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Introduction: With the advancement of handheld devices, patient health
monitoring using wearable devices plays a vital role in overall health monitoring.

Methods: In this article, we have integrated multi-model bio-signals to monitor
patient health data during daily life activities continuously. Two well-known
datasets from ScientISST MOVE and mHealth have been analyzed. The
purpose of this study is to explore the possibilities of using advanced bio-
signals for monitoring patient vital signs during daily life activities and
predicting favorable and more accurate health-related solutions based on
current body health-related real-time measurements.

Results: With the help of machine learning algorithms, we have observed
classification accuracy of up to 94.67% using the mHealth dataset and 95.12%
on the ScientISST MOVE dataset. Other performance indicators, such as recall,
precision, and F1 score, also performed well.

Discussion: Overall, integrating a machine learning model with bio-signals
provides an enhanced ability to interpret complex real-time patient health
monitoring for personalized care and overall smart healthcare.
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1 Introduction

In today’s modern world, smart healthcare management using advanced wearable
gadgets plays an essential role in monitoring and predicting human health, especially in
diagnosed patients for specialized healthcare (Riedel et al., 2008; Ogbuabor and La, 2018;
Singh et al., 2023). Integrating bio-signals with embedded AI support for continuous
monitoring and predicted specialized healthcare is important in today’s modern world
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(Han et al., 2023; Ahmed et al., 2023). Despite significant
improvements in efficient health monitoring using wearable
sensors, researchers are still working to improve and analyze
complex physiological and vital signals (Bobade and Vani, 2020)
for better and real-time health monitoring and predicting health
degradation. Existing machine learning-based methodologies
suffer from data variability and heterogeneity in data
monitored using bio-medical signals (Yin et al., 2024; Guo
et al., 2025) from daily life human activities. To address this
issue, we have integrated biomedical signals from two extensive
datasets, i.e., the mHealth dataset and the ScientISST MOVE
dataset. In the mHealth dataset, which tracks vital signs with
body movement, from the ScientISST MOVE dataset, a diverse
range of bio-signals (Abdulmalek et al., 2022) are collected
during their daily life movements and activities. This
integration helps us with a wide-range analysis using complex
physiological signals during daily life activities so that personal
healthcare management is ensured using machine learning-based
methodologies. In this study, our main focus is on novel
applications and extensive validation of the existing
methodologies for analyzing bio-signal for efficient health
monitoring solutions, rather than introducing a new machine
learning technique. The main contribution of this study is to
address the gap between theoretical bio-signal analysis and a
practical approach. In this study, we have selected three sensors:
ECG (Electrocardiogram), EMG (Electromyography), and
Accelerometer. The reason for selecting these three sensors is
due to their commonalities with the selected two datasets, so that
the consistency in data collection is ensured. For comparison and
validation, it is also very important that the sensors are the same
with the same data patterns for high accuracy, relevance, and
robustness. Initially, after collecting raw signals from sensors, the
noise from these signals was denoised. In step two, fixed
windowing and segmentation techniques were used for data
organization and efficient extraction of key features from
signal data. In step three, which is most important, we have
proposed a special feature block for ECG, EMG, and
Accelerometer sensors. For an appropriate feature vector to

train the model, the Linear Discriminant Analysis (LDA)
technique is utilized. Finally, our proposed Deep Belief
Network is cross-validated to evaluate the performance of the
system. In the case of the mHealth dataset, our proposed system
accuracy is 94%, while on the ScientISST MOVE dataset,
accuracy is 95%, which is more than the mHealth dataset. The
following are the contributions of our study.

• Enhanced Integration of Signal Filtration Methodologies: We
developed tailored signal filtration techniques to correct errors
from sensor settings and orientation changes in wearable
devices. Using this approach, data reliability for ECG,
EMG, and IMU sensors has significantly improved, which
is most suitable for its usage in real-world scenarios.

• Optimized Parallel Processing Framework: In this study, we
have used an optimized parallel framework for simultaneous
feature extraction from multimodal bio-signal, to manage
real-time synchronous processing across various bio-signal
types. This process significantly enhances activity recognition
and signal monitoring of vital and other physiological signals.

• Hybrid Multidomain Feature Extraction: In our proposed
system, we have adopted a hybrid approach by integrating
time domain, frequency domain, and wavelet domain analysis
of bio-signal for better accuracy, which ultimately improved
health monitoring compared to single domain-based analysis.

• Application of EMD and SNA in Novel Contexts: In this
study, we formulated Empirical Mode Decomposition (EMD)
and Synergy Analysis (SNA) to analyze EMG and ECG signals
monitored during daily activities. Due to its unique
application, we explore complex aspects of bio-signals for
enhanced insight analysis. The architecture of Proposed
system can be seen in Figure 1.

