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Objective: This study investigated upper limb kinematics and muscle co-
activation in wheelchair tennis players during the forehand stroke. By
analyzing linear and angular kinematic variables alongside muscle co-
activation patterns, the study aimed to provide insights into the biomechanical
mechanisms supporting forehand stroke performance.

Method: Fifteen professional male wheelchair tennis players (height: 163.9 ±
2.05 cm; mass: 64.1 ± 3.07 kg; age: 32.2 ± 7.97 years) participated in this study.
Electromyographic data from six muscles around the dominant arm joints were
recorded using the Myon system. Four fixed GoPro Hero 8 cameras (120 Hz)
captured 3D video, and kinematic analyses were performed using the APAS
system. The forehand stroke was analyzed across three phases: (1) backswing,
(2) forwardswing, and (3) follow-through.

Results: The results showed significant phase-specific changes in muscle co-
activation for the shoulder (p < 0.001), elbow (p < 0.005), and wrist (p < 0.01).
Muscle co-activation was highest during the backswing phase, decreased during
the forwardswing, and increased again during the follow-through phase. This
pattern reflects the need for joint stability and control, particularly when changing
stroke direction and slowing the arm after impact.

Conclusion: These findings provide novel insights into the kinematic and
neuromuscular mechanisms underlying the forehand stroke in wheelchair
tennis. The data provide hypotheses about potential training and rehabilitation
strategies that should be tested by prospective studies. The results also highlight
the unique demands of wheelchair tennis, contributing to inclusive, evidence-
based approaches to enhancing performance and safety in disability sports.
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1 Introduction

Wheelchair tennis is a prominent Paralympic sport that follows similar rules to
traditional tennis, with the key exception that players are allowed two ball bounces
(Williamson et al., 2024). Despite the significant growth in Paralympic sports, there is
limited research addressing the biomechanics and muscle activity in wheelchair tennis,
particularly concerning the forehand stroke (Rietveld et al., 2024). The sport demands
frequent directional changes and multidirectional mobility, which requires players to both
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propel their wheelchairs and handle a racket simultaneously. This
combination of tasks introduces a layer of complexity, as players
must perform high-intensity movements like sprinting, braking, and
turning while maintaining racket control (Sanchez-Pay et al., 2023).
Improving our understanding of the mobility patterns and stroke
mechanics in wheelchair tennis is critical for optimizing player
performance and creating tailored training programs (Rietveld
et al., 2023).

The forehand stroke is especially important in tennis, as it allows
players to generate high ball velocities and is typically used more
frequently than the backhand in competitive play (Fernandez-
Fernandez et al., 2010; Reid et al., 2016). The stroke consists of
three phases: backswing, forwardswing, and follow-through, each
involving specific biomechanical events (Genevois et al., 2020).
Maintaining racket control and force transfer to the racket
during these phases are essential to high-level performance (shot
accuracy, ball speed and spin). However, repetitive stress placed on
the upper limb during these movements also increases the risk of
musculoskeletal injuries (Roetert et al., 2024). To address this, tennis
players and coaches should not only work on enhancing overall
forearm muscle strength but also prioritize balancing the strength of
the wrist flexor and extensor muscles. This balance is particularly
important for reducing impact loads associated with both Eastern
and Western grips, ultimately improving performance, enhancing
comfort, and minimizing the risk of sports injuries (Dong
et al., 2024).

Wheelchair tennis athletes are particularly prone to overuse
injuries in the shoulder due to the constant load applied during
propulsion and stroke performance. This need to generate and
transfer forces from the chair through the trunk, arm and racket
can lead to muscle imbalances, especially in the scapular and
shoulder complex, which increase the risk of shoulder injuries
(Silva et al., 2010; Morrow et al., 2011). Furthermore, the elbow
and wrist play crucial roles in transmitting force during the stroke.
The elbow serves as a key joint in the kinetic chain of the upper
extremity, transferring forces through the arm segments to the
racket. Repeated stress on the elbow and wrist can impair force
regulation and further contribute to injury risk (Heales et al., 2016;
Ju et al., 2021).

