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Introduction: There has been an increasing focus on object segmentation within
remote sensing images in recent years due to advancements in remote sensing
technology and the growing significance of these images in both military and
civilian realms. In these situations, it is critical to accurately and quickly identify a
wide variety of objects. In many computer vision applications, scene recognition
in aerial-based remote sensing imagery presents a common issue.

Method: However, several challenging elements make this work especially
difficult: (i) Different objects have different pixel densities; (ii) objects are not
evenly distributed in remote sensing images; (iii) objects can appear differently
depending on viewing angle and lighting conditions; and (iv) there are
fluctuations in the number of objects, even the same type, in remote sensing
images. Using a synergistic combination of Markov Random Field (MRF) for
accurate labeling and Alex Net model for robust scene recognition, this work
presents a novel method for the identification of remote sensing objects. During
the labeling step, the use of MRF guarantees precise spatial contextual modeling,
which improves comprehension of intricate interactions between nearby aerial
objects. By simultaneously using deep learning model, the incorporation of Alex
Net in the following classification phase enhances themodel’s capacity to identify
complex patterns in aerial images and adapt to a variety of object attributes.

Results: Experiments show that our method performs better than others in terms
of classification accuracy and generalization, indicating its efficacy analysis on
benchmark datasets such as UC Merced Land Use and AID.

Discussion: Several performancemeasures were calculated to assess the efficacy
of the suggested technique, including accuracy, precision, recall, error, and F1-
Score. The assessment findings show a remarkable recognition rate of around
97.90% and 98.90%, on the AID and the UC Merced Land datasets, respectively.
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1 Introduction

The evolution during the last several years of remote sensing
(RS) technologies, in terms of platforms, sensors, and information
support, has led to the significant increase in availability of EO data
for geospatial analysis. Semantic segmentation is a key task in RS
that has implications for a diverse area of applications, such as land
use classification (Ahmad et al., 2020; Alazeb et al., 2023), changes
detection (Islam et al., 2016; Saha et al., 2019), and environment
surveillance (Srivastava et al., 2012; Jalal et al., 2021). However,
these fine segmentation algorithms are not practically achievable
due to the unavailability of large-scale labeled data and more
critically, the quality of the labeled data is poor due to coverage
restrictions of the satellite sensors particularly over different
geographical terrains and various types of land. Conventionally
every pixel in satellite imagery corresponds to a wide geographical
region (Naseer et al., 2024a); therefore, pixel-level annotation is
not only time consuming but also financially expensive and
requires high levels of specialization (Manfreda et al., 2018;
Khan et al., 2020).

To this end, there is a trend among scholars trying to employ
semi-supervised methods which can minimize the amount of pixel-
wise labeling, while using the gray images to extract information
(Guo et al., 2020; Liu et al., 2017). Nevertheless, prevalent techniques
entail biases in the procedure where the labeled data is selected at
random, which in turn results in the massive formation of skewed
models and innate inferior performance (Han et al., 2017;
Muhammad et al., 2018). Second, segmentation in the remote
sensing has problems that are closely related to characteristics of
images such as different scales of the objects are caused shooting
angles, inequality of counts of various objects, a large number of
small objects in the aerial images and etc. Problems of truncation
and occlusion make recognition even more challenging (Martin,
2011). Developing on previous attempts at employing remote
sensing, computational methods from the past relied on
statistical and rule-based methodologies, for instance, the
decision tree algorithms or unsupervised clustering; modern deep
learning techniques are scalable and more vigorous.

Earlier, classification based on remote sensing data used simple
statistical and rule based techniques including decision tree
algorithms and unsupervised clustering methods to classify land
cover and land use. For example, the research in (Jayanetti et al.,
2017) showed how land cover data can be combined with vGI such
as Foursquare to land use. However, such methods have limitations
associated with requiring the definition of certain thresholds and
assumptions which reduces accuracy for complex terrain. Taking
inspiration from these methods, deep learning-based methods have
just lately been developed as superior and more scalable ways to
handle remote sensing jobs. For instance, a model for categorizing
suitable land for agriculture based on geographic mapping using
deep learning was proposed by (Meedeniya et al., 2020), Deep
Learning for Sustainable Agriculture, which greatly increased the
forecast accuracy for paddy fields. In the same way, U-net and Fully
Convolutional Networks (FCN) were used by (Mahakalanda et al.,
2022), Deep learning-based prediction for rubber plantations, to
identify the land use of rubber plantations. This process took very
little time and achieved a very high accuracy of 94.13%, increasing its
applicability in crop monitoring.

The study tackles a number of significant research issues in the
fields of image segmentation and remote sensing, such as:

• How can object segmentation in remote sensing images be
improved to enhance accuracy and efficiency in identifying
multiple objects?

• What role do contextual and spectral-spatial features play in
improving scene classification?

• How can AlexNet, when integrated with effective
segmentation methods, improve the recognition of complex
scenes in remote sensing imagery?

• What is the comparative performance of the proposed hybrid
system against existing state-of-the-art methods on
benchmark datasets?

In this article, the authors introduce an approach for dealing with
the key issues in remote sensing scene recognition.While having several
limitations, our approach mitigates those issues as follows: First, it
minimizes interference and retains crucial aspects of appearance;
second, it addresses the noise aspect and relevant spectral—spatial
dependencies. Key contributions of this work include:

• Robust segmentation methods: A time comparison of MRF,
FCM, and DBSCAN clustering with MRF as the best
performer within the time-space complexity.

• Feature integration for scene recognition: Application of both
spectral and spatial information along with the Haralick
texture higher-order statistical measures in order to
improve the segmentation coherency and correctness.

• Deep learning integration: Use of AlexNet for making use of
segmented data in order to enhance the kind of recognition of
the complicated scenes with much more details and precision.