2 Literature review

The study presented by (Alqarni, 2021), discusses an errorless
data fusion (EDF) technique designed to enhance the accuracy of

FIGURE 1
The architecture of the proposed system.
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posture recognition using handheld wearable sensors (WSs)
deployed in smart healthcare systems. This technique is used for
monitoring the movement patterns of patients at various time
intervals, followed by feature analysis using a random forest
classification algorithm. The classification process efficiently
identifies classification errors across different time intervals. This
method emphasizes recurrent analysis, where conditional training
based on previous errors is utilized to improve recognition accuracy.
Key steps include data acquisition from wearable sensors, feature
extraction based on integrity, chaining, and data patterns, and error
reduction through classification. The performance metrics include
accuracy, fusion error, and detection time against existing methods.
The limitations include relying on data from wearable sensors,
which may not capture the complete spectrum of patient
movements and behaviors, potentially limiting the scope of
posture detection. Similar to (Paraschiakos et al., 2020), the
researchers conducted the GOTOV study, involving
35 participants performing 16 activities while wearing sensors on
various body locations. They developed an activity ontology and
utilized a combination of the Accordion algorithm, Random Forest,
and LARA (Learning Activity Recognition Models Accurately) have
been used to ensure high accuracy in activity classification. The
study emphasized the effectiveness of specific sensor setups,
particularly the combination of ankle and wrist accelerometers,
for accurate activity recognition. They also validated the AR
models in free-living conditions and made the GOTOV dataset
publicly available. Some activities in the study were performed for
varying time slots, leading to an unbalanced dataset. Moreover, in
the case of an ideal scenario, while detecting more signal variation
through repetitive and randomized activity performance was not
fully gathered, hypothetically affecting the robustness and
applicability of the AR models to diverse real-world scenarios.
Another similar study conducted by (Demrozi et al., 2020)
employs a machine learning-based approach for classifying
accelerometer data to predict and recognize Freezing of Gait
(FoG) in Parkinson’s Disease (PD) patients. The study employs
tri-axial accelerometer sensors (Zheng et al., 2022; Zhang et al.,
2023) attached to the back, hip, and ankle of patients. These sensors
collected data at a sampling frequency of 65 Hz. The researchers
used the k-nearest neighbor (k-NN) algorithm to classify the gait
into three categories: pre-FoG, no-FoG, and FoG. The dataset used
for the study was the DAPHNET benchmark suite, and the
classification approach was validated through k-fold cross-
validation. The study’s testing and application were primarily
conducted in controlled environments. In (Hayano et al., 2020;
Zyout et al., 2023), the authors explored the feasibility of detecting
sleep apnea using photoplethysmography (PPG) signals from a
wearable watch device. They engaged 41 patients undergoing
diagnostic polysomnography (PSG) for sleep-disordered
breathing and simultaneously recorded PPG data using a
wearable watch. The study used an algorithm called auto-
correlated wave detection with adaptive threshold (ACAT),
originally developed for electrocardiogram (ECG) data, to analyze
pulse intervals. This was done to detect cyclic variation of heart rate
(CVHR) indicative of sleep apnea episodes. Key metrics like the
apnea-hypopnea index (AHI) were used for comparison. The
study’s approach involved comparing the frequency of CVHR
detected by PPG with that detected by ECG (Hussain et al.,

2023; Khan et al., 2023), assessing various statistical indices, and
examining the algorithm’s sensitivity and specificity in sleep apnea
screening. There are a few limitations in their study. Firstly, it
focused solely on a single type of wearable watch, limiting the
applicability of the findings across different devices. Secondly, the
ACAT algorithm, initially designed for ECG data, might not be fully
augmented for PPG data, theoretically affecting its accuracy.
Additionally, subjects with conditions like continuous atrial
fibrillation were excluded, which might limit the generalizability
of the findings to all patients with sleep apnea. Finally, the study used
time in bed as a denominator for calculating AHI, which could result
in underestimating the severity of sleep apnea compared to
calculations using total sleep time (Delmastro et al., 2020), The
authors summarized a comprehensive study on cognitive and motor
rehabilitation in frail older adults with Mild Cognitive Impairment
(MCI), utilizing wearable physiological sensors and machine
learning techniques. The methodology involved a randomized
cross-over non-experimental study conducted in collaboration
with a long-term care (LTC) facility. Participants, including frail
older adults, were monitored during cognitive and motor
rehabilitation sessions using two types of wearable sensors for
heart rate, heart rate variability, and electrodermal activity (Liu
et al., 2021; Yan et al., 2023; Zhang et al., 2023). Data were collected,
pre-processed, and analyzed using various machine learning
algorithms to evaluate stress response during the therapy
sessions. The study also proposed a mobile system architecture
for online stress monitoring, incorporating a Decision Support
System (DSS) to personalize therapy (Zhao et al., 2025; Xing
et al., 2024) based on detected stress levels. However, there are a
few limitations. The research was conducted with a relatively small
group of participants from a single LTC facility, which may limit the
generalizability of the findings. The sample size and lack of diversity
in the study population could impact the robustness and
applicability of the results to a broader demographic. Another
similar type of work conducted by Christian et al (Meisel et al.,
2020), utilized deep learning techniques on data collected from
wristband sensors worn by epilepsy patients. These wristbands
continuously monitored several physiological parameters,
including electrodermal activity, body temperature, blood volume
pulse, and actigraphy (Díaz and Kaschel, 2023). The data were
obtained from 69 patients during long-term, in-hospital monitoring,
amounting to over 2,311 h and encompassing 452 seizures. The team
employed a leave-one-subject-out cross-validation approach for
their analysis, using long short-term memory (LSTM) networks,
known for their efficacy in handling time series data. Data
preprocessing included down-sampling to a uniform rate and
filtering, followed by training the LSTM networks on matched
pre- and interracial data segments. However, the relatively short-
term duration of recordings, limited to just a few days per patient,
might not have captured the full range of seizure characteristics
and patterns.