Muscle co-activation, the simultaneous contraction of agonist
and antagonist muscles, is crucial for joint stability, motor control,
and injury prevention during high-intensity tasks like forehand
strokes and gripping sport implements (Hortobagyi et al., 2009;
Nagai et al., 2011). This is especially important for maintaining joint
stiffness and controlling complex stroke movements (Garcia-
Vicencio et al., 2024).

Recent advancements in motion capture technologies and
wearable sensors have enabled more precise analysis of upper
limb kinematics and muscle activity during sports performance
(Shieh et al., 2016; Rum et al., 2021). These tools provide
detailed insights into movement patterns, offering a deeper
understanding of biomechanics, muscle activation patterns, and
their implications for performance and injury risk. This
knowledge is invaluable for optimizing training and rehabilitation
strategies. However, despite these technological advancements, a gap
remains in the literature regarding the interaction between muscle
co-activation and kinematic variables during the various phases of
the forehand stroke in wheelchair tennis.

Therefore, the purpose of this study is to investigate the
kinematics and muscle co-activation patterns of the
dominant arm during the forehand stroke in wheelchair
tennis. We specifically sought to address the following
research questions:

1. What are the key kinematic differences in the dominant arm
during the different phases of a forehand stroke?

2. How do muscle activation levels vary among key muscles
during the different phases of a forehand stroke?

3. What is the muscle co-activation observed between
antagonistic muscle groups throughout the forehand stroke?

2 Materials and methods

2.1 Subjects and study design

In this study, we used G-Power software version 3.1.9.7
(Universität Kiel, Germany) to determine the necessary
sample size. Assuming an effect size of 0.45, with a
significance level (α) of 0.05 and a statistical power of 95%,
the calculation indicated that 15 participants would be required.
Fifteen professional male wheelchair tennis players (mean
height: 163.9 ± 2.1 cm, mean mass: 64.1 ± 3.1 kg, mean age:
32.2 ± 8.0 years) participated in this study. All participants held
official rankings in the Egyptian Tennis Federation and regularly
competed in professional wheelchair tennis tournaments. The
study adhered to the guidelines of the Declaration of Helsinki
and was approved by the university’s institutional ethics
committee. Before participation, all subjects provided written
informed consent.

2.2 Experiment protocol

Following a 15-minute warm-up consisting of stretching
exercises, protocol familiarization, and targeted shoulder and
elbow mobility exercises. The participants were asked which
limb they would prefer to use for the performance and exercises
in order to identify which limb was dominant (Kotsifaki et al.,
2021), and performed three successful forehand stroke attempts,
each separated by 1-min rest intervals. The forehand stroke was
analyzed across three phases: backswing, which begins at the
initiation of the movement and ends with elbow extension;
forwardswing, which starts with the arm’s forward motion and
ends at ball release; and follow-through, which begins at ball
release and continues until the completion of the movement.
The study assessed three linear kinematic parameters (change
ratio of resultant displacement, change ratio of resultant
velocity, and change ratio of resultant acceleration) and three
angular kinematic parameters at the sagittal plane (change ratio
of angle, change ratio of angular velocity, and change ratio of
angular acceleration) during each phase. Additionally, ball-related
metrics such as ball height, ball velocity, and ball release angle after
impact of the racket were measured. For each participant, the
kinematic variables and co-activation index were averaged across
three trials.
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2.3 Kinematic recording and analysis

Seventeen reflective markers were applied to an-atomical
landmarks using double-sided adhesive, including the anterior
head, bilateral acromion processes, medial and lateral condyles of
the humerus, styloid processes of the wrists, and the dorsum of the
second and fifth metacarpal heads. Markers were also placed on the
most lateral prominence of the greater trochanter. The 3D position
of each marker was recorded at 120 Hz using four fixed GoPro
cameras (GoPro HERO 8 Black; GoPro Inc., San Mateo, CA),
synchronized using GoPro remote (see Figure 1).

The video recordings were digitized automatically using the APAS
system (Ariel Dynamics, United States) and revised manually for data
accuracy, then the kinematic data were filtered at 6 Hz using a 4th
order low-pass Butterworth filter. Kinematic data was analyzed for
three phases of the forehand stroke: (1) backswing, (2) forwardswing,
and (3) follow-through. To compare variations, graphs depicting 3D
kinematic outcomes (displacement, velocity, and acceleration) were
generated (Figures 2, 3). The segment 3D coordinates were
determined using the Direct Linear Transformation (DLT)
according to the joint coordination system of the International
Society of Biomechanics method (Abdel-Aziz and Karara, 2015)
implemented in APAS. The local coordinate system for each

segment was defined at the proximal joint center, the coordinate
axes were defined: x = horizontal, y = vertical, and z = medial-lateral
(Wu and Cavanagh, 1995; Soltani et al., 2016).