• Comprehensive evaluation: Comparison with other methods
to recognize the proposed hybrid system using newly
established benchmarks AID or UCM, with accuracy rates
of 97.90% and 98.90% respectively.

The subsections that follow in this paper follow this format. In
Section 2, the body of extant literature is examined in detail. A detailed
description of our suggested approach, including segmentation,
labeling, feature extraction, and their combination, is provided in
Section 3. In Section 4, a thorough analysis of the datasets used, the
experimental design used, and the resulting results are discussed.
Finally, Section 5 presents the results of the research we did.

2 Literature review

We reviewed the literature in a variety of disciplines, including
object classification, segmentation, labeling, and scene classification, in
order to analyze the complexity of aerial and remote sensing images.
This helped us create the right dynamics and metrics for our strategy.

2.1 Multi-object segmentation

In remote sensing image processing, segmentation is a crucial
activity that attempts to divide an image into similar regions.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Naseer et al. 10.3389/fbioe.2025.1430222

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1430222


Semantic segmentation specifically aims to allocate every
homogenous region to a unique geographical object category,
such as cities, farms, or woods. Semantic segmentation has been
approached through a variety of approaches in recent decades,
including Markov random field (MRF) models (Zhang et al.,
2018). Level sets (Ball and Bruce et al., 2007). Clustering (Ma
and Yang, 2009; Liu et al., 2015) and deep learning.
Traditionally, early techniques such as clustering anticipated that
pixels between distinct objects would display distinguishing traits,
whereas pixels representing the same object would have identical
characteristics. This method works well for low-to medium-
resolution images (Zhao et al., 2019), but is ineffective for high-
resolution (HSR) remote sensing images. Within an object in a HSR
image, individual pixels may have distinct looks, but certain pixels
from different objects may have identical (Längkvist et al., 2016)
properties. Optimizing a multi-kernel method designed for semantic
segmentation in high spatial resolution remote sensing imagery
using an advanced Markov Random Field model effectively
improves the robust classification of resilient objects in remote
sensing images (He, 2024) in his work proposes the Grouping
Prompt Tuning Framework (GoPT) based on semantic grouping
for multi-modal image segmentation. This results in the original
few-shot learning method with only one percent trainable
parameters, and each new prompt tuner method brings state-of-
the-art performance across multiple multi-modal segmentation
tasks. This work reveals the possibility that efficient training of
the foundation models implements early learning to address the
multi-modal perception issues of weak transfer and scarce labeled
data. To address domain gaps in remotely sensed segmentation
tasks, authors (Wang et al., 2024) this work introduces Dynamic
Loss Correction (DLC), a novel approach. Therefore, in order to
apply machines to cross-domain scenarios, DLC adaptively adjusts
loss functions to help establish the correspondence between related
feature distributions across domains. This method also improves the
model precision in terms of segments by stabilizing ephemeral
alignment between features of different sources of data thus
recommended for use where data of different types used.

2.2 Multi-object recognition

There are several challenges in the field of object classification
for researchers. These difficulties include issues like localizing
objects (Jain and Anto, 2022; Wang et al., 2022), recognizing
and analyzing object connections (Sumbul et al., 2019)
recovering hidden features, and classifying objects to produce
desired outcomes. The widely accepted bag-of-words (Wang
et al., 2017) technique has been the prevalent and effective
framework for the classifying and recognizing (Naseer et al.,
2024b) of objects in modern times. The bag-of-features
approach has been the subject of several remarkable
investigations (Ghabrani et al., 2023) present a new approach to
classify land cover using spatial information derived from
statistical properties of complicated CP and QP SAR data. They
use super pixels to represent local spatial relationships and a built
graph to express global dependencies. In order to estimate the land
cover categorization image, labels are propagated from labeled to
unlabeled super-pixels.

Furthermore, in a different study (Ahmed and Jalal et al., 2024),
presented a unique illustration method designed for certain object
classes. The characteristics of each image category were initially
defined by a Gaussian mixture model (GMM). They constructed
representations for comparison using the Euclidean distances
between the pictures and these GMM models. Class-specific
characteristics and visual components might be used to convey
an image owing to the concatenation of these representations across
all classes. A useful method for using multi-object categorization to
identify indoor-outdoor situations is described (Ahmed and Jalal
et al., 2024). Entails the process using two different ways to segment
imagery, after which multiple kernel learning (MKL) will be
employed to classify objects. To improve the classification, this
procedure combines area-specific signatures with local
descriptors. An approach was presented by (Ansith and Bini,
2022) classified land usage in high-resolution remote sensing
images using a modified GAN architecture based on an encoder.
The suggested technique feeds a latent vector into the generator after
it has been generated by an encoder. Images from high-resolution
remote sensing datasets are fed into the encoder. Support Vector
Machines (SVM) are recommended by (Sangeetham and Sanam,
2023) as a method for identifying high-resolution images. Principal
Component Analysis (PCA) is used to extract features from the
pictures prior to classification. Support vector machines are then
used to classify the feature vectors that are produced. Detecting an
object’s contours and motion. However, there is more possibility for
incorporating various remote sensing visualization approaches into
image processing because to the present high spatial resolution of
remote sensing (RS) images and the decreased difference between RS
and natural images (He et al., 2024) in their work, Orientation-
Aware Multi-Modal Learning for Road Intersection Identification
and Mapping, is centered on the association of orientation-learning
to map road intersections using multi-modal data such as LiDAR
and imagery. This framework merges spatial and geometric
orientation characteristics in the fusion of multi-modal data in
order to increase the accuracy of the maps. These methods
highlight the need to develop frameworks which directly
incorporate modality-specific spatial and geometric characteristics
to enhance real-world application performance.