2.1 Signal filtration and noise removal

Removing noise (Malik et al., 2023) is an important aspect of
accurate monitoring and predictions. So, signal filtering is required
before its processing. In this study, we have used advanced signal
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filtration methods to enhance the accuracy of multimodal bio-
signals. The main purpose is to mitigate noise and interference
so that the integrity and reliability of data are ensured for subsequent
analysis. The bandpass filter (Agnuski et al., 2022) is employed to
maintain signal frequencies within a defined range and attenuate
frequencies that are beyond the defined range. This phase is
specifically required and important for EMG and ECG signals so
that meaningful signal information within the frequency range is
ensured. This bandpass filter is formulated to adjust a range of
frequencies between a lower frequency fL and a higher frequency fH
to pass through while attenuating frequencies outside this range.
Following is its mathematical representation. Equation 1 represents
the mathematical form for the band-pass filter.

H f( ) � 1, if fL ≤f≤fH

0, otherwise
{ (1)

In this case,H(f) It is considered the frequency response of the
filter, f is the frequency, fL and the lower range frequency and fH is
the higher range frequency. This model successfully isolates the
signal within the desired frequency band and the attenuating
components.

Moreover, regarding the issue of power line interference, which
is commonly observed at 50 Hz (or 60 Hz in certain regions), we
have implemented a notch filter to address this issue (Cengiz et al.,
2022), This specific filter is formulated to attenuate a narrow band of
frequencies around the specified notch frequency (50 Hz). The
mathematical formulation is as follows:

H f( ) � 0, if f � fN

1, otherwise
{ (2)

In Equation 2H(f) is the frequency response, f is the frequency,
and fN is the notch frequency.

In the case of the ECG Signal, we have applied a bandpass filter
to isolate the frequency components specifically in the heart’s
electrical activity within a specific range suitable for ECG
analysis. Here, the notch filter is used to remove power line
interference, typically at 50 Hz or 60 Hz, which is considered a
source of noise in ECG measurements. For the EMG Signal, the
bandpass filter was used to capture the frequency range where
muscle electrical activity is most prominent. EMG signals have
their most significant information content in a specific frequency
band, and the bandpass filter helps in isolating these frequencies.
The notch filter was also applied to the EMG signals to remove
electrical noise, especially the interference from power lines, which
can significantly affect the quality of EMG recordings.

For Accelerometer, we have used a low-pass Butterworth filter,
which is widely used in similar studies (Ding et al., 2023; Wang et al.,
2023; Hu et al., 2023). The Butterworth low-pass filter is mostly used
for noise reduction in time-series data. Its mathematical
representation is as follows. The mathematical representation for
butterworth low-pass filter is as follow:

X y( ) � 1

1 + y
j·wc

( )2N
(3)

In this case, the left-hand side, i.e., X(y) represents the transfer
function of the Butterworth filter, y is the complex frequency

variable, j is the imaginary unit, and wc is the angular
frequency, and N is the order of the filter, which specifies the
sharpness of the frequency response curve. In our proposed model,
the parameters are carefully selected to strike a balance between
noise reduction and signal preservation. The value of N = 4 was
selected to achieve effective noise reduction while minimizing
signal distortion. The cutoff frequency was set to wc = 0.3 Hz,
ensuring that high-frequency noise components are attenuated
while preserving the essential low-frequency dynamics of human
activities. The pictorial presentation of the bandpass filter is visible
in Figure 2.

2.2 EMD (empirical mode decomposition for
EMG and ECG sensor)

Decomposition of the EMG and ECG signal is further required
to extract the meaningful insights and features of the like amplitude
envelopes (intensity) and instantaneous frequency temporal
dynamics. This decomposition helps us to extract cardiac and
muscular meaningful insights for the most effective healthcare
management. So, in this study, we also applied Empirical Mode
Decomposition (EMD) (Hu et al., 2020; Centeno-Bautista et al.,
2023) to both the ECG and EMG signals. The EMD method is used
for analyzing non-linear and non-stationary data, which is beneficial
for accurate physiological signal characterization. This process
involves decomposing each signal into a set of Intrinsic Mode
Functions (IMFs) through an iterative ‘sifting’ procedure. Each of
the IMF represents a simple oscillatory mode extracted from the
original signal, and together, they reconstruct the signal’s full
information content. By applying the Hilbert transform (Goecks
et al., 2020; Mishra and Bhusnur, 2022) to these IMFs, we further
obtained the amplitude envelope and instantaneous frequency for
each signal, as shown in Figure 3. In the case of ECG signals (Li et al.,
2024; Tao et al., 2023), the amplitude envelope graph reveals the
signal’s overarching oscillatory magnitude, while the instantaneous
frequency graph represents a detailed analysis of the heart rate
variability and cardiac dynamics. The EMG signal’s amplitude
represents the muscular activity, while the instantaneous

FIGURE 2
Actual vs. Filtered ECG signal using the mHealth dataset.
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frequency represents temporal evolution and fatigue. In Equation 4,
the EMD process can be described mathematically as:

x t( ) � ∑N
n�1

IMFn t( ) + rN t( ) (4)

Here, the variable x (t) is the actual signal, while IMFn(t)
represents intrinsic mode functions, and rN(t) is the residue. The
result obtained after applying EMD can be seen in Figure 3.

2.3 Feature extraction for EMG and
ECG sensor

In the feature extraction phase of our analysis, we focused on
deriving insightful metrics from the EMG and ECG signals that
could robustly characterize physiological activities. For EMG signals,
Mean Absolute Value (MAV), Power Spectral Density (PSD), and
Waveform Length (WL) are the key features.

2.3.1 Muscle synergy analysis
The purpose of Muscle Synergy Analysis (Chaddad et al., 2023;

Wang and Shang, 2023; Kumar et al., 2023), is to understand how
muscle coordination is performed for various tasks. As per medical
science, it is assumed that the central nervous system overall controls
multiple muscles by activating them in groups, or synergies, rather

than individual control. This analysis is performed using a
computational technique known as Non-negative Matrix
Factorization (NMF).

