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Cardiovascular diseases represent one of the leading causes of death worldwide.
Despite significant advances in the diagnosis and treatment of these diseases,
numerous challenges remain in managing them. One of these challenges is the
need for replacements for damaged cardiac tissues that can restore the normal
function of the heart. Amniotic membrane, as a biological scaffold with unique
properties, has attracted the attention of many researchers in recent years. This
membrane, extracted from the human placenta, contains growth factors,
cytokines, and other biomolecules that play a crucial role in tissue repair. Its
anti-inflammatory, antibacterial, and wound-healing properties have made
amniotic membrane a promising option for the treatment of heart diseases.
This review article examines the applications of amniotic membrane in
cardiovascular diseases. By focusing on the mechanisms of action of this
biological scaffold and the results of clinical studies, an attempt will be made
to evaluate the potential of using amniotic membrane in the treatment of heart
diseases. Additionally, the existing challenges and future prospects in this field will
be discussed.
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1 Introduction

Cardiovascular diseases (CVDs) are one of the main causes of death worldwide, and
despite significant advances in diagnosis and treatment, there is a need for new and effective
treatment approaches (Sansonetti et al., 2024). In recent years, researchers have turned their
attention to the use of natural biomaterials. Statistics show a bleak picture: in 2019 alone,
around 18.6 million people worldwide succumbed to cardiovascular diseases (Gaziano,
2022). With an aging population, the prevalence of cardiovascular disease is expected to
continue to increase. In addition, unhealthy lifestyles contribute to risk factors such as
obesity, high cholesterol and high blood pressure, making younger people more susceptible
to heart disease (writing committee of the report on cardiovascular health and diseases in
china, 2022; Tokgozoglu et al., 2021). The COVID-19 pandemic has increased the burden of
cardiovascular disease, as studies indicate that heart patients are at higher risk of serious
complications (Tolu-Akinnawo et al., 2023). Heart failure is primarily caused by coronary
artery disease and myocardial ischemia, which often occur simultaneously (Roberts et al.,
2023). Conventional treatments for cardiovascular disease include catheter-based
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procedures such as angioplasty to open blocked arteries and surgical
procedures such as coronary artery bypass grafts or organ
transplants for end-stage heart failure. These treatments may also
include the prescription of cardioprotective medications such as beta
blockers, calcium channel blockers, or oral diuretics (Zhu et al.,
2023; Loosen et al., 2022). While these cardioprotective therapies
have been shown to improve cardiac function in patients with
coronary artery disease and prevent adverse cardiac events after
an initial episode of cardiac arrest, their long-term benefits in disease
recovery are marginal. Furthermore, their continued use may be
associated with serious side effects that may overshadow their
positive effects on patients. Nevertheless, these treatments are not
sufficient to regenerate or repair the cardiac environment, limiting
their role in cardiac repair (Khalpey et al., 2024; Cortese et al., 2023;
Krittanawong et al., 2024).

The human heart serves as the muscular pump that circulates
blood throughout the body, delivering oxygen and nutrients to
tissues. This vital structure consists of four chambers, the left and
right atria and the left and right ventricles (Iacobas et al., 2021). The
left atrium receives oxygenated blood from the lungs, and
deoxygenated blood from the rest of the body enters the right
atrium (Kadiyala et al., 2021). Additionally, the left ventricle
pumps oxygenated blood from the heart throughout the body,
and the right ventricle pumps deoxygenated blood to the lungs
(Kadiyala et al., 2021). Four valves (the mitral, aortic, tricuspid, and
pulmonary valves) regulate blood flow between the chambers,
preventing backflow and ensuring unidirectional circulation
(Figure 1) (Yan S. et al., 2022). The heart’s electrical conduction
system generates and conducts electrical signals that coordinate the
heart’s contractions. This system includes the sinoatrial (SA) node,
the atrioventricular (AV) node, and the bundle of His (Nissen et al.,

2022; van der Maarel and Christoffels, 2024). The SA node, often
referred to as the heart’s pacemaker, initiates electrical impulses that
are then propagated throughout the heart, causing it to contract
rhythmically (van der Maarel and Christoffels, 2024).

The heart is composed of various types of cells, each playing a
specific role in its function. Understanding these cardiac cell types
and their functions aids physicians in better diagnosing and treating
heart diseases (Santos et al., 2021; Yao et al., 2024). The specialized
muscle cells responsible for the heart’s contractions are called
cardiomyocytes. These long, branched cells are connected by
intercalated discs that facilitate rapid electrical impulse
transmission between cells, ensuring coordinated contractions
(Billur et al., 2023; Struckman et al., 2023). There are two types:
atrial and ventricular cardiomyocytes, differing in phenotype and
function. Atrial cardiomyocytes, located in the atrial walls, initiate
and conduct electrical impulses within the heart. The sinoatrial (SA)
node, the heart’s natural pacemaker, is composed of these cells
(Easterling et al., 2021). Ventricular cardiomyocytes, found in the
ventricular walls, are responsible for forceful contractions. Their
thick muscle fibers enable powerful contractions (Bruns et al., 2024).
Cardiac fibroblasts are connective tissue cells producing the heart’s
extracellular matrix. This matrix provides structural support,
anchoring cardiac cells and facilitating cell-to-cell
communication. It also plays a role in heart tissue repair post-
injury (Guilak et al., 2021; Micheletti and Alexanian, 2022; Phogat
et al., 2023). Neural cells in the heart regulate heart rate and its
response to physiological changes. They receive neural signals from
the autonomic nervous system and transmit them to cardiac cells
(Yu Y. et al., 2023). Endothelial cells line the inner layer of the heart’s
blood vessels. They play crucial roles in regulating blood flow,
exchanging substances between blood and heart tissue, and in
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inflammatory responses (Brandt et al., 2022; Ribatti, 2024). Smooth
muscle cells are found in the walls of heart blood vessels and other
cardiac structures. They regulate blood vessel diameter, thus
controlling blood flow to the heart (Hernandez-Hernandez et al.,
2024). Each type of cardiac cell is vital to the heart’s function.
Dysfunction of any of these cells can lead to heart diseases. For
instance, cardiomyocyte damage can result in heart failure, while
fibroblast dysfunction can lead to cardiac fibrosis (Levick and
Widiapradja, 2020).

Numerous factors such as neural factors, hormones, mineral
ions, drugs, and diseases affect the heart’s function. Damage to
cardiac cells, or cardiomyocytes, is one of the most important
causes of cardiovascular diseases. This damage can occur due to
various reasons, including coronary artery disease, high blood
pressure, diabetes, infections, and genetic factors (Ahn et al.,
2023; Arjmand et al., 2021). Damage to cardiac cells usually
occurs due to reduced blood flow to the heart muscle. This
reduced blood flow can be caused by coronary artery blockage,
vascular spasm, or decreased blood pressure. As a result of
reduced blood flow, cardiac cells are deprived of oxygen and
nutrients and are susceptible to damage. Cardiac cell damage can
be classified into reversible and irreversible damage (Fan et al.,
2023; Jenkins et al., 2024). In reversible damage, cardiac cells are
still alive but their function is temporarily impaired. With the
removal of the causative agent, cells can return to their normal
state. In irreversible damage, cardiac cells are completely
destroyed and cannot be replaced. This type of damage leads

to the formation of scar tissue in the heart and can reduce the
heart’s pumping function (Smagul et al., 2020).

Various processes occur that lead to cell damage. Reduced
oxygen supply to cells causes the production of free radicals that
damage cellular components (oxidative damage). Damaged cells
undergo programmed cell death (apoptosis) to prevent further
damage to the tissue. Also, in cases of severe damage, cells die
suddenly (necrosis) and cause inflammation and release of harmful
substances into the surrounding environment (Chen J. et al., 2023;
Song et al., 2022;Wu et al., 2020). The heart has a very limited ability
to repair itself after injury. These limitations are due to various
reasons, including the inherent characteristics of cardiac cells and
the complexity of heart tissue, which will be discussed below (Lin
et al., 2020; Tran et al., 2023).