3 Materials and methods

3.1 System methodology

The basic process of this model begins with the identification
and classification of objects seen in images obtained via remote
sensing. For image segmentation, it makes use of techniques like
FCM, MRF, and DBSCAN clustering. The advantages of MRF in
terms of timing efficiency and segmentation accuracy led our team
to select it. Our dedication to optimizing processing efficiency while
guaranteeing precise object identification in remote sensing imagery
is shown in this choice. Using feature extraction, properties
including texture, spectral features, and SSF are extracted from
the labeled objects. The model can produce more reliable and
accurate scene recognition results by fusing AlexNet’s feature
learning skills with the contextual information from MRF. In
order to offer a graphic depiction of our system’s complex
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hierarchical structure, Figure 1 describes the hierarchical perspective
that encompasses the complex elements and features of our
OSC model.

3.2 Noise removal

The bilateral filter is a well-liked image processing method that
may be used for a variety of operations, such as edge preservation,
noise reduction and smoothing. Whtaen pursuing filtering, the
bilateral filter (Tripathi and Mukhopadhay, 2012) considers both

the spatial distance and the intensity difference between pixels. This
dual-domain method enables it to blur an image while maintaining
crucial edges and precise details. The weights in the weighted
average of neighboring pixels computed by the bilateral filter rely
on both the spatial and intensity distances. The weighted average for
each pixel may be written mathematically (Hu et al., 2023) as given
in Equations 1-3:

I x, y( ) � 1
W x, y( ) ∑1

p ∈ N x,y( )
I p( ).Gs p − x, y( )���� ����( )Gr I p( ) − I x, y( )���� ����( )

(1)

FIGURE 1
The hierarchical view of the suggested model over remote sensory images.

FIGURE 2
Outcomes of filtered images using Bilateral filter over some images of both datasets.
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where I (x, y) is the intensity value of the pixel being filtered,
the normalization factor W (x, y) makes sure the total weight
adds up to 1. N (x, y) represents neighboring pixels around
(x, y).

Gs p − x, y( )���� ���� � exp − p − x, y( )���� ����2
2δ2s

⎛⎝ ⎞⎠ (2)

Gr I p( ) − I x, y( )���� ���� � exp − I p( ) − I x, y( )���� ����2
2δ2r

⎛⎝ ⎞⎠ (3)

where “p” represents the neighboring pixel location, δs spatial
standard deviation, and δr range standard deviation. The filtered
result is shown in Figure 2.

3.3 Semantic segmentation

In order to simplify image representation for analysis,
segmentation is dividing an image into homogenous and
significant parts. The goal is to produce regions with comparable
visual features, such as color or texture. In contrast, labeling reveals
the meaning or class of each segment by assigning semantic labels to
each one that was produced from segmentation. Segmented Result
by all utilized techniques are shown in Table 1.

3.3.1 Fuzzy C-mean segmentation
This section explains the Fuzzy C-Mean (FCM) segmentation

process. It begins by using pixels as data points to detect similar

FIGURE 3
Fuzzy C-mean segmentation over some images from the UCM Dataset (row 1) represents the filtered images (row 2) demonstrates the
segmented images.

FIGURE 4
Density based clusters over some images from the AID Dataset (row 1) represents the filtered images (row 2) demonstrates the segmented images.
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components. The pixel is subsequently assigned to numerous
clusters instead of just one using fuzzy logic (Zhou, et al., 2023),
producing a fuzzy assignment. To get the desired result, the objective
function in FCM is iteratively optimized (Naseer and Jalal, 2023). To
deconstruct the image, this iterative procedure entails changing
membership degrees and clustering centers (Chen, et al., 2018).
Performance index HFCM is formulated using Equation 4.

HFCM � Q, S( ) � ∑r
i�1
∑N
b�1
ztib‖ qb − si ‖2, 1< t <∞ (4)

where “r” is the set size of clusters, N is the size of pixels, qb is the bth
pixel, si is the ce nter of the ith cluster, and t is the blur exponent.
Each cluster center and membership function are updated using
Equations 5, 6.

FIGURE 5
Illustration of the MRF model over image segmentation.

FIGURE 6
MRF-based segmentation over remote sensing images from both dataset (Row 1) AID dataset (Row 2) UMC dataset.
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FIGURE 7
Distribution of GLCM attributes in AID and UC merced datasets.

TABLE 1 Comparison of computational time and object segmentation accuracy.

Datasets
Computational time Segmentation accuracy (%)

DBSCAN FCM MRF DBSCAN FCM MRF

UCM 162.13s 165.10s 148.13s 86.65 89.32 91.18

AID 175.30s 140.15s 142.25s 89.50 90.43 91.67

DBSCAN, Density Based Cpatial Clustering; FCM, Fuzzy Cmean; MRF, Markov Random Field; UCM, UC Merced; AID, Aerial Image Dataset. Bold values indicates proposed results

(highlighed).

FIGURE 8
Box plot representing distribution of mean values across the different bands for all objects.
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FIGURE 9
Dimensionality reduction (a) segmented (b) corresponding SSF extraction (c) PCA.

FIGURE 10
Jaccard jaccard similarity on multiple objects over some images.
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ztib �
1∑c

j�1
1
t−1( )( ) (5)

sj � ∑N
k�1z

t
ibqb∑N

k�1z
t
ib

(6)

where zib ∈ [0, 1], for b � [1, . . . , c]; l2ib represents the distance
between pixel qb and cluster centroid si and ztib stands for the

membership matrix that belongs to [0, 1]. According to (Halder
et al., 2011), FCM gives pixels close to the center of their class high
membership values, whereas pixels far from the center receive low
membership values. As demonstrated in Figure 3, which shows the
segmented results of images from the UC Merced dataset, this
processing complexity is applied to every nearby pixel in
the images.

FIGURE 11
Jaccard similarity graph shown over UCM dataset.