2.4 sEMG activity recording and analysis

In accordance with that surface electromyography (sEMG) was
recorded using Myon m320RX sensors (Myon, Switzerland). The
muscles monitored included the anterior deltoid (AD), posterior
deltoid (PD), biceps brachii (BB), triceps brachii (TB), wrist flexor
(WF), and wrist extensor (WE). The electrodes were positioned
following SENIAM and Cram’s guidelines (Hermens et al., 2000;
Criswell, 2010). Before electrode placement, the skin was shaved and
cleaned. Bipolar surface electrodes (SKINTACT FS-RG1/10,
Austria) were applied with an inter-electrode distance of 2 cm, in
accordance with SENIAM guidelines (Hermens et al., 2000).

The EMG signals were sampled at a frequency of 1,000 Hz and
converted into digital form using a 16-bit analog-to-digital (A/D)
converter. An additional camera was used for recording a
synchronized video with the EMG data using proEMG software
(Myon 320, Schwarzenberg, Switzerland). This also ensured time
synchronization between the data for determining the performance

FIGURE 1
Schematic representation of the testing setup.
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phases before next processing. Signal processing was performed
using Visual3D (C-Motion Inc., MD, United States). To minimize
motion artifacts, a high-pass Butterworth filter with a 25 Hz cutoff
frequency was applied. The signals were then rectified and low-pass
filtered at 15 Hz using a 100 ms window to obtain an enveloped
EMG signal using the root mean square (RMS) (Figure 4)
(Quittmann et al., 2020). EMG amplitudes were normalized to
the maximum signal observed during the trials (NEMG)
(Hermens et al., 2000).

2.5 Muscle co-activation index (CoI)

Muscle co-activation around the dominant arm joints was
estimated using the Co-activation Index (CoI) Equation 1.

CoI � ∫t2

t1
NEMGantagonist t( ) dt

∫t2

t1
N[ EMGagonist +NEMGantagonist] t( ) dt

× 100 (1)

where t1 and t2 represent the beginning and end of each phase,
NEMGantagonist denotes the activity of the antagonist muscle, and
NEMGagonist denotes the activity of the agonist muscle during the
backswing, forwardswing, and follow-through phases, separately
(Kellis et al., 2003; Oliveira et al., 2017; Akl et al., 2021;
Waanders et al., 2021).

2.6 Statistical analysis

Descriptive statistics, including means, standard deviations, and
95% confidence intervals were calculated. Data distribution was
assessed using the Shapiro-Wilk test, confirming the suitability for
parametric analysis. Differences between phases were analyzed using
one-way repeated-measures analysis of variance (RM ANOVA).
Post hoc comparisons were performed using Sidak tests. All
statistical analyses were conducted using IBM SPSS Statistics v27
(IBM Corp., NY, United States).

FIGURE 2
Graphical representations of the means and standard deviation for ankle angle of the linear kinematics; (A) hand resultant displacement, (B) forearm
resultant displacement, (C) upper arm resultant displacement, (D) hand resultant velocity, (E) forearm resultant velocity, (F) upper arm resultant velocity,
(G) hand resultant acceleration, (H) forearm resultant acceleration, and (I) upper arm resultant acceleration during forehand stroke phases (Backswing
phase, Forwardswing phase, and Follow-Through phase).
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3 Results

The mean values and standard deviations for the ball height
(0.87 ± 0.18 m), ball release velocity (16.09 ± 1.60 m/s), and ball
release angle at sagittal plane (13.1° ± 4.3°) during the wheelchair
tennis forehand stroke. For segment displacement in the dominant
arm (upper arm, forearm, and hand), a significant main effect of
phase was observed (p < 0.05, p = 0.001, p < 0.005, respectively;
Figures 5A–C). Post hoc tests revealed significant decreases in
displacement between the forwardswing and follow-through
phases for the upper arm, forearm, and hand (p = 0.002, p <
0.001, p < 0.001, respectively). However, no significant variation
was found between the backswing and forwardswing phases, or
between the backswing and follow-through phases.