Adult cardiac cells typically do not have the ability to divide and
proliferate, which means that after injury, the number of new cells
produced to replace damaged cells is very limited (Sadahiro and
Ieda, 2022; Zuppo et al., 2023). Cardiac cells are arrested in the
G1 phase of the cell cycle and therefore cannot easily enter the cell
cycle and divide (Dorr et al., 2015). The extracellular matrix of the
heart has a very stiff and complex structure, which limits the
migration and proliferation of new cells and makes it difficult to
create new blood vessels and form new tissue (Tu et al., 2023). On
the other hand, after heart injury, a chronic inflammatory response
occurs that can damage healthy cardiac cells, disrupt the repair
process, and lead to the formation of scar tissue, which prevents the
regrowth of healthy heart tissue (Sun K. et al., 2021). Also, the

FIGURE 1
Cardiac structure. Created with BioRender.com.
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number of cardiac stem cells is very limited, and these cells have a
limited ability to produce new cardiac cells (Femmino et al., 2022).
Finally, the heart is composed of various types of cells, each with a
specific role. Replacing these cells with new cells in a precise and
coordinated manner is very difficult (Scemama et al., 2023). The
limitations of heart repair are a major challenge in medicine.
However, extensive research is underway in the fields of stem
cells, tissue engineering, and gene therapy to find new ways to
repair damaged heart tissue.

The amniotic membrane (AM) is a thin biological layer that
protects the developing fetus in the mother’s womb. It is rich in
proteins, growth factors, cytokines, and other biomolecules that
play an important role in preventing scar formation, reducing
inflammation, and promoting tissue regeneration. When AM
comes into contact with cardiac tissue, specific cellular
interactions occur between them that promote various cellular
behaviors such as maturation, proliferation, and migration, as well
as the activation of specific signaling pathways that facilitate the
process of repairing damaged tissue. In addition, AM, despite its
excellent flexibility, also offers significant strength that can be used
in stress-related applications. Therefore, AM can be used to
develop many bioscaffolds in the field of tissue regeneration,
especially cardiac tissue (Sarvari et al., 2022; Zamproni et al.,
2021). In this review article, we will explore the applications of
amniotic membrane in treating cardiovascular diseases. We will
begin by introducing the structure and biological properties of the
amniotic membrane and then examine the mechanisms of action
of this membrane in repairing cardiac and vascular tissues.
Subsequently, we will review various studies conducted in this
field and specifically focus on the applications of amniotic
membrane in treating ischemic heart disease, atherosclerosis,
and heart failure. Finally, we will address the challenges and
limitations of using amniotic membrane in this field and the
future prospects of this area.

2 Amniotic membrane

The amniotic membrane (AM), commonly referred to as the
“true embryonic membrane,” is composed of an epithelium, a
basement membrane (BM), and a thick, dense stroma (Doudi
et al., 2022). Due to this unique cell composition, AM is a
complex tissue with exceptional properties such as
immunogenicity, anti-inflammatory effects and high antibacterial
activity, among many others (Canciello et al., 2020;
Gholipourmalekabadi et al., 2020; Kafili et al., 2024; Law et al.,
2022). Ioannis Postonce was the first to describe the AM and its
function in 1910. He hypothesized that if AM has the function of
protecting the developing fetus from any changes in the uterine
environment, AM could potentially help preserve the cellular
properties of differentiated cells (Lanci et al., 2022; Ramuta et al.,
2020). With advances in medical science and more in-depth studies,
scientists have discovered the amazing properties of the amniotic
membrane. This membrane is rich in growth factors, cytokines, and
other biomolecules that play critical roles in tissue repair, reducing
inflammation, and preventing scar formation. In the following
sections, we will examine the formation stages, structure, and
biological properties of AM.

2.1 Amniotic membrane formation

After an ovum is fertilized by a sperm, the zygote divides rapidly
to form a mass of cells called a blastocyst. The blastocyst consists of
two main parts: the inner cell mass and the outer cell mass (Nguyen
et al., 2024). The inner cell mass develops into the embryo, while the
outer cell mass develops into the placenta and embryonic
membranes. During the early stages of embryonic development,
the blastocyst, a hollow ball-like structure, undergoes significant
morphological changes (Martinez de Los Reyes et al., 2024). The
outer cell mass of the blastocyst, known as the trophoblast,
differentiates into two distinct layers: the epiblast and the
hypoblast. These two layers play a key role in the formation of
primary embryonic structures. The epiblast, a columnar layer of
cells, faces the blastocyst cavity (Harmoush et al., 2021). The epiblast
undergoes an inward folding process called gastrulation. This
folding leads to the formation of a new cavity, the amniotic
cavity. The epiblastic cells that surround this cavity are called
amnioblasts. They multiply gradually and form a thin membrane
that lines the amniotic cavity. This membrane is called the amniotic
membrane and is where the embryo ultimately develops (Harmoush
et al., 2021). Simultaneously with the formation of the amniotic
cavity, the hypoblast cells also fold inward, forming another cavity
called the primary yolk sac. The primary yolk sac plays an important
role in early embryonic development, serving as a site for blood cell
formation and nutrient transfer to the embryo (Hislop et al., 2023;
Ornoy and Miller, 2023).

Amnioblasts multiply rapidly and form a simple epithelial layer
on the inner surface of the amniotic cavity. This epithelial layer
forms the amniotic membrane. As pregnancy progresses, the
amniotic membrane enlarges along with the growing fetus,
completely lining the amniotic cavity. As the number of cell
layers increases and the secretion of extracellular matrix by
amnioblasts, the amniotic membrane becomes thicker and more
robust (Fitriani et al., 2023; Kim et al., 2024).

Amnioblast cells actively secrete amniotic fluid. This fluid
provides an aqueous and sterile environment for the fetus and
performs important functions such as mechanical protection,
regulating fetal temperature, facilitating fetal movement, and
promoting lung development (Shamsnajafabadi and Soheili,
2022). Amniotic fluid consists primarily of water, proteins, lipids,
glucose, and minerals. As the volume of amniotic fluid increases, the
amniotic cavity enlarges, allowing the fetus to float freely. In
addition to the amniotic membrane, other embryonic membranes
also form. These include chorion and allantois. The chorion is the
outermost embryonic membrane and separates the fetus from the
uterine wall. The allantois also plays an important role in the
formation of the umbilical cord and fetal blood vessels (Zhu
et al., 2022).

2.2 Structure of the amniotic membrane

The amniotic membrane is a thin, transparent biological
structure that encases the developing fetus in the mother’s uterus.
This membrane is extremely flexible and allows the fetus to grow.
Despite its thinness, the amniotic membrane has sufficient strength
to protect the fetus from external shocks. In addition, it is avascular,
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meaning it has no blood vessels and receives its necessary nutrients
through diffusion from the amniotic fluid. The amniotic membrane
has antimicrobial properties and acts as a barrier against the
penetration of microbes into the amniotic cavity. In general, the
amniotic membrane consists of three primary layers (from outside
to inside: epithelial layer, basement membrane and stromal layer)
(Figure 2) (Table 1) (Doudi et al., 2022; Shamsnajafabadi and
Soheili, 2022). Below is a detailed discussion of each of these layers.

2.2.1 Epithelial layer
Epithelial Layer is the outermost layer of the membrane and

consists of a single layer of simple squamous cells. These cells play a
crucial role in protecting the fetus and creating a sterile environment
for its growth. These cells are arranged regularly and compactly and
form a continuous shell. The amniotic fluid epithelial cells have a
pronounced polarity, with the apical part of the cells facing the
amniotic cavity and covered with short microvilli, while the basal
part is attached to the basement membrane (Kim et al., 2024).
Amniotic fluid epithelial cells are connected to each other by tight
junctions and desmosomes, which prevent pollutants and
microorganisms from entering the amniotic cavity. In addition,
these cells secrete various substances such as growth factors, proteins

and lipids, which play a role in maintaining amniotic fluid
homeostasis and fetal growth (Wu et al., 2019).

This layer provides physical protection to the fetus by acting as a
protective barrier against pathogens, harmful chemicals, and
mechanical forces, while selectively allowing the passage of
certain substances and preventing the passage of harmful
materials. This layer plays a crucial role in maintaining amniotic
fluid homeostasis. Epithelial cells regulate the composition of
amniotic fluid by secreting various substances such as proteins,
ions, growth factors and more. In addition, this layer facilitates the
transfer of certain nutrients from the amniotic fluid to the fetus via
the epithelial layer (Han et al., 2021; Kawamura et al., 2022).