FIGURE 12
Jaccard similarity graph shown over AID dataset.
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3.3.2 DBSCAN clustering
Density-Based Spatial Clustering or DBSCAN, is a popular

clustering technique in the data analysis and machine learning
domains. As opposed to conventional clustering techniques,

which demand that the number of clusters be pre-specified,
DBSCAN adopts a more data-driven methodology as in Equation
7. It is especially useful for discovering irregularly shaped and
varying-sized clusters in complicated dataset since it clusters data

FIGURE 13
The layered architecture of the Alex Net.

FIGURE 14
Scene recogntion using contextual relations between objects.
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points according to their density and closeness (Nawaz and Yan,
2020). The algorithm identifies core points as those with the fewest
neighboring data points within a given distance Equation 8. After
that, it adds neighboring data points that satisfy the density
requirements, enlarging these core points into clusters (Jalal
et al., 2021). Noise is defined as data points not fitting into any
cluster or core point classification.

Nε xi( ) � xj ∈ X
∣∣∣∣dist xi, xj( )≤ ε{ }, X � x1,x2,.....xn{ }, (7)

C � xi ∈ X‖Nε xi( )≥MinPts{ } (8)
where xi∈X‖Nε(xj) and xj∈C; xi is the epsilon neighborhood of xj and
xj is the core point. Figure 4 representing the outcomes in which
density based clusters are form.

3.3.3 Markov Random Field (MRF)
Consider G = v, e be the Markov Random Field (MRF) model’s

probabilistic network (Zheng et al., 2019) The vertex collection is
represented by v = {vs | s ∈ S}, while the edge set is written as E = {es,t |
s, t ∈ S}. In the probabilistic graph, a single site is denoted by “s”,
while the whole collection of these sites is repesented by “S”. es,t = 1 if
vs and vt are next to one other in space; es,t = 0 otherwise. In the
traditional pixel-based MRF model, G is a probabilistic graph where
each “s” denotes a pixel. In the MRF model, G is employed if “s”
denotes an over-segmented region. Figure 5 shows the MRF model
(Li et al., 2018), where Is stands for the observed data of vs in the
image I = {Is| s ∈ S} S stands for the label field X = [Xs|s∈S] in which
the label class of each vs is represented by Xs, a random variable with
values from Λ = {1, 2, . . ., k}. For instantiation of A,a= {as|s∈S}, the
posterior probability P{A = a|I} may be found using Equation 9 on
observed image I.

P A|I( ) � P I│A � a( ).P A( )
P I( ) (9)

where P (A|I) is the posterior probability, (A|I) is the likelihood of
observing, P(A) is prior Probability and P(I) is the probability of
observing I.

P I|A( ) � ∏n
i�1

f Ii;A( ) (10)

where Ii represents individual data points in the observed image (Lu
et al., 2016). The spatial neighborhood interactions between labels of
several places can be captured by the joint distribution as shown in
Equations 11, 12 below.

P Ac
∣∣∣∣∣∣At, t ∈ v

vs
[ ] � P Ac|At, t ∈ Ns[ ] (11)

In this instance, if est = 1, then vt is in Ns, which means that Ns
contains vs’s surrounding vertices. The Hammersley-Clifford
theorem (Chen et al., 2017) uses potential functions to construct
the joint probability distribution in MRFs.

P Ac|At, t ∈ Ns[ ] � 1
Z
∏

c∈C
φc Ac( ) (12)

Z serves as the partition function to guarantee that the probabilities
add up to 1, Ac stands for the variables in each clique, and C is the
graph’s collection of maximal cliques. The possible function that
relates to cliques are φc, which represents the interaction between
clique variables represented by c. According to the posterior prob.
Of Equation 10. The segmentation of the image provided may be
accomplished by finding the best realization by applying the MAP
criterion Equation 13, i.e.,

FIGURE 15
Scene classification accuracy over AID dataset.
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~a � argmaxP A|I( ) � argmax P I|A( ).P A( )[ ] (13)

Pair-site cliques are typically utilized to compute image
segments φc (Ac) in the P [Ac|At,t∈Ns] where φc (Ac) =∑

t∈Ns
V(ac, at) see Equations 14-16.

V ac, at( ) � −ϑ, ac � at
ϑ, ac ≠ at

{ (14)

where ϑ is the potential parameter Thus enabling the representation
of P (A= a):

TABLE 2 Results for scene recognition among three classifiers over AID dataset.