This model NMF decomposes the preprocessed EMG data matrix
V into two lower-rank non-negativematricesW andH, whereV ≈WH.
where V is of size m × n (with m representing the number of muscles
and n the number of time samples), W is of size m × k (with k
representing the number of synergies), andH is of size k × n. Thematrix
W contains the synergy vectors, indicating the weight of each muscle’s
contribution to a synergy, while H contains the temporal activation
patterns of each synergy over time. This decomposition is used to
identify common patterns of muscle activation (Juan and Greiner,
2021) (synergies) across different activities.

Muscle Synergy Analysis has various applications (Jabeen et al.,
2023). For example, in the rehabilitation of patients with motor
impairments, such an analysis of muscle synergies can guide the
development of specialized therapies. Also in sports, it is beneficial
to optimize training regimens by understanding muscle
coordination and fatigue. Additionally, it can also be beneficial in
the design of assistive devices such as exoskeletons or in controlling
robotic prosthetics by mimicking the natural synergistic patterns of
muscle activation (Rodrigues et al., 2022; Zhou and Zhang, 2022).
Figure 4 demonstrates the synergy vectors and activation patterns
for baseline, lift, greetings, gesticulate, walk before, and run. The
synergy vectors and their corresponding activation patterns show
how muscle groups are coordinated in our daily life activities.

FIGURE 3
EMD plotted for EMG and ECG signal over the ScientISST MOVE dataset.
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2.3.2 EMG mean absolute value (MAV)
The following is the mathematical model of MAV,

which formulates muscle contraction strength (Islam et al.,
2023) by taking the average of the absolute amplitude of the
EMG signal.

MAV � 1
N

∑N
i�1
1 xi| | (5)

In Equation 5, the mathematical model of MAV, where xi

is the EMG signal amplitude at the ith sample, while N is the
total number of samples. This formulation is useful in
recognizing muscle activation patterns, as it correlates with
the force generated by the muscle. Figure 5 represents the
calculations.

2.3.3 EMG power spectral density (PSD)
Similarly, PSD is used to analyze the distribution of power across

various frequencies in EMG so that insights regarding fatiguemay be
identified. Following as the formulation of PSD in Equation 6 (Alam
et al., 2020; Zhang et al., 2022; Zhu et al., 2023) by using the method
of the Fast Fourier Transform (FFT):

PSD f( ) � FFT x t( )( )| |2 (6)

Here, x(t) is the EMG signal as a function of time, and f
represents frequency. PSD is crucial in human physiology
recognition and reflecting different muscle activities. Its
calculations are in Figure 6.

2.3.4 EMG waveform length (WL)
Waveform Length is used to quantify the complexity of the EMG

signal (Sei-ichi et al., 2023; Hu et al., 2024) with respect to time,
indicating temporal variability (Arquilla et al., 2022). Following is the
mathematics. Waveform length can be mathematically represented in
Equation 7 as:

WL � ∑N−1

i�1
xi+1 − xi| | (7)

Where xi and xi+1 are the consecutive EMG signal
amplitudes. WL can be particularly helpful in identifying
changes in muscle contraction patterns and is, therefore,
valuable in activity recognition tasks. Figure 7 illustrates the
EMG signal vs activity.

FIGURE 4
The synergy, along with activation patterns for EMG sensors for different activities calculated over the ScientISST MOVE dataset.
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2.4 Feature extraction for IMU sensor

2.4.1 Spectral rolloff
In this phase, we are calculating the spectral rolloff (Pires et al.,

2019) of the accelerometer data to quantify the distribution of higher
frequency components (Ku et al., 2018) present within the received
signal. Here, the application of the Fast Fourier Transform (FFT) on
each segmented window of time-domain accelerometer data (Junaid
et al., 2022;Wen et al., 2023) is a crucial step in shifting the perspective
from time to frequency, enabling the analysis of the frequency content
of the signals. Following the FFT, the Power Spectral Density (PSD) of
each window is computed. The PSD is a measure that indicates the
power present in each frequency component of the signal, providing a
comprehensive picture of how the energy of the signal is distributed
across different frequencies.

The core of this process lies in calculating the spectral rolloff. It is
a measure that captures the frequency below which a defined
percentage of the total spectral energy is contained. Typically,
this threshold is set around 85%. Mathematically, if we denote F
as the set of frequencies in the power spectrum and P(f) as the power
at frequency f, the spectral roll-off R is defined as the lowest
frequency for which the cumulative sum of the power from the
lowest frequency up to R equals or exceeds a certain percentage (e.g.,
85%) of the total spectral power. This can be represented in Equation
8 as:

∑R
f�0

p f( )≥ k ·∑
fϵFp f( ) (8)

where k is the rolloff percentage. For example, in health and
fitness trackers, these features enhance the accurate
categorization of user activities, enhancing the device’s ability
to monitor and provide feedback on physical activity levels.
Similarly, in real settings, the analysis of these features can
offer critical insights into a patient’s mobility and activity
patterns, which is invaluable in rehabilitation programs and
disease progression monitoring. The spectral rolloff calculated
for different activities can be seen in Figure 8.