For hand velocity, the Repeated Measures ANOVA showed a
significant main effect of phase (p < 0.05). Post hoc analysis revealed
significant increases in hand velocity between the backswing and
forwardswing phases (p = 0.01), with no significant differences

between the forwardswing and follow-through phases, or between
the backswing and follow-through phases. No significant variation
was observed in upper arm or forearm velocities between the phases
(Figures 5D–F).

Regarding segment acceleration in the upper arm, forearm, and
hand, the Repeated Measures ANOVA indicated a significant main
effect of phase (p < 0.001; Figures 5G–I). Post hoc tests showed
significant increases in acceleration between the backswing and
forwardswing phases, the forwardswing and follow-through
phases, and the backswing and follow-through phases for the
upper arm (p = 0.05, p < 0.001, p < 0.001), forearm (p = 0.006,
p < 0.001, p < 0.001), and hand (p < 0.001), respectively.

For the shoulder’s angular change ratio, a significant main effect
of phase was found (p < 0.05), though no significant differences were
observed in the elbow or wrist angular change ratio (Figures 6A–C).
Post hoc analysis indicated a significant increase in the shoulder’s
angular change ratio between the backswing and forwardswing
phases (p = 0.04). However, no significant differences were seen

FIGURE 3
Graphical representations of the means and standard deviation for ankle angle of the angular kinematics at sagittal plane; (A) wrist angle, (B) elbow
angle, (C) shoulder angle, (D) wrist angular velocity, (E) elbow angular velocity, (F) shoulder angular velocity, (G) wrist angular acceleration, (H) elbow
angular acceleration, and (I) shoulder angular acceleration during forehand stroke phases (Backswing phase, Forwardswing phase, and Follow-
Through phase).
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between the forwardswing and follow-through phases, or between
the backswing and follow-through phases for shoulder angular
change ratio. Similarly, no significant variations were observed
across phases for elbow and wrist angular change ratios.

The Repeated Measures ANOVA also revealed a significant
main effect of phase for angular change ratio of velocity in the
shoulder, elbow, and wrist joints (p = 0.01, p = 0.004, p = 0.002,
respectively; Figures 6D–F). Post hoc tests showed significant
increases in the shoulder and elbow angular change ratio of

velocity between the backswing and forwardswing phases (p <
0.001, p = 0.03). Furthermore, significant increases in wrist
angular velocity were observed between the forwardswing and
follow-through phases (p = 0.005). Significant increases were also
observed in the angular change ratio of velocity for the elbow and
wrist between the backswing and follow-through phases (p = 0.008,
p = 0.014). However, no significant variation was found between the
backswing and forwardswing phases in wrist angular velocity, or
between the backswing and follow-through phases for shoulder and

FIGURE 4
EMG data: (A) EMG raw, (B) EMG Rectified, (C) EMG RMS (M ± SD) of the anterior deltoid, posterior deltoid, biceps brachaii, triceps brachaii, wrist
flexor, and wrist extensor during forehand stroke phases (Backswing phase, Forwardswing phase, and Follow-Through phase).
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wrist angular velocity. Similarly, no significant differences were
observed between the forwardswing and follow-through phases
for shoulder and elbow angular velocity.

For angular acceleration in the elbow joint, a significantmain effect of
phase was observed (p = 0.005; Figures 6G–I). Post hoc analysis indicated
significant increases in elbow angular acceleration between the backswing

and follow-through phases (p = 0.006). However, no significant variation
was found between the backswing and forwardswing phases or between
the forwardswing and follow-through phases for angular acceleration in
any arm joints. Additionally, no significant differences were observed
between the backswing and follow-through phases for shoulder andwrist
angular acceleration.