Categories ANN XGBoost AlexNet

Pn Rc F1 Scr Pn Rc F1 Scr Pn Rc F1 Scr

AP 0.811 0.855 0.832 0.768 0.732 0.751 0.895 0.977 0.937

BB 0.871 0.917 0.893 0.883 0.857 0.869 0.960 0.955 0.957

BH 0.915 0.955 0.934 0.995 0.951 0.972 0.924 0.972 0.947

BL 0.903 0.845 0.873 0.986 0.937 0.960 0.977 0.911 0.945

BR 0.944 0.933 0.938 0.967 0.903 0.933 0.899 0.935 0.916

CN 0.887 0.841 0.865 0.844 0.875 0.850 0.844 0.889 0.865

CR 0.935 0.798 0.862 0.755 0.839 0.795 0.915 0.887 0.903

CO 0.868 0.899 0.895 0.872 0.921 0.895 0.872 0.954 0.911

DS 0.933 0.884 0.907 0.886 0.938 0.909 0.928 0.971 0.950

DT 0.887 0.815 0.850 0.985 0.954 0.969 0.971 0.892 0.969

FM 0.809 0.856 0.837 0.901 0.856 0.877 0.915 0.977 0.937

FO 0.845 0.881 0.862 0.883 0.965 0.922 0.811 0.892 0.922

ID 0.929 0.862 0.895 0.995 0.951 0.972 0.913 0.928 0.972

MD 0.899 0.918 0.902 0.798 0.937 0.936 0.886 0.966 0.925

MR 0.975 0.955 0.965 0.967 0.903 0.933 0.897 0.937 0.916

MN 0.798 0.912 0.859 0.844 0.889 0.879 0.912 0.901 0.906

PK 0.845 0.947 0.893 0.889 0.839 0.863 0.977 0.887 0.929

PN 0.811 0.886 0.846 0.872 0.921 0.895 0.900 0.946 0.954

PG 0.869 0.818 0.842 0.886 0.938 0.909 0.855 0.891 0.872

PD 0.905 0.875 0.842 0.985 0.954 0.969 0.925 0.917 0.921

PR 0.956 0.836 0.891 0.901 0.859 0.877 0.937 0.977 0.956

RT 0.854 0.825 0.840 0.883 0.965 0.922 0.871 0.871 0.871

RS 0.957 0.851 0.900 0.879 0.851 0.864 0.995 0.951 0.972

RV 0.991 0.888 0.936 0.986 0.937 0.960 0.956 0.879 0.915

SC 0.899 0.835 0.865 0.967 0.809 0.880 0.891 0.903 0.896

SP 0.879 0.925 0.899 0.844 0.855 0.850 0.819 0.916 0.864

SR 0.933 0.918 0.925 0.899 0.839 0.867 0.977 0.921 0.948

ST 0.789 0.857 0.821 0.872 0.875 0.873 0.887 0.911 0.898

SN 0.887 0.877 0.881 0.886 0.913 0.810 0.793 0.935 0.858

VT 0.895 0.798 0.843 0.845 0.866 0.800 0.985 0.905 0.943

Mean 0.859 0.875 0.880 0.897 0.885 0.875 0.903 0.921 0.936

aAP, airplane; BB, baseball diamond; BH, beach; BL, bare land; BR, bridge; CN, center; CR, church; CO, commercial; DS, dense residential; DT, desert; FM, farmland; FO, forest; ID, industrial;

MD, meadow; MR, medium residential; MN, mountain; PK, park; PN, Parking;PG, playground; PD, pond; PR, port; RT, railway station; RS, resort; RV, river; SC, school; SP, sparse residential;

SR, square; ST, stadium; SN, storage tank; VD, viaduct; Pn, Precision, Rc, Recall. Bold values indicates proposed results (highlighed).

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Naseer et al. 10.3389/fbioe.2025.1430222

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1430222


P A � a( ) � Πc∈C P Ac � ac, t| , t ∈ Ns[ ] � Πc∈C φc Ac( ) (15)

Therefore, by optimizing each ãs, the optimal realization ~a =
{ ãs} may be attained progressively. The resultant segmentation
obtained by using the MRF is shown in Figure 6.

ãs � argmaxP Ac � ac
∣∣∣∣Ic, At,t ∈ Ns � argmax[ ]

× P Ic|AA � ac( ).P Ac � ac│A, t ∈ Ns( )[ ] (16)

Based on the estimation time, three segmentation methods are
contrasted. MRF-based segmentation is selected for labeling as it
takes less time than DBSCAN and FCM. Labeling categorizes
pixels by taking contextual information and nearby
relationships into account. Using potentials or energies attached
to pixel labels, MRF models these relationships (Nguyen
et al., 2020).

3.4 Feature extraction

The extraction (Naseer and Jalal, 2023) of pertinent information
or characteristics from aerial images is an essential phase in
applications associated to remote sensing and image analysis. For
object categorization in remote sensing images, a broad range of
conventional features—including statistical techniques like texture,
spatial, and spatial spectral features—are assessed. A thorough
examination of the techniques for feature determination,
combination, and selection is given in the following sections.

3.4.1 Spatial features
The statistical measures known as Haralick texture

characteristics are used to characterize the spatial arrangement or
texture of pixel values in an image. The contrast, energy, entropy and
correlation are calculated with the help of the gray-level co-

TABLE 3 Results for scene recognition among three classifiers over UCM dataset.

Categories ANN XGBoost AlexNet

Pn Rc F1 Scr Pn Rc F1 Scr Pn Rc F1 Scr

AG 0.755 0.788 0.755 0.799 0.899 0.817 0.901 0.977 0.937

AP 0.711 0.744 0.875 0.815 0.875 0.844 0.883 0.965 0.922

BB 0.783 0.711 0.746 0.841 0.819 0.747 0.995 0.951 0.972

BH 0.792 0.658 0.737 0.844 0.889 0.844 0.986 0.937 0.960

BD 0.701 0.725 0.758 0.889 0.839 0.889 0.967 0.903 0.933

CH 0.745 0.715 0.875 0.872 0.921 0.872 0.977 0.839 0.903

DN 0.799 0.791 0.795 0.886 0.938 0.886 0.872 0.921 0.895

FR 0.783 0.711 0.746 0.985 0.954 0.985 0.886 0.938 0.911

FW 0.771 0.792 0.781 0.901 0.859 0.901 0.985 0.954 0.969

GC 0.730 0.717 0.961 0.883 0.965 0.883 0.925 0.917 0.969

HR 0.755 0.788 0.755 0.879 0.851 0.879 0.936 0.977 0.937

IN 0.711 0.744 0.875 0.986 0.937 0.986 0.871 0.871 0.922

MR 0.783 0.711 0.746 0.967 0.809 0.967 0.995 0.951 0.972

MH 0.792 0.658 0.737 0.845 0.856 0.850 0.956 0.879 0.96

OP 0.701 0.725 0.758 0.879 0.851 0.864 0.891 0.903 0.933

PN 0.874 0.845 0.859 0.986 0.937 0.960 0.819 0.916 0.859

RV 0.869 0.829 0.903 0.967 0.809 0.880 0.977 0.921 0.903

RW 0.872 0.851 0.895 0.844 0.855 0.850 0.887 0.911 0.895

SP 0.886 0.918 0.911 0.899 0.839 0.867 0.793 0.935 0.911

SN 0.965 0.934 0.969 0.872 0.875 0.873 0.799 0.916 0.895

TC 0.901 0.859 0.937 0.886 0.913 0.899 0.855 0.891 0.911

Mean 0.893 0.881 0.922 0.922 0.911 0.915 0.923 0.915 0.946

aAG, agriculture; AP, airplane; BB, baseball diamond; BH, beach; BD, building; CH, chaparral; DN, dense residential; FR, forest; FW, Freeway GC, golf course; HR, harbor; IN, intersection; MR,

medium residential; MH, mobile home park; OP, overpass; PN, parking; RV, river; RW, runway; Sp, Sparse Residential; SN, storage tank; TC, tennis court; ANN, Artificial Neural Network;