2.2.2 Basement membrane
Basement Membrane is a thin, dense layer of collagen and other

proteins. The basement membrane plays a crucial role in attaching
the epithelial layer to the stromal layer (maintaining the structural
integrity of the membrane) and also acts as a filtration barrier. The
basement membrane is mainly composed of a complex network of
structural proteins, particularly collagen types IV, V and VII. These
proteins, together with other non-collagenous proteins such as
laminin, entactin and fibronectin, form a strong and flexible

FIGURE 2
Different layers of amnion membrane. Created with BioRender.com.

TABLE 1 Substances and factors secreted from each layer of the amniotic membrane.

Layer Main secreted materials and factors Main role Ref

Epithelial Albumin, immunoglobulins, growth factors (EGF, FGF, TGF-
β), lipids (phospholipids, cholesterol), carbohydrates (glucose,

glycogen), ions (sodium, potassium, calcium), cytokines
(interleukins, TNF)

Maintaining amniotic fluid homeostasis, fetal
nutrition, fetal protection, lung development

Bertolin et al. (2022b), Ghamari et al.
(2020), Iizuka et al. (2019)

Basement
membrane

Growth factors (laminin, entactin, fibronectin), cell adhesion
molecules

Attachment of epithelial cells, filtration of
materials, cell signaling

Iranpour et al. (2018), Kolundzic et al.
(2022), Shariatzadeh et al. (2021)

Stromal Growth factors (EGF, FGF, TGF-β), cytokines (interleukins,
TNF), collagen, elastin, proteoglycans

Wound healing, reducing inflammation,
formation of new tissue, regulating immune

response

Tauseef et al. (2024), Ghamari et al.
(2020), Bhatti et al. (2023), Lin et al.

(2023)
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extracellular matrix. This matrix is organized as a lattice-like layer
and serves as a scaffold for the attachment of epithelial cells. By
binding to receptors on the basal surface of epithelial cells, the
basement membrane firmly anchors these cells in place. This
binding is important for maintaining the integrity of the
epithelial layer and preventing cells from separating from one
another. This membrane acts as a filter and regulates the passage
of substances between the different layers of the amniotic
membrane. The pore size and protein composition of the
basement membrane determine the type of substances that can
pass through it. The basement membrane contains signaling
molecules that play a role in regulating the growth, proliferation,
and differentiation of neighboring cells. These molecules can
influence gene expression and cellular activities. Additionally, this
membrane creates a specialized microenvironment for adjacent
cells, allowing them to perform their specialized functions (Doudi
et al., 2022; Bertolin et al., 2022a; Chen et al., 2024).

The basement membrane plays a fundamental role in
maintaining the health of the fetus and the proper functioning of
the amniotic membrane. Any disruption in the structure or
composition of the basement membrane can lead to a variety of
problems, including impaired fetal growth, leakage of amniotic fluid,
and an increased risk of infection. In summary, the amniotic
basement membrane is a complex and multifunctional structure
that plays a crucial role in maintaining the integrity of the amniotic
membrane and regulating material exchange (Tauseef et al., 2024).

2.2.3 Stromal layer
This is the innermost layer of the membrane and consists of

loose connective tissue. This layer contains various cells, including
fibroblasts, macrophages and mesenchymal stem cells, which play a
crucial role in the production of growth factors, cytokines and other
biomolecules that give the amniotic membrane its therapeutic
properties. This layer acts as a dynamic matrix and plays an
important role in regulating tissue repair and regeneration
processes. The stromal layer is composed of various cell types,
including fibroblasts, macrophages, and mesenchymal stem cells,
each playing a specific role in the function of this layer. Fibroblasts in
this layer are responsible for producing the extracellular matrix,
which consists of collagen, elastin and proteoglycans. The
extracellular matrix serves as a scaffold for other cells and gives
them shape and support. Macrophages form the innate immune
system and are activated in response to injury or infection. They help
protect tissue by engulfing pathogens and producing cytokines.
Mesenchymal stem cells have the ability to differentiate into
different types of connective tissue cells. Mesenchymal stem cells
play a crucial role in wound healing and tissue regeneration (Fitriani
et al., 2023; Weidinger et al., 2020).

Due to the presence of various types of cells and the production
of a wide range of biomolecules, the stromal layer gives the amniotic
membrane unique therapeutic properties:

• Production of growth factors: Cells in the stromal layer produce
various types of growth factors that play a role in stimulating cell
growth, tissue repair, and reducing inflammation. Examples of
these factors include epidermal growth factor (EGF), fibroblast
growth factor (FGF), and transforming growth factor beta
(TGF-β) (Pogozhykh et al., 2020).

• Production of cytokines: Cells in the stromal layer produce
cytokines that regulate the immune response and
inflammation. The anti-inflammatory cytokines produced
by these cells help to reduce inflammation and accelerate
the healing process (Cervero-Varona et al., 2023; Correa
et al., 2022).

• Wound healing: Mesenchymal stem cells present in the
stromal layer can migrate to the site of injury and, by
differentiating into the cells of the tissue in question, help
to repair the wound (Messmer, 2020; Permkam et al., 2022).

• Reduced scar formation: Some of the molecules produced by
the cells of the stromal layer can help to reduce scar formation
(Messmer, 2020; Permkam et al., 2022).

2.3 Properties of amniotic membrane

The amniotic membrane not only acts as a protector for the fetus
but also possesses valuable therapeutic properties. This membrane
contains a wide range of growth factors, cytokines, and extracellular
matrix, which play a significant role in tissue repair, inflammation
reduction, and immune response regulation (Fitriani et al., 2023;
Jahanafrooz et al., 2023). The biological properties of the amniotic
membrane have made it an attractive option for applications in
regenerative medicine (Table 2). This membrane can be used as a
biological scaffold for repairing damaged tissues, reducing
inflammation, and accelerating the healing process (Etchebarne
et al., 2021). In the following, we will examine some of the
important properties of this membrane.

2.3.1 Mechanical properties
As a biological tissue, the amniotic membrane has various

mechanical properties that play an essential role in its function
and therapeutic applications. These mechanical properties are
influenced by various factors, including fetal age, location of
membrane collection, and processing methods (Hu et al., 2024).
One of the most notable properties of the amniotic membrane is
its high flexibility and extensibility, which allows the membrane to
adapt to changes in the volume and shape of the amniotic cavity
during pregnancy and to withstand tensile forces without rupturing
(Iizuka et al., 2019; Ikeda et al., 2023). Tensile strength is determined
by the alignment of collagen fibers in the extracellular matrix (ECM),
while elastic deformation is associated with the presence of elastin
fibers, laminin, hyaluronic acid, and glycosaminoglycans
(Bennasroune et al., 2019; Runci Anastasi et al., 2021). The
amniotic membrane has significant tear resistance, which helps
protect the fetus from external mechanical forces (Koh et al.,
2019). The tensile strength depends on the thickness, the collagen
density, and the arrangement of the collagen fibers within the
extracellular matrix (Gao et al., 2022).

2.3.2 Biodegradation
The amniotic membrane, due to its biological nature and

predominant collagen composition, undergoes natural
biodegradation processes. During this process, the tissue is
broken down by certain cells and natural enzymes (Sarvari
et al., 2022). This process is influenced by various factors,
including tissue composition (collagen concentration, presence
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of other proteins and minerals), environmental conditions
(temperature, humidity, and pH), and the type of
microorganisms present in the environment (different species of
microorganisms produce different enzymes and attack the tissue at
varying rates) (Lu et al., 2024; Mizutani et al., 2022). Processing
methods such as sterilization and drying also affect the tissue
structure and consequently the rate of biodegradation. The
degradation of hAM can vary from a few days to several
months (depending on the species and site of application/
implantation), however, the data is not well documented
(Nasiry et al., 2021; Odet et al., 2022; Peng et al., 2023).