2.4.2 Spectral flux
This model is used to calculate and measure the changes in the

power spectrum of a signal (Ma et al., 2022) from one frame to the
next, providing a further understanding of how the signal’s
frequency content varies. To analyze the spectral flux, the Fast
Fourier Transform (FFT) is applied to segments of the
accelerometer data to convert it from the time domain to the
frequency domain, resulting in a series of power spectra. The
spectral flux (Alsaify et al., 2022; Du et al., 2019; Gao et al.,
2019) is then calculated as the sum of the squared differences
between the magnitudes of the power spectra of consecutive
segments. Numerically in Equation 9, if Pn(f) represents the
power spectrum at frequency f of the nth segment, the spectral
flux SFn between segment n and segment n−1 is defined as:

FIGURE 5
MAV plotted for the EMG signal over the ScientISST
MOVE dataset.

FIGURE 6
PSD plotted for EMG signal over the ScientISST MOVE dataset.

FIGURE 7
Waveform Length plotted for different activities using EMG signal
over the ScientISST MOVE dataset.
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SFn� ∑ Pn f( ) − Pn−1 f( )( )2 (9)

Spectral flux (Liu A. et al., 2022; Yao et al., 2023) assists as a
critical feature in the recognition of different physical activities and
the assessment of posture characteristics in movement

investigations. Capturing dynamic changes in movement helps in
the early detection of deviations from normal patterns that could
indicate health issues and helps in preventative healthcare
monitoring and prediction. Figure 9 presents the Spectral flux
calculated for different activities.

FIGURE 8
Spectral roll off points plotted for the accelerometer signal over the mHealth dataset.

FIGURE 9
Spectral flux plotted for the accelerometer signal over the mHealth dataset.
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2.5 Linear discriminant analysis (LDA)

Linear Discriminant Analysis (LDA) is applied to reduce the
dimensions of a feature vector (Arshad et al., 2022; Qu et al., 2023;
Zhang et al., 2022), The goal of LDA is to project the data onto a
lower-dimensional space with good class-separability to avoid
overfitting (“curse of dimensionality”) and also reduce
computational costs (Strzelecki and Badura, 2022; Zhao et al.,
2022). Mathematically in Equation 10, LDA seeks to find a
projection that maximizes the between-class variance σ2between
while minimizing the within-class variance σ2within, hence
maximizing the ratio:

Q w( ) � wtsbw

wtsww
(10)

Where w is the vector that defines the projection direction, sb is
the between-class scatter matrix, and sw is the within-class scatter
matrix (Qu et al., 2023; Su et al., 2023). The optimalw is found as the
eigenvector of s−1w sb corresponding to the largest eigenvalue.
Figure 10 represents the analysis of LDA on the mHealth dataset.

2.6 Activity recognition

In this study, we used an advanced machine learning model,
i.e., Deep Belief Network (DBN) (Murad and Pyun, 2017; Liang et al.,
2018), to analyze the multi-dimensional data resulting from wearable

sensors. Thismodel includesmultiple layers of stochastic, latent variables,
allowing it to efficiently handle the diverse and complex nature of sensor
data, which often includes accelerometers, ECG, and EEG signal
measurements. Each layer of the DBN is intended to extract higher-
level features (Qi et al., 2022;Wang et al., 2023) from the raw sensor data,
simplifying the recognition of complex patterns associated with
numerous human activities. The early layers detect the basic motion
attributes, such as direction and speed, while the bottom layers are
responsible for integrating these attributes into recognizable activities.
This model is effective in distinguishing between activities with similar
motion profiles but different contextual variations. Our proposed DBN
model provides a robust and accurate classification of human activities.
Figure 11 shows the diagram of DBN.

2.7 Cross-validation methodology

In this study, a subject-wise k-fold cross-validation method is
implemented to evaluate the generalizability of our predictive
techniques. The purpose of our cross-validation model is to
ensure that each subject’s data is solely allocated to either the
training or the testing phase so that the data leakage is
eliminated. During this process, the subjects were randomly
partitioned into k groups to preserve a representative distribution
of the dataset’s variability (Rastogi and Mehra, 2013; Wang et al.,
2022). The model was then trained on k-1 groups, tested on the
remaining groups, and repeated on all groups. We further calculated

FIGURE 10
The LDA was performed over the mHealth dataset.
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the performance metrics such as accuracy, precision, recall, and the
F1 for each fold and then accumulated them to provide an
overarching evaluation of the model’s predictive performance.
The following are the steps.

• Partitioning: The entire set of subjects S is divided into k
distinct groups S1,S2.........Sk such that each group Si contains
approximately 1

k total subjects, ensuring no overlap in subjects
between any two groups.

• Validation Cycle: For each fold i, the model is trained on the
union of all groups except Si those denoted as S/Si , and test on
Si. This is mathematically represented in Equation 11 as:

Train on ⋃ j≠1 Sj,Test on Si (11)

• Performance Metrics: After training and testing, performance
metrics such as accuracy (ACC), precision (P), recall (R), and
F1 score are calculated. These metrics for each fold are defined
in Equation 12 as:

Acci � True Positives + TureNegatives
Total Samples

, Pi

� True Positives
True Positives + False Positives

, Ri

� True Positives
True Positives + FalseNegatives

, F1i � 2 ×
Pi × Ri

Pi + Ri
(12)

• Aggregation: The overall performance across all fold is determined
by averaging these matrics using the Equations 13, 14 and 15.

MeanAcc � 1
k
∑k
i�1
Acci (13)

Mean Precision � 1
k
∑k
i�1
Pi (14)

MeanRecall � 1
k
∑k
i�1
Ri (15)

3 Performance evaluation

The standard performance metrics are used for measuring the
efficiency and evaluation of our proposed model. For example,
confusion matrices, precision, recall metrics, F1 scores, and
Receiver Operating Characteristic (ROC) curves collectively
demonstrated their effectiveness.