XGBoost, eXtreme Gradient Bossting. Bold values indicates proposed results (highlighed).
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occurrence matrix (GLCM). Using the GLCM (Sharma et al., 2016),
we were able to extract textural properties and deduce four Haralick
features shown in Figure 7. Based on the texture of the landscape,
these characteristics—energy, correlation, contrast, and
homogeneity—can be used to categorize different types of land
cover given in Equations 17-20 respectively, such as urban and
wooded areas. We utilized the texture data from the GLCM, which
Haralick said included texture properties (Hema and Kannan, 2020)

Specific formulae can be used to quantitatively compute the
important texture properties.

Enr I( ) � − ∑N−1

u�0
∑N−1

v�0
S u, v( )2 (17)

Corr I( ) � ∑N−1
u�0 ∑N−1

v�0 u, v( )S u, v( ) − μiμj
δiδj

(18)

FIGURE 16
Scene classification accuracy over UC merced dataset.

FIGURE 17
Failure cases where model does not perform well.
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Cont I( ) � ∑N−1

u�0
∑N−1

v�0
u − v( )2P u, v( ) (19)

HMG I( ) � - ∑N-1
u�0

∑N-1
v�0

P u, v( )P u, v( ) (20)

3.4.2 spectral features
For Aerial imaging needs spectral features because they give

important information about the makeup and characteristics of the
Earth’s surface. Many spectral bands are frequently present in aerial
shots, and provides distinct details about the electromagnetic energy
reflected or emitted (Liang et al., 2018). These spectral properties are
critical to many remote sensing and image processing applications.
Spectral characteristics are mainly concerned with analyzing color
information included in the image, which is usually obtained from
many spectral bands. Metrics like the mean (Equation 21), standard
deviation (Equation 22), and color histograms are examples of
common spectral properties.

�X � 1
Z
∑Z
i�1
xi (21)

δ �

������������
1
Z
∑Z
i�1

xi − �X( ) 2

√√
(22)

where �X is themean, δ is the entire set of values in the spectral feature, Z
is the entire set of values, and xi is the individual value. Mean values are
presented in bands in Figure 8, which indicates that medians for Bands

1 and 2 are relatively close, but somewhat lower in Band 3. It also shows
that there is likely little overlap between the notches, or the confidence
intervals and hence there is good evidence that themedians of the bands
are significantly different. Moreover, it can be observed that Band 3 has
a higher degree of variability than Bands 1 and 2, which can also be seen
from the whiskers. These observations bring out different features of
each band which is important when trying to solve the problem of
identifying the features or objects in the dataset.

3.4.3 Spatial spectral features
By separately computing different characteristics, such as

textural features, spatial attributes, and spectral features, the
approach yields Spectral Spatial Characteristics (SSFs), which are
unique feature vectors. SSFs (Zhang et al., 2018) combine spatial and
spectral (colour) data from representations of remote sensing. These
elements include edge information, texture, spatial autocorrelation,
and statistics derived from spectral bands (e.g., mean and standard
deviation) that represent the spatial relationships among objects in
the image together with their spectral qualities. SSFs are essential for
distinguishing across groupings of land cover that have varied
spatial layouts but comparable spectral features.

3.5 Feature fusion

In this experiment, we concatenate all the features to the feature
vector. To make our dataset as useful as feasible, the objective was to
find and keep only those characteristics that demonstrated substantial
variance across all features. The Texture (GLCM), Spectral and SSF
and are computed separately FeatureGLCM, FeatureSF and FeatureSSF
respectively.With reference to (Zhao and Du, 2016; Raja et al., 2020) a
complete fused feature vector is created by the fusing of many feature
vectors. Normalization prior to fusion is essential for balanced
representation of features. It keeps a single element from taking
center stage in the fused feature vector. Subsequent data processing
is enhanced by this integrity preservation. The fused feature vector is
composed of elements from the Haralick, Spatial, and SSF features
combined together as shown below Equation 23.

FusedF � FeatureGLCM FeaturSF FeatureSSF[ ] (23)

3.6 Dimensionality reduction using PCA

Dividing complex images into two layers produces a high-
dimensional feature vector that can be used to manipulate the

TABLE 4 Comparison of the SOTA methods with the proposed OCS model.

Authors Mean accuracies %

AID UCM

Kim and Chi (2021) 86.91 86.79

Cheng et al. (2017) — 94.17

Yu and Liu (2021) — 84.00

Xie et al. (2021) 96.01 —

Wang et al. (2018) 88.75 96.81

Kollapudi et al. (2022) — 90.29

Thirumaladevi et al. (2023) — 95.00

Proposed 97.90 98.90

AID, Aerial Image Dataset; UCM, UC Merced Dataset. Bold values indicates proposed

results (highlighed).

TABLE 5 Ablation results for key features in the proposed model.