Mechanisms such as hydrolysis, oxidation, and biofilm formation
influence the biodegradation of the amniotic membrane (Maekawa
et al., 2021; Mandal et al., 2017; Sanchez-Huerta et al., 2023). Peptide
bonds in collagen molecules are broken down by proteases produced
by microorganisms, leading to the degradation of collagen into
smaller peptides and amino acids (Kviatkovsky et al., 2022). On
the other hand, oxygen free radicals and oxidase enzymes can
attack the side chains of amino acids in collagen, causing protein
structure damage (Carretero et al., 2023).

2.3.3 Cellular compatibility
The amniotic membrane, as a unique biological scaffold, has

found widespread applications in tissue engineering and

regenerative medicine. One of the primary reasons for these
applications is its exceptional ability to facilitate cell adhesion,
proliferation, and differentiation. These properties depend on
various factors, including the composition of the extracellular
matrix (ECM), the presence of growth factors and cytokines, and
its microscopic structure (Tauseef et al., 2024; Becker et al., 2018).

Cell adhesion is a vital process in which cells attach to each other
or to the extracellular matrix (ECM) (Ryu et al., 2022). This process is
essential for tissue formation, healing, and many other biological
processes. The amniotic membrane, due to its unique ECM
composition, plays a significant role in facilitating cell adhesion
(Barski et al., 2015; McDaniel et al., 2021). The amniotic
membrane is rich in proteins such as fibronectin, laminin,
collagen, and vitronectin. These proteins act as ligands and bind to
specific receptors on the cell surface, such as integrins (Ahmed et al.,
2024; Ueda et al., 2022). Integrins are transmembrane proteins that
bind to adhesive proteins in the ECM (YuC. et al., 2023). This binding
sends signals into the cell that lead to changes in the cytoskeleton and
the formation of adhesive structures such as focal adhesions (Iwamoto
and Calderwood, 2015). In addition to integrins, other adhesion
molecules such as cadherins and selectins also play a role in cell
adhesion (Kim et al., 2020; Zinellu and Mangoni, 2024).

Cell proliferation is a fundamental process in tissue growth and
repair (Dommann et al., 2022). In tissue engineering and regenerative

TABLE 2 Biological properties of amniotic membrane.

Property Description Mechanism of
action

Key factors Clinical
applications

Ref

Anti-inflammatory Inhibits inflammatory
response, reduces production

of pro-inflammatory
cytokines (TNF-α, IL-1β) and
increases anti-inflammatory
cytokines (IL-10, TGF-β)

Interacts with cellular
receptors, inhibits

inflammatory signaling
pathways, creates an anti-
inflammatory environment

Growth factors (EGF,
FGF, TGF-β),
proteoglycans,

mesenchymal stem
cells

Chronic wound healing,
burns, orthopedic

surgeries, autoimmune
diseases

Messmer (2020), Manti et al.
(2022), Lan et al. (2020), Duerr
et al. (2019), Gera et al. (2023),
Karaca et al. (2024), Valiente
et al. (2018)

Antimicrobial Inhibits growth of bacteria,
viruses, and some fungi

Presence of antimicrobial
peptides, creation of acidic
environment, formation of

physical barrier

Antimicrobial
peptides, low pH,
fibrous structure

Prevention of wound
infection, wound
dressings, surgeries

Tauseef et al. (2024), Maekawa
et al. (2021), Hisey et al.
(2023), Bulut et al. (2023),
Lohajaroensub et al. (2022),
Sket et al. (2021), Syed and
Rapuano (2021), Ting et al.
(2020), Wali et al. (2022)

Immunomodulatory Regulates immune response,
reduces excessive immune

response

Interacts with immune cells
(macrophages, lymphocytes),

regulates expression of
adhesion molecules

Mesenchymal stem
cells, growth factors,
extracellular matrix

Organ transplantation,
autoimmune diseases,

allergies

Canciello et al. (2020), Tauseef
et al. (2024), Abou-Shanab
et al. (2023), Alonso-Carpio
et al. (2020), Canciello et al.
(2024), de Oliveira Pinheiro
et al. (2020), Riedel et al.
(2023), Skowron-Kandzia et al.
(2021), Wassmer and
Berishvili (2020)

Anti-scarring Reduces scar tissue formation,
promotes natural tissue repair

Regulates collagen synthesis,
inhibits myofibroblast activity

Growth factors (TGF-
β), extracellular

matrix, mesenchymal
stem cells

Burn treatment, surgical
wounds, cosmetic

surgery

Law et al. (2022), Gera et al.
(2023), Hazarika et al. (2022),
Li et al. (2023b),
Munoz-Torres et al. (2022),
Shabani et al. (2020)

Tissue regenerative Stimulates cell proliferation
and migration, promotes new

blood vessel formation
(angiogenesis), synthesizes

extracellular matrix

Presence of growth factors
(VEGF, FGF), extracellular
matrix, mesenchymal stem

cells

Growth factors,
extracellular matrix,
mesenchymal stem

cells

Tissue engineering,
chronic wound healing,
treatment of ischemic

diseases

Etchebarne et al. (2021),
Wassmer and Berishvili
(2020), Dasargyri et al.
(2023b), Elkhenany et al.
(2022), Gupta, 2022; Hu et al.
(2023), Ingraldi et al. (2023),
Mirzadegan et al. (2020)
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medicine, the ability of a biological scaffold to facilitate cell
proliferation is a key factor in the success of treatment (Trubiani
et al., 2019). The amniotic membrane, as a natural biological scaffold,
has gained significant attention in this field due to its specific
composition and microenvironment that supports cell proliferation
(Iranpour et al., 2018; Li et al., 2023a). Proteins such as fibronectin,
laminin, and collagen in the amniotic membrane ECM act as receptors
for cells, promoting their adhesion to the scaffold. This adhesion sends
signals to cells that activate signaling pathways and ultimately lead to
cell proliferation (Shen et al., 2019). Additionally, proteoglycans, by
absorbing water, provide a moist and nutrient-rich environment for
cells, thus supporting their proliferation (Hannon et al., 2019). Growth
factors such as EGF, FGF, and TGF-β stimulate the proliferation of
epithelial cells, fibroblasts, endothelial cells, and mesenchymal stem
cells (Wu et al., 2017). Furthermore, cytokines such as interleukins (IL)
and tumor necrosis factor (TNF) can influence cell proliferation and
regulate the inflammatory response (Souza et al., 2023).

2.3.4 Anti-inflammatory
Amniotic membrane possesses inherent anti-inflammatory

properties, containing factors that suppress the inflammatory
response and facilitate expedited healing. The underlying mechanisms
of its anti-inflammatory action are multifaceted (Manti et al., 2022).

One significant mechanism involves the inhibition of pro-
inflammatory cytokines. The amniotic membrane contains factors
that suppress the production and release of pro-inflammatory
cytokines such as TNF-α, IL-1β, and IL-6. These cytokines play a
pivotal role in the inflammatory response, and reducing their levels
contributes to a decrease in inflammation (Kirici et al., 2022; Wang C.
et al., 2024). Conversely, this membrane also stimulates the
production of anti-inflammatory cytokines like IL-10 and TGF-β,
which exhibit potent anti-inflammatory effects and promote tissue
repair (Li et al., 2022). Furthermore, the amniotic membrane stabilizes
cell membrane structure, reducing lipid peroxidation. This prevents
membrane damage, subsequent release of intracellular contents (such
as lysosomal contents), and the inappropriate activation of pattern
recognition receptors (PRRs), thereby mitigating the inflammatory
response. Certain components of the amniotic membrane can absorb
proteolytic enzymes involved in the inflammatory process, further
contributing to reduced inflammation (von Krusenstiern et al., 2023).
By modulating the immune response, the amniotic membrane fosters
a balanced inflammatory environment and protects damaged tissues.
Through mechanisms such as regulating the expression of cell
adhesion molecules, modulating the production of cytokines and
chemokines, and influencing the function of both innate and
adaptive immune cells, it prevents an excessive immune response
that could lead to tissue damage (Ramachandran et al., 2024).

2.3.5 Antimicrobial
Numerous studies have demonstrated that the amniotic

membrane possesses a broad spectrum of antimicrobial
properties, including activity against bacteria, viruses, and certain
fungi. The mechanism underlying this antimicrobial effect can be
attributed to various factors such as the presence of antimicrobial
peptides, changes in the pH environment, and the creation of a
physical barrier (Kumaresan et al., 2024).