3.1 Dataset description

As discussed earlier, we have used two well-known datasets,
i.e., the mHealth dataset (Banos et al., 2014), which is used for the
development and evaluation of mobile health monitoring and
tracking technologies. This dataset consists of multidimensional
sensor data collected via wearable gadgets, including
accelerometers, gyroscopes, and magnetometers, having a broad
range of human daily life activities data. This heavy dataset covers
different physical activities including, standing still, Sitting and
relaxing lying down, and so on, and is available for research work.

Similarly, the ScientISST MOVE dataset is another comprehensive
collection ofmultimodal bio-signals, collected in the context of everyday
life activities, compiled by (Areias Saraiva et al., in 2023) using wearable
bio-signal, acquired from 17 healthy volunteers as they engaged in a
variety of common activities, such as walking, running, and gesturing.
This dataset consists of electrocardiogram (ECG), electrodermal activity
(EDA), and photoplethysmography (PPG) signals, alongside
electromyography (EMG) from the biceps, wrist temperature
(TEMP), and actigraphy data from the chest and wrist (ACC).

4 Results and analysis

This section illustrates the experimental analysis and evaluation of
our proposed model using different experiments. For measuring the
performance, we have used standard evaluation metrics such as the
confusion matrix, precision, recall, F1 score, and receiver operating
characteristic (ROC) curve. The following sub-sections present the details.

4.1 Experiment 1: confusion matrix

In this experiment, we design the confusion matrix for both
datasets. This matrix withdraws numerical results are depicted in
Tables 1, 2 for the mHealth and ScientISST MOVE Datasets.

FIGURE 11
Proposed BDN architecture.
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4.2 Experiment 2: precision, recall
and F1 score

In this experiment, the proposed system is rigorously assessed.
Detailed discussions are also provided on the specific implications of
the system in certain areas. Table 3 represents the performance of
the system using precison, recall and F1 score.

4.2.1 Discussion and analysis
Based on the results from experiment 1, the analysis of the health-

related Human Activity Recognition (HAR) dataset, incorporating the
mHealth and ScientISST MOVE datasets, shows an upright
performance across various activities. The precision metric, which
calculates the accuracy of the model in predicting an activity after
recognition, varies significantly across different activities. For example,

in the mHealth dataset, activities such as ‘Running’ and ‘JFB’
demonstrate accurate precision, indicating that the model’s
predictions for these activities are highly reliable and robust. This
enhanced precision is beneficial in personalized health monitoring,
where accuracy matters a lot. In contrast, activities like ‘Sit and relax’
and ‘Climbing Stairs’ inmHealth show comparatively inferior precision.
Similarly, in another dataset, i.e., ScientISST MOVE, activities such as
‘Lift’ and ‘Walk before’ show high precision, which is useful in scenarios
like physical therapy where precise movements are desirable. Moreover,
the recall, indicating the proposed model’s ability to correctly identify
true instances of an activity, also shows inconsistency. For activities like
‘Walking’ in mHealth and ‘Walk_after’ in ScientISSTMOVE, the recall
is remarkably high, suggesting that the model is highly effective at
detecting these activities when they occur. These findings are beneficial
in fitness tracking and patient activity monitoring in specialized

TABLE 1 Confusion matrix calculated over the mHealth dataset.

Obj. Classes SS SR LD Walking CS WBF FEOA KB Cycling Jogging Running JFB

SS 0.97 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

SR 0.01 0.95 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.01

LD 0.00 0.00 0.97 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Walking 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

CS 0.02 0.00 0.00 0.00 0.92 0.00 0.00 0.04 0.00 0.00 0.01 0.01

WBF 0.00 0.00 0.02 0.00 0.01 0.91 0.03 0.00 0.00 0.03 0.00 0.00

FEOA 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.02 0.00 0.00 0.00

KB 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00

Cycling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.04 0.00 0.00

Jogging 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.98 0.00 0.00

Running 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

JFB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Mean Accuracy = 94.67%

SS , standing still; SR , sit and relax; LD, lying down; CS, climbing stairs; WBF, waist bends forward; FEOA, frontal elevation of arms; KB, kneens bending; JFB, Jump front and back. The bold

values represents the accuracy level for each activity, For example 0.97 means 97 percent of samples are correctly classified out of 100.

TABLE 2 Confusion matrix calculated over ScientISST MOVE dataset.

Obj. Classes Bsln Gst Gtng Lift Run W_a W_b

Bsln 0.94 0.01 0.00 0.04 0.00 0.01 0.00

Gst 0.01 0.89 0.03 0.05 0.00 0.02 0.00

Gtng 0.03 0.00 0.87 0.02 0.04 0.03 0.01

Lift 0.02 0.00 0.00 0.98 0.00 0.00 0.00

Run 0.00 0.00 0.00 0.00 1.00 0.00 0.00

W_a 0.00 0.00 0.00 0.00 0.01 0.99 0.03

W_b 0.00 0.02 0.00 0.00 0.00 0.00 0.98

Mean Accuracy = 95.12%

Bsln = Baseline, Gst = Gesticulate, Gtng = Greetings, W_a =Walk_after, W_b =Walk_before. The bold values represents the accuracy level for each activity, For example 0.97 means 97 percent

of samples are correctly classified out of 100.
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healthcare management systems, where missing out on such common
activities could lead to imprecise health assessments. However, in a few
activities like ‘WBF’ in mHealth reveal inferior recall, which could lead
to under-detection in scenarios requiring continuous activity
monitoring. The F1-score, a harmonic mean of precision and recall,
provides a balanced view of the model’s overall performance. High
F1 scores for activities like ‘Lying down’ in mHealth and ‘Baseline’ in
ScientISST MOVE indicate the model’s effectiveness in accurately
identifying and classifying these activities, which is vital in
applications like sleep studies or relaxation therapy. However, the
lower F1 scores in the case of activities indicate areas of
improvement. For instance, activities with lower F1 scores might be
less reliably tracked in contexts requiring detailed activity analysis, such
as specialized fitness programs or advanced human-computer
interaction systems as shown in Table 3.