Experiment Component removed Accuracy (AID) Accuracy (UCM) F1 score (AID) F1 score (UCM)

Full model No 97.90% 98.90% 93.60% 94.16%

Without MRF Replaced with FCM 92.50% 90.30% 92.10% 89.80%

Without spectral-spatial features Removed 89.80% 87.60% 89.20% 86.90%

Without Haralick features Removed 90.30% 88.20% 89.70% 87.50%

Without Bilateral Filter Removed 85.60% 83.20% 85.10% 82.70%
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image. Working with high dimensions, meanwhile, can provide less-
than-ideal outcomes. This problem is addressed by PCA feature
selection for dimensionality reduction, which projects the data into a
lower-dimensional space. This method, called Feature_RF, solves
problems with high-dimensional data while optimizing processing
time and computational resources.

In order to do this, the reduced dimensional feature vector
FeatureRF is produced by using PCA feature selection as in
Equation 24.

FeatureRF � PCA FeatureF[ ] (24)

The SSF feature extraction of the combined features is shown in
Figure 9, after which PCA is used to reduce dimensionality. The
outcomes that followed are shown be.

3.7 Jaccard similarity

The Jaccard Index, is a widely used metric to assess the degree of
agreement between predicted masks and ground truth masks in
pixel-level precision tasks like image segmentation. Figure 10
provides a visual representation of the segmentation algorithm
achieves exceptional accuracy for large, distinct objects like
“Airplane” (IoU: 0. While in larger and easier to identify objects
such as “Bike” (IoU: 0.99) and “Runway” (IoU: 0.98), there is high
accuracy, small and ambiguous object like “Boat” the same partially
trained model yields an IoU of 0.80.

The graphs (Figure 11; Figure 12) evaluate segmentation
quality across various object classes, highlighting both high-
performing and challenging cases. The two graphs demonstrate
the jaccard similarity (IoU) scores of objects classes in both AID
and UCM datasets for an analysis of the segmentation
performance of the different categories of objects. The
segmentation algorithm works with reasonable accuracy based
on the IoU scores following the delineated ranges: ≤0.5; 0.5–0.7;
0.7–0.8; and >0.8. In the case of both datasets, most of the IoU
values are above 0.8. Out of all the classes in the AID dataset, we see
near perfect IoU scores for certain classes like AP (Airport) and BB
(Baseball Field) which are easily distinguishable under spectral-
spatial characteristics. Still, the low values identifying such classes
as MR (Meadow) indicate difficulties distinguishing between these
objects because of their similarities with the surrounding
environment. Likewise, in case of UCM dataset, classes like CH
and AG are well detected where IoU value is close to one and FW
and SP have relatively low IoU value. Altogether, these results
demonstrate the effectiveness of the presented algorithm for most
considered object classes with indication on the potential
improvement of the algorithm’s performance in the most
challenging circumstances.

3.8 Scene classification using AlexNet

The famous convolutional neural network (CNN) architecture
known as AlexNet (shown in Figure 13) was created in 2012 by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. It demonstrated
exceptional performance in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) and was a major contributor to
the deep learning for image classification field’s broad adoption.

This type of model takes an image input with dimensions of
224 × 224 × three and passing through several convolutions, pooling
and fully connected layers to identify the input image and place it
into one of the 1,000 categories. The First convolutional layer uses
96 filters of size 11 × 11 with four stride which down samples and
aims to capture large scale features. Following layers’ use
progressively smaller filters (5 × 5 and 3 × 3) with even more
feature maps (up to 384) as in Equation 25 to identify the medium
and even the fine scale features including the texture and edges. All
these layers are said to follow some of the convolutional layers while
they minimize the spatial dimensions while preserving the most
important features in the images. Finally, following the final
convolutional and pooling layers, there is a vectorization of the
features maps, two dense layers containing 4,096 neurons each, to
amalgamate the spatial features into a global space-quality
representation. Last layer is the output layer that consists of
1,000 neurons, and performs softmax activation to drive out
probabilities of the classes. Such a structure helps the model to
learn higher levels of abstraction and for such tasks as object
recognition the model is almost unbeatable.

Y � ReLU convoluiton X,W( ) + b( ) (25)

The feature map (Y) is produced by convolution between (X,
W), which is followed by the ReLU activation function. Spatial
dimensions using Equations 26, 27 are then reduced by a max
pooling layer using a 3 × 3 filter size and stride 2.

Y � max pool X, p( ) (26)
Y i, j, k( ) � X i, j, k( )/(k + α*∑ X i, j, kˋ( )̂ 2( )̂ β (27)

where i, j, k representing spatial and depth dimensions, kˋ represents
the neighboring depth indices, α and β are hyper parameters. There
are three fully connected levels in AlexNet. The first two layers each
include 4,096 neurons, while the output layer contains 1,000 neurons,
matching the classes in the UC Merced dataset. Softmax activation is
used in the output layer to handle class probabilities. To keep the first
two layers from overfitting, 0.5 probability dropout is applied to them
during training. The usual training approach is stochastic gradient
descent (SGD) with momentum (Thirumaladevi et al., 2023), and to
increase the diversity of the training set, data augmentation techniques
like random cropping and horizontal flipping are applied. Scene
recognition has been done by the contextual relationship between
multiple objects from remote sensing images using AlexNet shown
in Figure 14.