The amniotic membrane contains a wide array of natural
antimicrobial peptides (AMPs) that directly target the cell

membranes of microorganisms, causing their destruction. These
peptides employ diverse mechanisms of action, including pore
formation in cell membranes, disruption of protein and nucleic
acid synthesis, and activation of the innate immune system (Hisey
et al., 2023; Moosazadeh Moghaddam et al., 2023). Moreover, the
environment surrounding the amniotic membrane typically exhibits
an acidic pH, which is detrimental to many microorganisms and
inhibits their growth. This acidic pH can directly affect the cell
membranes of microorganisms, impairing their function. It is
important to note that certain microorganisms, such as some
bacteria (like Group B Streptococcus, Listeria monocytogenes, and
certain species of Klebsiella), some viruses (like Zika virus, rubella
virus, and certain influenza viruses), and some fungi (like Candida
albicans) can penetrate the amniotic membrane (Johnston et al., 2024;
Masumoto et al., 2024; Sani et al., 2023; Yan P. et al., 2022).

2.3.6 Modulation of the immune response
The amniotic membrane employs various mechanisms to

prevent an excessive immune response and maintain immune
homeostasis. The most significant mechanisms that modulate the
immune response are discussed below:

• Reduced production of pro-inflammatory cytokines: The amniotic
membrane decreases the production of pro-inflammatory
cytokines such as TNF-α, IL-1β, and IL-6, thereby reducing the
severity of the inflammatory response. These cytokines play a
crucial role in activating the immune system and inducing
inflammation (Wang et al., 2023; Wei et al., 2023).

• Increased production of anti-inflammatory cytokines: This
membrane stimulates the production of anti-inflammatory
cytokines like IL-10 and TGF-β. These cytokines inhibit the
activity of immune cells and decrease the production of
inflammatory molecules, contributing to a reduction in
inflammation (Wang et al., 2023; Evangelista et al., 2021).

• Modulation of immune cell activity: The amniotic membrane
influences the activity of immune cells such as macrophages,
neutrophils, and lymphocytes, helping to regulate the immune
response. This membrane can inhibit the activity of some of
these cells while stimulating the activity of others. The
amniotic membrane also has low antigenicity and rarely
triggers an immune rejection reaction. This feature is due
to the low expression of MHC class I and II molecules in
amniotic epithelial cells (Gomez-Lopez et al., 2019; Xu et al.,
2024; Dasargyri et al., 2023a).

• Creation of an anti-inflammatory environment: By absorbing
proteolytic enzymes and free radicals, the amniotic membrane
creates an anti-inflammatory environment. This environment
prevents damage to healthy tissues and promotes tissue repair
(Alfoldi and Ferianec, 2024; Liu et al., 2023; Antoine
et al., 2022).

• Stabilization of the cell membrane: By stabilizing the cell
membrane, the amniotic membrane prevents the release of
intracellular contents and the activation of the inflammatory
response (Tauseef et al., 2024; Lan et al., 2020).

2.3.7 Anti-scarring
In addition to its anti-inflammatory and antimicrobial

properties, the amniotic membrane also exhibits anti-scarring
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effects. This means that the amniotic membrane can prevent the
excessive formation of scar tissue and promote the healing of natural
tissue. This property is influenced by factors such as the inhibition of
type III collagen synthesis, the regulation of growth factors, the
modulation of the immune response, the provision of a moist
environment, and the reduction of the inflammatory response
(Liu et al., 2023; Lin-Hui et al., 2024).

Scar tissue is primarily composed of type III collagen. By
inhibiting the synthesis of type III collagen and stimulating the
synthesis of type I collagen, the amniotic membrane contributes to
improved tissue quality and reduced scarring. Type I collagen is
stronger and more flexible than type III collagen and gives the tissue
a more natural appearance (Lin-Hui et al., 2024). Additionally, the
amniotic membrane contains various growth factors such as TGF-β,
PDGF, and VEGF (Liu C. et al., 2020). These factors play a crucial
role in regulating the wound healing process and preventing
excessive scar formation. Furthermore, by creating a moist
environment, the amniotic membrane promotes cell migration
and the formation of new tissue. Given its unique natural
properties, the amniotic membrane has become an ideal option
in tissue engineering and cell therapy research. This membrane is
used in treatments such as ocular diseases, skin diseases, ischemic
diseases, and more (Chen L. et al., 2023; Erkoc-Biradli et al., 2024).

3 Effects of amniotic membrane on
damaged heart cells

Given its unique biological properties, the amniotic membrane has
emerged as a promising bio-scaffold in regenerative medicine,
particularly in cardiac tissue repair. When the amniotic membrane
is in contact with cardiac cells, interactions occur between them. A
deep understanding of these cellular interaction mechanisms can
contribute to the development of new therapeutic strategies for
heart diseases. For instance, this knowledge can be used to design
novel biomaterials that can serve as scaffolds for cardiac tissue repair.
Additionally, it can be utilized to engineer cardiac stem cells to produce
new cardiac cells to replace damaged ones. In this section, we will delve
into the detailed cellular interactions between the amniotic membrane
and damaged cardiac cells. Cellular interactions are complex processes
that play a role in many vital bodily functions including growth, tissue
repair, and immune response. One of the most important of these
interactions is cell adhesion, which allows cells to adhere to each other
or to the extracellular matrix. This adhesion, in addition to
maintaining the structure of tissues, is also essential for cell
migration. The amniotic membrane contains proteins such as
fibronectin, laminin, and collagen that act as cell adhesion
molecules (Munoz-Torres et al., 2022). These molecules have
specific binding sites that attach to receptors on the surface of
cardiac cells. This binding leads to the formation of strong bonds
between cardiac cells and the amniotic membrane. This adhesion
provides a stable and supportive environment for cardiac cells, aiding
in their growth and proliferation (Graf et al., 2021; Hsieh et al., 2023;
Kiyozumi et al., 2020). Cardiac cells adhering to the amniotic
membrane can migrate in a directed and organized manner along
the surface of the membrane, which is essential for the repair of
damaged cardiac tissues. Furthermore, the interaction between cardiac
cells and the amnioticmembrane can regulate various cellular activities

such as gene expression, protein production, and cell signaling
(Connell et al., 2015). The molecular mechanisms underlying these
interactions are very complex andmulti-step. In summary, this process
involves recognition, binding, formation of adhesion complexes, and
regulation of the cytoskeleton (Li et al., 2016; Revach et al., 2020). The
receptors on the surface of cardiac cells recognize the cell adhesion
molecules present in the amniotic membrane. After recognition, the
receptors bind to the cell adhesion molecules, forming initial bonds.
These bonds are then gradually strengthened, forming complex
adhesion complexes. Ultimately, this leads to changes in the
organization of the cell cytoskeleton, which in turn affects the cell’s
shape, movement, and adhesion (Connell et al., 2015).

In addition to cell adhesion molecules, the amniotic membrane
contains a wide range of growth factors that play a vital role in the
process of cardiac tissue repair. These growth factors include VEGF
(Vascular Endothelial Growth Factor), FGF (Fibroblast Growth Factor),
and TGF-β (Transforming Growth Factor beta) (Liu Z. et al., 2020; Oba
et al., 2020). The growth factors present in the amniotic membrane
interact with specific receptors on the surface of cardiac cells. These
receptors are transmembrane proteins specifically designed to recognize
and bind to a particular growth factor. Many of these growth factors
present in the amniotic membrane interact with receptors called
receptor tyrosine kinases (RTKs), which have a specific structure that
includes an extracellular domain, a transmembrane domain, and an
intracellular domain (Trenker and Jura, 2020). The extracellular domain
contains specific binding sites for growth factors, and when a growth
factor binds to this site, two receptor molecules come together and form
a dimer (Nielsen et al., 2022). The intracellular domain has kinase
activity, and after the dimerization of the receptors, the intracellular
domain is activated and begins to phosphorylate tyrosine residues in
itself and other proteins (Albrecht et al., 2020). Protein phosphorylation
initiates a chain of biochemical reactions, and these pathways transmit
information from the extracellular environment to the cell nucleus,
ultimately leading to changes in gene expression and cellular activities
(Kagiwada et al., 2021).

