the recorded games. These findings further support the
distinct characteristics of head impacts in high school football,
which typically exhibit lower severity compared to collegiate and
professional levels for which most thresholds have been developed.
Our cohort, consisting exclusively of high school players, exhibited
lower impact severity compared to collegiate or professional athletes
(Schnebel et al., 2007; Crisco et al., 2010; Crisco et al., 2011; Lee et al.,
2021; Choi et al., 2022), reflecting the differences from those more
professional levels and more aligning more closely with prior studies
focusing on head impacts in high school football (Broglio et al., 2009;
Breedlove et al., 2012; Cecchi et al., 2021). Furthermore, differences in
sensor accuracy account for another source of variations in
measurement between this study and some previous studies that
used different sensors, such as the HIT system, xPatch, etc., for
measuring head kinematics (Broglio et al., 2009; Kieffer et al., 2020;
Lee et al., 2021; Jones et al., 2022).

Additionally, for comparative purposes, basic player-specific
data, including the positions each player played, frequency of
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impacts they received, and severity (average) of head impact
kinematics and kinetics (PAA, PAV, PLA, MPS, and MPSR),
were summarized in Supplementary Table S7. While this study
focused on patterns of head impacts based on player position,
impact location, and impact type, we acknowledge that player-
specific analyses could offer valuable insights. However, such
analyses are beyond the scope of this pilot study, as the limited
sample size and variation in positions played make it impractical to
fully explore interactions between position-specific and player-
specific data herein.

4.3 Recommendations for enhancing safety
in high school football from this study

While our study is a pilot with a limited sample size, a small
number of games, and data from a single high school team, the
observations from this preliminary analysis suggest the following
recommendations. Considering the high frequency and severity of
“head-to-head” impacts, mostly resulting in frontal impacts, high
school football game rules could be modified to discourage such
collisions, especially for positions like the OL position. Helmet
protocol developers and helmet companies could also focus on
the frontal area when designing helmets for this group to better
dissipate forces from frequent and severe impacts from this location.
Additionally, position-specific helmets could enhance protection
(Lessley et al., 2020) by adjusting the distribution and stiffness of
padding materials based on the distribution of impact locations for
each position. For instance, helmets for OL could be designed to
absorb more energy from frontal impacts, while helmets for QB
could be designed to also mitigate energy from “top-rear” and “side-
high” impacts and helmets for RB should be designed to handle both
frequent and severe impacts.

4.4 Limitations

The primary limitation of our study is the generalizability of
our findings. Factors such as players skill level, physical fitness,
game strategies, and gameplay intensity could influence the
results. For instance, the high success rate of the studied team
(winning nine out of 10 games) may have contributed to the
observed higher frequency of impacts for OL compared to DL.
While our findings provide insights into high school football, the
restricted sample size (16 players from a single team, across
10 games, within one season) limits the ability to validate and
generalize these findings, emphasizing the need for further
research. Additionally, while our subjects were aged 14–17, we
used a validated and widely accepted adult GHBMC head FEM
for impact simulation. Previous studies, however, have shown
that brain tissue deformation outcomes can vary across different
FE models (Fahlstedt et al., 2021; Ji et al., 2022). This study does
not directly address long-term pathophysiological effects of
repeated head impacts but provides a biomechanical basis for
understanding cumulative head impact exposures and brain
deformations. These insights could inform future longitudinal
studies exploring the relationship between cumulative impacts
and long-term neurological outcomes.

We selected Prevent Biometrics IMM sensors for our study due
to their high accuracy in the laboratory and on-field assessments and
low false-negative rates compared to other systems (Kieffer et al.,
2020; Jones et al., 2022). However, the possibility of undetected low-
magnitude impacts near the trigger threshold (false negative) cannot
be entirely ruled out, as noted in previous studies (Kieffer et al.,
2020). In our subset video analysis (1 game, ~10% of the data), we
observed a 6% false-negative rate, comparable to the 4% reported in
the literature (Jones et al., 2022). Although these undetected impacts
are likely low in magnitude and minimally affect head impact
kinematics evaluation, they may influence incidence rates,
particularly for positions with fewer impacts overall. Moreover,
the results related to the frequency and severity of impact
locations, as well as their distribution across different positions,
should be interpreted with caution due to potential limitations in the
localization accuracy of the Prevent Biometric mouthguard. While
Bartsch et al. (2014) reported an accuracy of 49.4% for detecting
impact locations, our subset video analysis (1 game, ~10% of the
data) indicated an improved accuracy of 65.2%. However, this still
reflects possible inaccuracies in location determination.
Comprehensive video analysis for all impacts was not feasible
due to time constraints and incomplete footage for some impacts.
In our subset, 22% of impacts could not be definitively located via
video review, highlighting the challenges in validating sensor-based
localization. These limitations should be carefully considered when
interpreting findings related to impact locations. Finally, despite
verifying impacts and player positions using video footage, the
interpretation could vary based on footage quality and
camera angles.

5 Conclusion

The study provides valuable insights into the impact
characteristics among high school football players, indicating
the significant effect of player positions, impact locations, and
types of impact on the frequency and severity of head impacts. By
using mouthguard sensors and comprehensive binning and
normalizing approaches, we have identified significant impact
patterns for each specific positions and demonstrated that OL
and RB positions face higher risks due to more frequent and
severe impacts. The findings imply that the frontal impact
locations mostly resulted from “head-to-head” impacts are
more frequent and severe in high school football. We
demonstrated how the frequency and distribution of impact
location and impact type will vary with player position in high
school football. These findings, although from a pilot study and
should be interpreted with caution, can inform further
interventions in game regulations, training practices, and
protective equipment design to mitigate the frequency and
severity of head impacts in high school football to improve
player safety.
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