In the presented framework, the reason for selecting AlexNet is
based on its architectural effectiveness and its applicability to the
requirements of Remote Sensing Image Analysis (RSIA) tasks.
AlexNet’s hierarchical convolutional structure outperforms other
deep architectures for detecting the small features at the initial layers
such as edges and textures, and small semantic features at the later
layers that are more relevant to scene recognition in complex data
sets. This feature is considered a strength since it requires less
computation and works efficiently on large datasets including the
datasets AID and UCM it will not compromise performance with
computational complexity.
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Even though current progresses in architectures like ResNet or
DenseNet provide deeper feature extraction in model architectures,
they also bring more troubles like higher model complexity and
stronger demand on computation resources which can an adversary
against efficient implementations in certain situations. Moreover,
the integration of AlexNet to the proposed Markov Random Field
(MRF)-based segmentation enhances its performance to the
maximum level, since it employs accurate and consistent
segmentation outcomes for enhancing the feature learning
process. The synergy that is tailored accordingly helped the
system to obtain even more high classification rates 98.90% for
UCM and 97.90% for AID databases, which is higher compared to
many other state of the art methods. For that reason, AlexNet is
poised to offer the best combination of efficiency, versatility, and
reliability for this framework, and optimized for remote sensing use.

4 Experimental setup and dataset

Evaluation of the proposed system is performed on two
benchmark datasets: Aerial Image dataset AID and UC Merced
(UCM) dataset. The experiment is performed on an intel core
i7 with 16 GB of RAM, a 3.2 GHz processor, and 512 GB of SSD.

4.1 Datasets description

4.1.1 The aerial image dataset (AID)
The most current large collection of aerial images is called the

Aerial Images Dataset (Xia et al., 2017). This dataset, which consists
of 10,000 images overall across thirty classes of different scenarios.
The collection includes a variety of aerial scene types, such as
beaches, bridges, business districts, barren terrain, baseball fields,
and airports.

4.1.2 The UC merced dataset
A publicly accessible benchmark for study, the UCM dataset

(Kim and Chi, 2021) consists of 100 images per class, all 256 ×
256 pixels in size. These diverse images, which come from the USGS
National Map Urban Area collection, include views of residences,
beaches, farms, airplanes, and more.

4.2 Experimental evaluation

4.2.1 Precision, recall, and F1-score
We provide recognition accuracies utilizing AlexNet and the

OSCM architecture for the UCM and AID datasets. Our method
uses ANN trained with SSF, Haralick, and spectral features, then
XGBoost. Tables 2, 3 present a comparative evaluation of our OSCM
framework and AlexNet for accurate scene recognition on difficult
datasets utilizing Precision, Recall, and F1 Score measurements on
the AID and UCM datasets.

4.2.2 Second experiment: confusion matrix
These two figures show how the classification rate varies on

categories in AID and UCM sets. Every dataset shows a good level of
performance of most classes with accuracy proportions being very

close to 1.0% suggesting that all classes are well classified. Small
deviations in some classes indicate where optimization is necessary
more than ever, especially in classes that present a weak spectral and
spatial contrast, as are observed within the Figures 15, 16 and failure
cases shown in Figure 17.

We investigated comprehensively by contrasting our proposed
approach with accepted state-of-the-art techniques. This evaluation
was especially concerned with determining the average accuracy in
object classification and segmentation. The results, presented in
Table 4, provide a thorough comparison with the state-of-the-art
methods now in use. These results show a significant improvement
in performance, which we attribute to our novel OSC system.

5 Ablation study

The proposed model, while achieving high accuracy and
robustness, has certain limitations. First, its evaluation was
limited to the AID and UC Merced datasets, which, although
diverse, may not fully represent the complexity of real-world
remote sensing scenarios. The model has not been tested on
datasets containing multi-temporal or multi-sensor imagery,
which could reveal its adaptability to varying data sources.
Additionally, the lack of data augmentation techniques might
have restricted the model’s ability to generalize further to unseen
variations in the datasets. This will be done by a step-wise
elimination or alteration of components, namely, the MRF
segmentation, texture features based on Haralick, spectral-spatial
features or particular layers of Alex Net and consequently measure
the effect on performance. Such experiments will bring more
attention to each module and will delete the unnecessary
parameters improving the architecture. Ablation analysis shown
in Table 5 will also allow for deeper understanding of how such
hyper parameters affect model behavior to ensure that the level of
accuracy and scalability is well understood.

6 Discussion and future work

The methodology proposed in this paper outperforms others
through the use of MRF based segmentation, contextual feature
extraction, and the recognition of scenes using Alex Net. Minimum
segmentation accuracies of 91.18%, 91.67% of UCM, and AID
datasets, respectively, further enhances the credibility of the
proposed MRF model compared to DBSCAN and FCM. The
addition of spatial, spectral and Haralick texture features aids in
object discrimination whilst the incorporation of AlexNet aids in
scene discrimination with accuracies of 97.90% on AID dataset and
98.90% on the UCM dataset. The novel method outperforms Xie
et al. (96.01%) and Thirumaladevi et al. (95%) and establishes that
the system can be successfully utilised for remote sensing. The
generalizability of our proposed system to new circumstances is
limited since it does not show how the OSC system works in real-
world applications outside of the benchmark datasets.

Future research endeavors aimed at optimizing the OSC
system’s efficacy will encompass the integration of advanced deep
learning techniques, exploration of temporal and spatial
transferability analysis, and evaluation of its robustness under
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diverse conditions. In addition, the model will be thoroughly
examined by testing on several benchmark datasets and
comparing its effectiveness with state-of-the-art technology.

7 Conclusion

The suggested OSC method performs exceptionally well at
segmenting and categorizing objects in complex aerial data. We use
a two-step strategy, where we use MRF for accurate segmentation and
deep learning model Alex Net for scene recognition, using benchmark
datasets. When processing complicated aerial images, our model
performs better than state-of-the-art techniques, exhibiting
outstanding accuracy and reliability. Our OSC system offers a
dependable and complex solution with state-of-the-art
methodologies and benchmark datasets, expanding the field of
remote sensing research and creating new opportunities for aerial
image analysis. In some images of classes (Parking, Port), our model
does not perform well in distinguishing small and overlapping objects,
accurately segmenting boundaries, and handling areas with similar
textures, such as water and shadows. These limitations highlight the
challenges in achieving precise segmentation in complex and densely
packed regions.
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