The activation of intracellular signaling pathways results in a
wide range of biological effects that are essential for cardiac tissue
repair, such as stimulating cell proliferation, cell migration,
extracellular matrix synthesis, and angiogenesis. Growth factors
stimulate cell division and increase the number of cardiac cells.
These factors guide cardiac cells toward the site of injury and
facilitate their migration. Growth factors stimulate the synthesis
of extracellular matrix proteins such as collagen and elastin, which
are essential for the regeneration of damaged tissue (Guerreiro et al.,
2021; Vu et al., 2022). VEGF, in particular, acts on vascular
endothelial cells, promoting the formation of new blood vessels, a
process that is essential for supplying the oxygen and nutrients
required for tissue repair (Hida et al., 2001; Testa et al., 2020). In
summary, Table 3 presents the growth factors present in the
amniotic membrane and their effects on cardiac cells.

4 Application of amnioticmembrane on
cardiac disease

According to the World Health Organization (WHO), ischemic
heart disease is a leading cause of death, claiming approximately
3.9 million lives annually. Recent studies suggest that amniotic
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membrane and stem cells may offer promising therapeutic options for
treating ischemic heart damage and regulating inflammation (Table 4)
(Tarin-Carrasco et al., 2021). The restoration of pathological ventricular
function and improvement of ejection fraction are paramount goals in
the treatment of heart injuries. The heart’s ventricle serves as the body’s
primary blood pump, and damage to it can lead to heart failure, reduced
quality of life, and even death. Improving ejection fraction refers to
increasing the heart’s ability to pump blood, and both factors directly
influence the heart’s function and its ability to supply blood to the
body’s organs. If left untreated, heart injuries can result in chronic heart
failure (Pilz et al., 2022). The treatment of ischemic heart damage and
the regulation of inflammation by amniotic membrane and stem cells
have been confirmed in recent years. Studies have shown that acellular
human amniotic membrane (AHAM) and bone marrow mononuclear
cells (BMMC) improve ejection fraction and enhance cardiac function
within 30 days. Both BMMC and AHAM treatments led to improved
ejection fraction and reduced pathological ventricular remodeling,
indicating overall enhanced cardiac function. These improvements
in cardiac function can be attributed to various factors, including
the paracrine effects of stem cells, the anti-inflammatory properties
of the amniotic membrane, and the combined effects of these factors
(Takejima et al., 2024). A study investigated the protective effects of
human amniotic membrane proteins (AMPs) on rat cardiomyocytes
exposed to the anticancer drug doxorubicin (DOX). Researchers
employed a multi-parametric assay to assess various parameters
related to cellular injury, including intracellular Ca2+, ROS levels,
antioxidant status, MDA, mitochondrial membrane potential, cell
viability, and apoptosis. Results demonstrated that pretreatment with
AMPs effectively mitigated DOX-induced toxicity in cardiomyocytes.
AMPs significantly reduced elevated levels of LDH, Ca2+, ROS, and
MDA while concurrently enhancing ΔΨm and antioxidant status.
Furthermore, AMPs suppressed the expression of p53 and Bax
proteins and attenuated NF-κB p65 activity, indicating their capacity
to prevent oxidative stress and apoptosis. These findings suggest that
AMPs hold promise as a therapeutic agent for preventing DOX-
induced cardiotoxicity (Faridvand et al., 2020).

Isoproterenol (ISO), as a beta-adrenergic agonist, induces
myocardial damage by overstimulating cardiac beta-adrenergic
receptors. This damage manifests as increased heart rate, blood

pressure, and myocardial oxygen consumption, ultimately leading
to ischemia and necrosis of cardiac cells. Studies have shown that
isoproterenol is a suitable model for studying ischemic heart damage
and evaluating various therapeutic effects (Akumwami et al., 2024;
Fan et al., 2020). In various studies, this method has been used to
assess the regenerative capacities of amniotic membrane in heart
injury repair. In one study, the protective effects of isoproterenol
(ISO)-induced myocardial damage were investigated using human
amniotic membrane mesenchymal stem cells (hAMSCs) labeled with
superparamagnetic iron oxide nanoparticles (SPION) (Figure 3).
Results showed that SPION-labeled hAMSCs in the presence of a
magnetic field can control inflammation through the NF-κB/MAPK
pathway, consequently improving cardiac function and reducing
fibrosis and tissue damage. This positive effect is due to the high
capacity of hAMSCs to migrate to the damaged area of the heart and
secrete anti-inflammatory factors (Naseroleslami et al., 2021).
Another study examined the protective effects of human amniotic
membrane-derived mesenchymal stem cells (hAMSCs) on ISO-
induced myocardial injury. By secreting growth factors and anti-
inflammatory cytokines, hAMSCs can prevent mitochondrial
damage, inhibit cytochrome C release, and suppress the apoptotic
process. Results showed that transplantation of hAMSCs after
myocardial injury can increase cardiac dimensions and restore
fractional shortening (FS) and ejection fraction (EF). Additionally,
hAMSCs, by affecting the intrinsic (mitochondria-dependent)
apoptotic mechanism and upregulating Bcl-2 expression, reduced
ISO-induced myocardial injury. Furthermore, myocardial interstitial
fibrosis was decreased with hAMSC transplantation (Kheila et al.,
2021). In another study, the effect of hAMSCs transplantation on
cardiac fibrosis in an ISO-induced heart failure model was
investigated. Results showed that hAMSCs transplantation could
reduce cardiac fibrosis, decrease the deposition of collagen types I
and III, and increase VEGF expression. These improvements led to
improved myocardial structure and cardiac function in the heart
failure model. This positive effect is due to the ability of hAMSCs to
reduce inflammation, enhance angiogenesis, and decrease collagen
deposition. (Razavi Tousi et al., 2022).

The differentiation of stem cells into cardiac cells is a novel
approach in the treatment of heart injuries. This process involves

TABLE 3 The growth factors present in the amniotic membrane and their effects on cardiac cells.

Growth factor Primary effect on cardiac cells Mechanism of action Ref

VEGF (Vascular
Endothelial Growth

Factor)

Promotes angiogenesis, increases vascular
permeability, promotes proliferation of

endothelial cells

Activates tyrosine kinase receptors
(VEGFR) and stimulates PI3K/Akt and

MAPK pathways

Koizumi et al. (2022), Mariotti et al. (2021), Wang et al.
(2024b), Wang et al. (2020)

FGF (Fibroblast Growth
Factor)

Promotes cell proliferation, cell migration,
extracellular matrix synthesis, angiogenesis

Activates tyrosine kinase receptors
(FGFR) and stimulates MAPK and PI3K/

Akt pathways

Agrawal et al. (2021), Hanneken et al. (2021), Liu et al.
(2020c), Ma et al. (2019), Mossahebi-Mohammadi et al.

(2020), Song and Finley (2020)

TGF-β (Transforming
Growth Factor beta)

Promotes extracellular matrix synthesis,
inhibits cell proliferation, induces apoptosis

(at high concentrations)

Activates serine/threonine kinase
receptors (TGF-βR) and stimulates

SMAD pathways

Grewal et al. (2023), Jia et al. (2020), Longenecker et al.
(2021), Riching et al. (2021), Waghabi et al. (2022)

HGF (Hepatocyte
Growth Factor)

Promotes cell proliferation, cell migration,
extracellular matrix synthesis

Activates tyrosine kinase receptors
(c-Met) and stimulates MAPK and PI3K/

Akt pathways

Guo et al. (2021), Harrington et al. (2023), Zhang et al.
(2020)

EGF (Epidermal Growth
Factor)

Promotes cell proliferation, cell migration Activates tyrosine kinase receptors
(EGFR) and stimulates MAPK and PI3K/

Akt pathways

Qin et al. (2020), Ren et al. (2022), Sabbah et al. (2020),
Sun et al. (2021b), Te Molder et al. (2021), Yuki, 2021;

Zhang et al. (2024)
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TABLE 4 Studies related to the application of amniotic membrane in cardiac tissue engineering.