FIGURE 5
Pairwise comparisons associated with the significant main effects from the RM-ANOVA with mean values and coefficient interval for the change
ratio (Δ) of the linear kinematics during forehand phases; (A) upper arm resultant displacement, (B) forearm resultant displacement, (C) hand resultant
displacement, (D) upper arm resultant velocity, (E) forearm resultant velocity, (F) hand resultant velocity, (G) upper arm resultant acceleration, (H) forearm
resultant acceleration, and (I) hand resultant acceleration. Partial eta squared (η2p) and asterisk signs represent significant differences between
phases: (***) indicates p < 0.001, (**) indicates p < 0.01, (*) indicates p < 0.05, and (ns) indicates non-significant.
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The Repeated Measures ANOVA revealed a significant main
effect of phase on muscle activation across various muscles: the
anterior deltoid (p < 0.001; Figure 7A), posterior deltoid (p < 0.01),
biceps brachii (p < 0.001; Figure 7C), triceps brachii (p < 0.05;
Figure 7D), wrist flexor (p < 0.001; Figure 7E), and wrist extensor
(p < 0.01; Figure 7F). Post hoc analyses showed that anterior deltoid

activation significantly increased between the backswing and
forwardswing (p < 0.001) and backswing and follow-through
phases (p < 0.001) but decreased between the forwardswing and
follow-through phases (p < 0.001). For the posterior deltoid,
activation decreased between the backswing and forwardswing
phases (p < 0.01) and increased between forwardswing and

FIGURE 6
Pairwise comparisons associated with the significant main effects from the RM-ANOVA with mean values and coefficient interval for the change
ratio (Δ) of the angular kinematics during forehand phases; (A) shoulder angle, (B) elbow angle, (C) wrist angle, (D) shoulder angular velocity, (E) elbow
angular velocity, (F)wrist angular velocity, (G) shoulder angular acceleration, (H) elbow angular acceleration, and (I)wrist angular acceleration. Partial eta
squared (η2p) and asterisk signs represent significant differences between phases: (***) indicates p < 0.001, (**) indicates p < 0.01, (*) indicates p <
0.05, and (ns) indicates non-significant.
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follow-through phases (p < 0.01), with no significant change
between backswing and follow-through. Biceps brachii activation
significantly increased between the backswing and forwardswing
(p < 0.001) and backswing and follow-through phases (p < 0.001),
with no change observed between forwardswing and follow-
through. Triceps brachii activation decreased significantly
between backswing and forwardswing (p < 0.05) and increased
between forwardswing and follow-through phases (p < 0.05), with
no significant difference between backswing and follow-through.
Wrist flexor activation increased significantly between backswing
and follow-through (p < 0.001) and forwardswing and follow-
through (p < 0.05), with no significant change between
backswing and forwardswing. Similarly, wrist extensor activation
decreased between backswing and forwardswing (p < 0.01)
and increased between forwardswing and follow-through phases
(p < 0.01), with no significant difference between backswing and

follow-through. These findings highlight phase-specific variations in
muscle activation during movement.

The Repeated Measures ANOVA revealed a significant main effect
of phase for shoulder co-activation (p < 0.001; Figure 8A), elbow co-
activation (p< 0.005), andwrist co-activation (p< 0.01; Figure 8C). Post
hoc analysis indicated a significant decrease in shoulder co-activation
between the backswing and forwardswing phases (p < 0.01) and a
significant increase between the forwardswing and follow-through
phases (p < 0.001). No significant difference was observed between
the backswing and follow-through phases. Elbow co-activation also
showed significant decreases between the backswing and forwardswing
phases (p < 0.001) and significant increases between the forwardswing
and follow-through phases (p = 0.01). Additionally, wrist co-activation
demonstrated significant decreases between the backswing and
forwardswing phases (p < 0.05), but no significant changes were
found between the other phases.

FIGURE 7
Pairwise comparisons associated with the significant main effects from the RM-ANOVAwith mean values and coefficient interval for the normalized
EMG (%MAX) of the dominant armmuscles; (A) anterior deltoid, (B) posterior deltoid, (C) biceps brachaii, (D) triceps brachaii, (E)wrist flexor, and (F)wrist
extensor during forehand stroke phases (Backswing phase, Forwardswing phase, and Follow-Through phase). Significant differences for the post hoc
tests between phases: (***) indicates p < 0.001, (**) indicates p < 0.01, (*) indicates p < 0.05, and (ns) indicates non-significant.
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4 Discussion