4.3 Experiment 3: ROC (receiver operating
characteristic curve)

In another experiment, i.e., Receiver Operating Characteristic
(ROC) curves indicate how well our proposed DBN classifier can
distinguish between altered health’s health-related activities. The area
under the ROC curve (AUC) provides a single scalar value to indicate

overall performance. The closer the AUC to 1, indicates better the
performance in terms of distinguishing between the positive class (the
specific activity) and the negative class (all other activities). The detailed
analysis was conducted using a OneVsRest strategy with a DBN
classifier. Each activity was treated as a separate binary classification
problem, and the output was binarized to reflect the presence or absence
of each activity class. The dataset was subdivided into training and test
sets, where the classifier was trained in the first and used to predict class
probabilities in the second part. Then we computed the false positive
rate (FPR) and true positive rate (TPR) across the entire test set, which
included data from all subjects across all folds, ensuring a complete
evaluation of the classifier’s performance. These steps were carefully
taken to ease any potential for data leakage and to provide a realistic
portrayal of the classifier’s ability to generalize. The resulting ROC
curves for each class are illustrated in Figures 12, 13, respectively, with
the area under the curve (AUC) providing a scalar measure of
performance.

4.3.1 Discussion and analysis of ROC curve
In Figure 12, which assesses the mHealth dataset, activities

such as ‘Standing still’, ‘Lying down’, and ‘Walking’ show near-
perfect AUCs of 0.97, 0.97, and 0.99, respectively, indicating
excellent model performance for these activities. ‘Running’ and
‘Jump front and back’ activities have perfect AUCs of 1.00,

TABLE 3 Precision, Recall, and F1 score for mHealth and ScientISST MOVE Datasets.

Classes mHealth ScientISST MOVE

Activities Precision Recall F1 score Precision Recall F1 score

Standing still 0.97 0.94 0.95 — — —

Sit and relax 0.83 0.92 0.90 — — —

Lying down 0.86 0.97 0.91 — — —

Walking 0.90 0.99 0.98 — — —

Climbing stairs 0.89 0.89 0.95 — — —

WBF 0.82 0.91 0.88 — — —

FEOA 0.92 0.98 0.95 — — —

Knees bending 0.83 0.96 0.89 — — —

Cycling 0.83 0.98 0.90 — — —

Joging 0.84 0.97 0.90 — — —

Running 1.00 1.00 0.98 — — —

JFB 1.00 1.00 1.00 — — —

Baseline — — — 0.89 0.95 0.97

Gesticulate — — — 0.81 0.94 0.90

Greetings — — — 0.88 0.83 0.90

Walk_after — — — 0.98 1.00 0.97

Lift — — — 0.97 0.91 0.99

Run — — — 1.00 1.00 1.00

Walk_before — — — 0.98 0.95 1.00

WBF, waist bends forward; FEOA, frontal elevation of arms; JFB, Jump front and back.
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reflecting the model’s exceptional capability in recognizing these
dynamic movements with high accuracy. Figure 13, analyzing the
ScientISST MOVE dataset, demonstrates strong performance
across different activities, with ‘Lift’ and ‘Walk_after’ activities
having AUCs of 0.98 and 0.99, respectively, signifying high
accuracy. ‘Run’ shows a perfect AUC of 1.00, indicating the
model’s efficient performance in identifying running activity.
The ‘Baseline’ activity, however, has a slightly lower AUC of
0.94, suggesting that the model is still performing well. Based
on our analysis, we still conclude that there is some room for
improvement in differentiating ‘Baseline’ from other activities.

4.4 Experiment 4: resource and time
efficiency analysis of proposed system

In our fourth experiment, our focus is on evaluating the resource
utilization and time efficiency of the proposed system. This analysis is

most important for understanding the system’s overall performance,
practicality, and feasibility in real-world applications for smart and
personalized healthcare management, specifically where the timely
and efficient processing of data can be of utmost importance In the
case of the mHealth dataset, the system demonstrated a runtime of
7,632 s and memory usage of 4,421 MB. These metrics are indicative
of the computational demands required for processing health-related
data within this dataset. The runtime reflects the system’s ability to
recognize different activities in a reasonable time frame. Other than
time-based efficiency, the systemmust be memory efficient as well, or
at least within an acceptable range for modern computational systems,
ensuring that the system does not impose excessive demands on
hardware resources. Similarly, for the ScientISST MOVE dataset, the
proposed system reported a runtime of 4,632 s and consumed
3,611 MB of memory. With minimum computational time, in
comparison to the mHealth dataset, suggests a more efficient
processing capability, possibly due to variations in dataset
complexity or size. The memory footprint is also lower, which
could be attributed to more optimized data handling or a smaller
feature set required for activity recognition in this dataset. Overall, our
proposed system indicates an encouraging balance between resource
consumption and time efficiency. These findings suggest that the
system can be effectively deployed in environments where
computational resources are limited. Due to better resource and
time management, our proposed system is most feasible for
mobile-based health applications, where the system’s efficiency can
lead to longer battery life and more sustained monitoring capabilities.
This indicates our proposed system will also perform well on different
datasets, suggesting flexibility and robustness.