Materials Structure Type Effects Ref.

hAM-BMMC decellularization in vivo (Rat) ↑ ejection fraction (EF)
↓ LVESV and LVED
↑ NF-kβ levels
↑ NALP3 enzyme levels

Takejima et al.
(2024)

hAMSCs-PEG functionalized
SPIONs

co-precipitation in vivo (Rat) ↑ CD29, CD73, CD166 expression
↑ EF and fractional shortening (FS)
↓ TNF-α, IL-1β, TGF-β1, IL-6, IL-8, and CRP expression level
↓ fibrosis and abnormality
↓ phosphorylated p38 MAPK and NF-κB positive cells expression

Naseroleslami et al.
(2021)

hAMSCs decellularization in vivo (Rat) ↑ EF and FS
↓ LVIDd and LVIDs
↓ fibrosis
↓ collagen deposition
↓ p53 and Bax protein expression
↑ Bcl-2 protein expression
↓ apoptotic index

Kheila et al. (2021)

hAMSCs decellularization in vivo (Rat) ↑ EF and FS
↑ systolic, diastolic, and mean arterial blood pressures
↑ LVSP
↓ LVEDP
↓ myocardial fibrosis
↓ collagen (I and III) deposition
↑ VEGF expression

Razavi Tousi et al.
(2022)

hCardio and hAESC- amnion
bilayer 3D scaffold

decellularization in vitro (Rat) ↑ TRA-1-60, SSEA-4, Oct-3/4, Nanog, cTnT, adhesion molecule ICAM,
PECAM+/VCAM- (endothelial marker) expression
↓ CD73, CD90, CD105 expression
↓ HLA-DR (0%), HLA-ABC (0.2%) immune antigens expression
↓ TNF-α levels (after 1-5-7-8 days of cultivation)
↑ TGF-β, GATA-4, Nkx-2.5, MEF-2C, myosin heavy chain (MHC), and
α-actinin (ACTN2) expression

Normalina et al.
(2022)

hAMSCs decellularization in vitro ↑ CD73, CD90, CD105 and CD44 expression
↓ CD19, CD11b, CD45, and HLA-DR expression
↑ MLC2v, Nkx2.5, and MyoD levels
↑ troponin T and α-actin expression

Shih et al. (2024)

hAMSCs-CM decellularization in vivo (Rat) ↑ SOD and GPx levels
↓ cTn-I and MDA expression
↓ myocardial injury
↑ TGF-β signaling
↓ IL-6, IL-1β, and TNF-α expression
↓ infarct size

Mokhtari et al.
(2020)

hAMSCs-CM decellularization in vivo (Rat) ↑ EF and FS
↓ apoptotic nuclear density and fibrosis level
↑ angiogenesis
↑ CD29, CD105, and CD166 expression

Maleki et al. (2019)

hAM-ADMSCs decellularization in vivo (Rat) ↓ inflammation and fibrosis
↑ CD34+ expression
↑ angiogenesis
↓ CD45+ and CD68+ levels

Khorramirouz et al.
(2019)

hAMP decellularization in vitro ↓ LDH, Ca2+, ROS, and MDA levels
↓ cell toxicity and apoptosis
↑ ΔΨm, SOD, CAT levels
↓ NF-kB p65 activity
↑ p53 and Bax protein levels

Faridvand et al.
(2020)

PGS-PCL-hAMSCs decellularization
and

copolymerization

in vitro/in
vivo (Rat)

↑ cell survival
↑ EF, FS, stroke volume, LVEF, and EVD
↓ systolic volume
↑ VEGF expression

Bahrami et al. (2023)

hAM-PLGA decellularization
and electrospinning

in vitro ↑ endothelial cell viability, migration, and tube formation
↑ angiopoietin-1, VEGF-C, IL-8

Hasmad et al. (2022)

hAM-PCL-MoS2 decellularization
and electrospinning

in vitro ↑ biocompatibility, elongated morphology and cell aggregation
↑ c-TnT, GATA-4, NKX 2.5, and α-myosin heavy chain expression

Nazari et al. (2022)

(Continued on following page)
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culturing stem cells with high proliferation capacity and the ability to
differentiate into various cell types in a suitable culture medium to
differentiate them into cardiac cells. These differentiated cardiac cells
are then transplanted into the damaged area of the heart. The newly
formed cardiac cells can replace the damaged cells and improve heart
function. The importance of this approach lies in the fact that stem
cells can be used as an endless source for the production of new
cardiac cells and can also be genetically manipulated to perform
better. In addition, stem cells can secrete growth factors and cytokines
that help repair heart tissue and reduce inflammation (Deszcz, 2023;
Foo et al., 2021; Kawaguchi andNakanishi, 2022). In a study, the effect
of the co-culture ratio of human amniotic mesenchymal stem cells
(hAESC) and human cardiac cells (hCardio) on cardiac cell
differentiation in a 3D matrix used for cardiac patches was
investigated (Figure 4). The results showed that a 6:1 ratio (hAESC
to hCardio) is optimal for cardiac cell differentiation from hCardio. At
this ratio, the differentiated cardiac cells showed expression of genes

related to cardiac differentiation, such as cTnT and ACTN2. Also, the
differentiated cardiac cells in this ratio showed migration and
protopodia formation (Normalina et al., 2022).

Another study aimed to chemically induce human amniotic
membrane mesenchymal stem cells (hAMSCs) into cardiomyocyte-
like cells. Results showed that hAMSCs isolated from amniotic
membrane samples expressed surface markers characteristic of
mesenchymal stem cells and exhibited a trilineage differentiation
potential into adipocytes, chondrocytes, and osteoblasts. The markers
SSEA-1, SSEA-3, and SSEA-4 were also positive. Using various chemical
induction methods, hAMSCs were successfully induced to express
cardiac-specific genes such as MLC2v, Nkx2.5, MyoD, troponin T,
and α-actin. These results suggest that hAMSCs can be chemically
manipulated to differentiate into cardiomyocyte-like cells in vitro.
However, further research is necessary to optimize induction methods
and improve the functional properties of the differentiated cells (Shih
et al., 2024).

TABLE 4 (Continued) Studies related to the application of amniotic membrane in cardiac tissue engineering.

Materials Structure Type Effects Ref.

hAM decellularization in vitro/in
vivo (Rat)

↑ biocompatibility
↑ LVEF and LVFS
↓ infarct size

Henry et al. (2020)

hAM-BMSCs decellularization in vivo (Rat) ↑ EF, LVEDV and LVESV
↑ desmine-positive cells
↑ angiogenesis
↑ connexin-43 expression

Blume et al. (2021)

hAM-(15d-PGJ2) nanoparticles decellularization
and

nanoprecipitation

in vivo (Rat) ↑ cell viability
↑ LVEF
↓ infarct size
↑ connexin-43 and CD31 expression

Francisco et al.
(2020)

FIGURE 3
Schematic illustration of SPION-labeled hAMSCs preparation for ISO-induced myocardial damage. Created with BioRender.com.
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In recent years, various studies have focused on the application of
the amniotic membrane in different types of heart injuries to better
understand its potential in cardiac injuries. Mokhtari et al. investigated
the cardioprotective effects of human amniotic membrane
mesenchymal stem cells (hAMSCs)-conditioned medium (CM) on
rat cardiac ischemia/reperfusion (I/R) injury. A myocardial infarction
(MI) model was created and treated with either culture medium or
hAMSCs-CM. They aimed to determine whether substances secreted by
hAMSCs could help protect the heart from damage caused by reduced
blood flow and oxygen supply. Results showed that hAMSCs-CM
significantly increased the activities of antioxidant enzymes (SOD
and GPx), reduced oxidative stress markers (cTn-I and MDA), and
improved cardiac histological alterations. These findings suggest that
hAMSCs-CM may be a promising therapeutic option for I/R injury by
reducing oxidative stress (Mokhtari et al., 2020). In another study, the
effects of mesenchymal stem cells derived from human amniotic
membrane (MSC-CM) on heart failure (HF) in rats were
investigated. Rats were induced to develop HF and then treated with
MSC-CM, culture medium, or PBS. Results showed that MSC-CM
significantly improved heart function, reduced fibrosis, and increased
angiogenesis, suggesting its potential as a therapeutic agent for HF
(Maleki et al., 2019). The efficacy of amniotic membrane (AM) in
treating myocardial infarction lesions was also investigated. After
inducing a myocardial infarction model, rats were treated with a
patch containing adipose-derived mesenchymal stem cells
(ADMSCs) seeded on a decellularized human AM. Results showed
that the patch-implanted group had less inflammation, fibrosis, and
apoptosis (Khorramirouz et al., 2019).