4.1 Kinematics analysis and
stroke mechanics

This study provides a detailed exploration of the biomechanical
demands of the wheelchair tennis forehand stroke, with a focus on
muscle co-activation and kinematics. The findings revealed lower
ball velocities, release angles, and heights, reflecting reduced
mechanical loading on the dominant arm. This can be attributed
to the absence of lower-body contribution, necessitating a greater
reliance on upper-body musculature. Such reliance, particularly on
internal rotators, may contribute to muscle imbalances and an
increased risk of overuse injuries (Bernard et al., 2004; Moreno-
Perez et al., 2018). These results underscore the need for training
programs tailored to the unique biomechanical and physical
demands of wheelchair tennis (Roetert et al., 2024).

The kinematic analysis revealed significant increases in hand velocity
between the backswing and forwardswing phases, consistentwith efficient
kinetic energy transfer along the upper limb segments. Consistent with
previous studies, these findings highlight the importance of angular
velocity and acceleration during the forwardswing, particularly in the
elbow, to generate high-quality forehand strokes (Ju et al., 2024). While
upper-arm and forearm velocities remained relatively stable, these
segments serve critical roles as conduits in the kinetic chain. Such
segmental coordination is essential for generating high racket speeds
by transferring the force from the upper arm to the forearm, ultimately
contributing to ball velocity (Ben Kibler, 1995).

Angular acceleration and change ratios varied significantly
across phases, particularly in the shoulder and elbow. During the
forwardswing, increased angular velocity and acceleration in these
joints play pivotal roles in driving force through the kinetic chain.
High acceleration rates during the follow-through phase reflect the
critical need for energy dissipation and joint control. This is
particularly important for wheelchair athletes who face additional

physical demands, aligning with prior research on tennis stroke
mechanics (Goosey-Tolfrey and Moss, 2005). The wrist’s increased
angular velocity during the follow-through highlights its importance
in stroke precision and stabilization. This finding aligns with
research emphasizing the wrist’s role in fine-tuning ball trajectory
and spin in tennis (Martin, 2018). The combination of joint
acceleration and angular velocity emphasizes the wrist’s
contribution to the overall kinetic chain.

4.2 Muscle activation levels

The results highlight distinct phase-specific variations in muscle
activation, emphasizing the biomechanical demands of each phase of
movement and the coordinated interplay between muscles. The
anterior deltoid showed low activation during the backswing phase
and increased during forwardswing phase, then declining in the follow-
through phase. This pattern suggests that the anterior deltoid plays a
primary role in forward motion but becomes less engaged during the
initiating and deceleration phase (Mayrhuber et al., 2022; Abuwarda
and Akl, 2023). In contrast, the posterior deltoid exhibited a
complementary pattern, with reduced activation during the
forwardswing but increased engagement in the follow-through, likely
contributing to deceleration and posterior stabilization (Ju et al., 2021).

The biceps brachii activation peaked during the transition from the
backswing to the forwardswing, maintaining this engagement into the
follow-through phase, indicating its role in flexion and dynamic control
throughout the movement (Furuya et al., 2021). Meanwhile, the triceps
brachii showed decreased activation during the forwardswing but a
subsequent increase in the follow-through, underscoring its
contribution to controlled extension and stabilization as the motion
concludes (Rota et al., 2012; Abuwarda and Akl, 2023).

The wrist flexors and extensors exhibited complementary
activation patterns. The flexors showed significant engagement
during the performance phases, with increased activation during

FIGURE 8
Pairwise comparisons associated with the significant main effects from the RM-ANOVA with mean values and coefficient interval for the co-
activation index (CoI) (%) per phase of muscles around dominant arm joints; (A) shoulder, (B) elbow, and (C) wrist. Partial eta squared (η2p) and asterisk
signs represent significant differences between phases: (***) indicates p < 0.001, (**) indicates p < 0.01, (*) indicates p < 0.05, and (ns) indicates non-
significant.
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the follow-through phase to enhance racket control. Conversely, the
extensors peaked during the backswing phase, decreased during the
forwardswing phase, and increased again during the follow-through.
This coordination highlights their combined role in fine motor
control and wrist stabilization, ensuring precision and effective force
transmission throughout the motion (Furuya et al., 2021; Rietveld
et al., 2024). Overall, these findings highlight the importance of
muscle co-activation around the joints, which is essential for smooth
and efficient transitions between movement phases.