4.5 Experiment 5: comparisons with state of
the art (SOTA)

In Kutlay and Gagula-Palalic (2015), the authors employed
Multilayer Perceptron (MLP) and Support Vector Machine
(SVM) algorithms to analyze the mHealth dataset, achieving an
accuracy of 91% with the MLPmodel. However, our system not only
achieves a higher accuracy (94.67%) but also shows superior
performance in terms of precision and recall, particularly for
dynamic activities such as “Running” and “Jump front and back,”
where our model reached perfect scores in terms of both precision
and AUC (1.00) (Liu C. et al., 2021; Zhang and Jiang, 2021),
federated learning was implemented as a privacy-centric
approach, achieving 90% accuracy on the WESAD dataset. While
the focus of that study was on privacy, our study emphasizes a
comprehensive evaluation of performance across multiple
parameters. In particular, we highlight our model’s F1 scores and
recall, which are critical in ensuring that key activities are detected
reliably, especially in healthcare applications. In a comparative study
by (Halloran and Curry, 2019), XGBoost achieved an accuracy of
89.97% on the mHealth dataset. Our proposed system overtakes this,
with an accuracy of 94.67% and a higher AUC for key activities.
Additionally, our system provides a better balance between precision
and recall across a broader range of activities, offering significant
improvements in the classification of both high-energy and low-
energy tasks. Resource and efficiency plots are presented in Figure 14
(See Table 4).

FIGURE 12
ROC curve plotted over mHealth Dataset.

FIGURE 13
ROC curve plotted over the ScientISST MOVE Dataset.
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5 Implication of the proposed system

Based on ROC, precision, recall, and F-1 score, it is evident that
our proposed system is robust and applicable in emergency
response, healthcare monitoring and fitness tracking, and many
more where accuracy and precision matter a lot. Our findings are
based on our proposed system’s robust performance as indicated by
the Receiver Operating Characteristic (ROC) curves and the
precision, recall, and F1 score metrics. The ROC curves for both
themHealth and ScientISSTMOVE datasets reveal high Area Under
the Curve (AUC) values for a majority of activities. Such high AUC
values denote not only the system’s ability to correctly classify
activities with high true positive rates but also its proficiency in
maintaining low false positive rates across various thresholds. In the
case of AUCs close to 1, such as ‘Running’ and ‘Jump front and back’
in the case of the mHealth dataset, and ‘Run’ in the ScientISST
MOVE dataset, the implications are particularly encouraging for
applications that demand a high degree of accuracy, like emergency
response systems, where distinguishing between running and less
vigorous activities could be critical. In the case of healthcare, precise
detection of these activities can contribute to the development of
smart patient monitoring systems, allowing for accurate assessment
of patient mobility and activity levels, which are crucial for
postoperative care and rehabilitation. The precision, recall, and
F1 scores further underline the system’s reliability. High

precision in activities like ‘Standing still’ and ‘Lying down’
suggests that the system could be successfully used in sedentary
behavior research, where distinguishing between various low-energy
activities is essential. On the other side, high recall in activities such
as ‘Walking’ points to the system’s ability to capture these activities
constantly, making it suitable for use in physical activity tracking
and fitness apps, where missing an activity can lead to significant
data inaccuracies. Moreover, the F1 scores, which reflect the balance
between precision and recall, suggest that the system is highly
capable of recognizing both static and dynamic activities. The
system’s robust performance in dynamic and static activity
recognition (Section 4) positions it for deployment in hospitals,
remote monitoring, and elderly care. However, real-world adoption
requires addressing regulatory (e.g., FDA certification), ethical (e.g.,
GDPR-compliant anonymization), and technical challenges (e.g.,
optimizing battery life via edge computing). Our future work will
validate the system in clinical trials with variable sensor placements
and integrate federated learning to enhance data privacy.

6 Conclusion and limitations

This research study proposed a comprehensive and advanced
health monitoring system by integrating multimodal bio-signal from
two well-known datasets, i.e., mHealth and ScientISST Move. Our
proposed innovative healthcare monitoring system used an advanced
AI technique, such as Deep Belief Network, which recognized and
classified a wide range of physiological activities with enhanced
accuracy and predictions. Moreover, advanced signal processing
techniques such as Empirical Mode Decomposition (EMD) and
Muscle Synergy Analysis, along with the use of filters for
minimizing the impact of noise in the signal, have further enhanced
the reliability and quality of the bio-signal data. Due to this
modification, we have achieved higher precision, recall, and F1 score
across all activities in both datasets. Our proposed integrated system is
most suitable for real-world applications based on its efficiency,
resource consumption, and time complexity, particularly in mobile-
based deployments. Besides high accuracy, there are a few limitations as
well, such as the deployment of sensor variability, motion artifacts from

FIGURE 14
Runtime and Memory usage calculated over the ScientISST MOVE and mHealth Dataset.

TABLE 4 Comparisons with state of the art.

Method Accuracy %

mHealth ScientISST MOVE

Kutlay and Gagula-Palalic (2015) 91.70 —

Liu, (2021) 90.20 —

Halloran and Curry (2019) 89.97 —

Proposed 94.67 95.12

The bold values represents our proposed system accuracy.
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unpredictable movements, and complex patient conditions, like
Parkinson’s tremors, may bring noise that is not available in our
datasets, which have been used. Future research work is
recommended to address its clinical trials across dense populations
to validate its robustness under specific conditions.
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