hAMSCs play a positive role in the repair of myocardial ischemia-
reperfusion injury (MI/R) due to the stimulation of endogenous repair
mechanisms. A study investigated the effects of a combined therapy
using human amniotic membranemesenchymal stem cells (hAMSCs)

and a tissue-engineered film based on poly glycerol sebacate (PGS)-
co-polycaprolactone (PCL) on myocardial ischemia-reperfusion
injury (MI/R) in rats (Figure 5). In vitro results showed good cell
survival on the films, and in vivo results demonstrated improved
cardiac function, including increased fractional shortening, stroke
volume, LVEF, and end-diastolic volume. The study also showed
increased expression of VEGF protein, suggesting that the combined
therapy may enhance angiogenesis. These findings suggest that the
combined treatment of hAMSCs and cardiac film is a promising
therapeutic approach for MI/R injury (Bahrami et al., 2023). In
another study investigated the potential of cardiac patches based
on human amniotic membrane (hAM) coated with electrospun
polylactic-co-glycolic acid (PLGA) fibers for cardiac regeneration.
Conditioned medium (CM) obtained from these patches was cultured
on human umbilical vein endothelial cells (HUVECs) to assess their
pro-angiogenic properties. The results showed that CMs derived from
hAM-PLGA scaffolds had increased levels of pro-angiogenic factors,
including VEGF-C, IL-8, and angiopoietin-1, and promoted better
endothelial cell viability, migration, and tube formation compared to
CMs derived from plain hAM. These findings suggest that cardiac
patches based on hAM-PLGA could be a promising therapeutic
option for ischemic injuries by promoting angiogenesis (Hasmad
et al., 2022).

One of the primary challenges in cardiac tissue engineering is
restoring the natural electrical conductivity of the heart following
injury. Cardiac cells require electrical communication with each other
to function synchronously. Cardiac tissue engineering scaffolds, in
addition to providing an environment for cell growth and
proliferation, must also facilitate electrical conductivity. Scaffolds
with high electrical conductivity, such as those containing
conductive nanoparticles, can improve communication between
cardiac cells, thereby restoring cardiac electrical function and

FIGURE 4
Schematic illustration of co-culture of hCardio + hAESC in decellularized Amnion 3D scaffold for cardiomyogenesis. Created with BioRender.com.
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improving contractility. This is particularly important in the
treatment of diseases such as myocardial infarction, which is
associated with impaired electrical conduction (Chen et al., 2020;
Edrisi et al., 2023; Ul Haq et al., 2021). A study investigated the
potential of a novel scaffold based on decellularized human amniotic

membrane (DHAM) coated with molybdenum disulfide (MoS2) and
PCL nanosheets for cardiac tissue engineering (Figure 6). The results
showed that the scaffold was biocompatible and supported the growth
and maturation of mouse embryonic cardiac cells (mECCs). The
presence of cardiac genes such as c-TnT, GATA-4, NKX 2.5, and α-

FIGURE 5
Schematic illustration of hAMSCs differentiation to cardiomyocytes, PGS-co-PCL cardiac films preparation, and implantation of PGS-co-PCL film +
differentiated hAMSCs to MI/R injury rat model. Created with BioRender.com.

FIGURE 6
Schematic illustration of (A) decellularized hAM scaffold, (B) electrospun PCL-MoS2 nanosheet, and (C)DHAM/PCL-MoS2 scaffold for cardiac tissue
engineering. Created with BioRender.com.
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myosin heavy chain in mECCs cultured on the DHAM/PCL-
MoS2 scaffold suggests that it can enhance the differentiation of
mECCs into cardiomyocytes. These findings indicate that DHAM/
PCL-MoS2 scaffolds may be a promising candidate for cardiac tissue
engineering applications (Nazari et al., 2022). In 2019, Henry et al.
introduced a novel hAM-based injectable matrix to promote post-MI
cardiac regeneration. After injection of hAM matrix into the heart of
theMImousemodel by ultrasound guidance, fibrosis was significantly
reduced, and cardiac contractility and EF were improved. The results

of this study showed that the design of an injectable hAMmatrix and
its potential effectiveness can play a major role in cardiac regeneration
(Henry et al., 2020).

5 Clinical translation and prospects

Amniotic membrane (AM) has emerged as a potential and
promising biomaterial for cardiac tissue engineering due to its

FIGURE 7
Timeline of factors expressed in studies (in vivo) of the amniotic membrane in cardiac tissue engineering.
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regenerative capabilities and unique properties such as anti-
inflammatory activity and biocompatibility. Although significant
progress has been made in this area, several key topics require
further research. One of the new, widely used, and cost-effective
techniques for obtaining AM scaffolds is decellularization. However,
modifications can be made to this technique to improve and develop
more efficient and reproducible methods for preserving desired
ECM components while minimizing immunogenic complications.
In addition, decellularization compounds and various agents can be
investigated to better remove ECM from other cell components. To
match the mechanical properties of AM with native cardiac tissue,
techniques such as incorporation of conductive materials, cross-
linking, or combining AM with other biomaterials can be used to
create hybrid scaffolds with improved elasticity and mechanical
strength properties. Furthermore, exploring techniques to enhance
the differentiation of cardiac progenitor cells or stem cells into
cardiomyocytes after culture on AM scaffolds may improve cell-AM
interactions. In this way, the combination of biological molecules
such as growth factors can promote cell adhesion, proliferation, and
differentiation in AM scaffolds. To date, the results of implanting
AM-based constructs in small animal models have been promising
Figure 7, while preclinical studies have been conducted in large
animal models to evaluate the safety and long-term effectiveness of
AM-based cardiac patches, as well as to develop effective designs,
conduct, and controlled clinical trials to evaluate AM -based
treatments in patients with heart failure may be a way forward.
Combination therapies would be another solution to promote heart
repair and regeneration. In this context, the combination of AM
scaffolds with immunomodulatory treatments or drug delivery
systems can be mentioned to improve graft survival and
function. On the other hand, the use of patients’ cells and
biomaterials as well as the use of computer models to predict the
behavior of AM-based cardiac patches in the complex cardiac
environment can revolutionize the personalization of treatment
approaches in cardiac patients. By exploring these future
prospects, researchers can realize the potential of the amniotic
membrane as a versatile platform for cardiac tissue engineering
and develop more innovative treatments for cardiac patients.

6 Conclusion

Cardiovascular diseases are among the most significant global
health challenges. Despite significant advancements in the
treatment of these diseases, there is still a need for novel
approaches to repair damaged cardiac tissue. Amniotic
membrane, as a biological scaffold with unique properties, has
shown great potential in cardiac tissue repair and improving
cardiac function. Its unique properties such as biocompatibility,
anti-inflammation, and wound healing stimulation have made
this membrane a promising option for the treatment of heart
diseases. Numerous studies have shown that amniotic
membrane, containing growth factors, cytokines, and other
biomolecules, can stimulate tissue repair processes, reduce
inflammation, and enhance angiogenesis. These properties
have made amniotic membrane a promising option for the

treatment of various heart diseases, including myocardial
infarction, heart failure, and congenital heart diseases.

Although the results of initial studies have been promising,
larger-scale clinical studies are still needed to fully determine the
long-term efficacy and safety of using amniotic membrane in the
treatment of heart diseases. Additionally, standardization of
amniotic membrane preparation and processing methods,
individual variations in amniotic membrane composition, the
need for more clinical studies to determine the optimal dose and
application method, and the potential risk of disease transmission
are among these challenges.

Overall, amniotic membrane has great potential to improve
treatment outcomes in heart patients. However, for the widespread
use of this method in the clinic, further studies and standardization
of the production and application process are needed. Additionally,
interdisciplinary collaboration between cardiologists, tissue
engineers, and biologists is essential for developing new
applications of amniotic membrane. In the future, with
advancements in manufacturing technologies and tissue
engineering, amniotic membrane can be expected to become an
effective and safe therapeutic tool for cardiac tissue repair.
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