4.3 Muscle Co-Activation patterns

Dynamic changes in shoulder muscle co-activation were
observed across the phases of the stroke. Shoulder co-activation
was significantly reduced during the forwardswing phase, followed
by a marked increase during the follow-through. This phase-
dependent variation reflects the coordinated interplay between
the anterior deltoid (AD) and posterior deltoid (PD), which
balance force generation and joint stability. The reduction during
the forwardswing aligns with the need for energy transfer over
stabilization in high-velocity movements (Knudson and Elliott,
2004). Increased co-activation during the follow-through phase
stabilizes the shoulder and reduces strain on passive structures
(Ben Kibler and Sciascia, 2004). The dynamic interplay between
these muscles is essential for joint control and the smooth execution
of the stroke (Abuwarda and Akl, 2023).

The elbow joint exhibited distinct muscle activation patterns,
with the biceps brachii (BB) transitioning from an antagonist during
the backswing to an agonist in the forwardswing and follow-
through. The triceps brachii (TB) maintained consistent
activation throughout all phases, ensuring joint stability. High co-
activation during the follow-through was particularly notable, as it
aids in deceleration and protects the elbow from excessive stress,
consistent with findings in previous study (Pincivero et al., 2019).

The wrist flexor (WF) exhibited high activation throughout the
stroke, indicating its importance in maintaining racket control.
During the forwardswing, the reduced co-activation of the WF
and wrist extensor (WE) may reflect the wrist’s role in dynamic
force transfer (Heales et al., 2016). Increased co-activation during
the backswing and follow-through phases enhances stabilization,
aiding in precise transitions and racket trajectory control. This
finding supports the principle of kinetic energy transfer through
the upper limb to optimize stroke precision.

5 Limitations

This study has several limitations that should be considered when
interpreting the findings. First, the sample size is limited due to the small
number of high-level wheelchair tennis players available. To gain more
comprehensive insights and examine differences between male and
female players, further recruitment of wheelchair tennis athletes of both
genders is necessary. Additionally, the EMG data were normalized to
the maximum value of the recorded signal, a common approach for
analyzing dynamic muscle activations. However, this method
complicates direct comparisons with studies that use normalization
based on the percentage of maximum voluntary isometric contraction

(%MVIC). Another limitation involves the distortion of linear and
angular velocity and acceleration data caused by smoothing techniques
during impact. Finally, the simulated forehand strokes may not fully
capture the wide variability in stroke techniques used during
actual match play.

6 Practical applications and future work

The observed muscle co-activation and kinematic patterns offer
practical insights for improving training and injury prevention
strategies in wheelchair tennis. Strength and conditioning programs
should prioritize muscle balance and joint stability, particularly in the
shoulder and elbow (Ben Kibler and Sciascia, 2004). For instance,
strengthening the posterior deltoid, triceps brachii, and wrist extensors
may help optimize stroke mechanics while minimizing injury risks.
Furthermore, neuromuscular training to enhance wrist and elbow
coordination during high-velocity phases can contribute to improved
performance (Pincivero et al., 2019). Tailored rehabilitation programs
may also focus on reducing muscle imbalances caused by the unique
demands of wheelchair tennis. Comparative studies betweenwheelchair
and able-bodied athletes could further refine these training
recommendations. Future research should evaluate the long-term
effects of biomechanical adaptations in wheelchair athletes and
explore the role of technology-assisted interventions, such as
wearable sensors, in tracking and enhancing performance.

7 Conclusion

This study provides crucial insights into the biomechanics and
muscle activity of wheelchair tennis, specifically through the analysis of
co-activation patterns and kinematics during the forehand stroke. The
findings show significant differences in co-activation patterns across the
stroke phases, with a notable increase in co-activation during the follow-
through phase to enhance control and stability. Our results offer
practical applications for enhancing performance, reducing injury
risk, and developing tailored rehabilitation programs. Additionally,
this research enhances our understanding of kinematics and
muscular activity in wheelchair tennis by exploring the differences
between performance phases. It supports safer practices and promotes
more inclusive participation in sports, particularly for competitive
wheelchair tennis players.
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