
Natural bioactive compounds
modified with mesenchymal stem
cells: new hope for regenerative
medicine

Jingjing Wu1, Ying Ge1, Wendi Huang1, Li Zhang1, Juan Huang2*,
Nanqu Huang3,4* and Yong Luo1,4*
1Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s
Hospital of Zunyi), Zunyi, Guizhou, China, 2Key Laboratory of Basic Pharmacology and Joint International
Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi,
Guizhou, China, 3National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical
University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China, 4Department of Gerontology,
Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou,
China

Mesenchymal stem cells (MSCs) have the potential to differentiate into various
cell types, providing important sources of cells for the development of
regenerative medicine. Although MSCs have various advantages, there are also
various problems, such as the low survival rate of transplanted cells and poor
migration and homing; therefore, determining how to reform MSCs to improve
their utilization is particularly important. Although many natural bioactive
compounds have shown great potential for improving MSCs, many
mechanisms and pathways are involved; however, in the final analysis, natural
bioactive compounds promoted MSC proliferation, migration and homing and
promoted differentiation and antiaging. This article reviews the regulatory effects
of natural bioactive compounds onMSCs to provide new ideas for the therapeutic
effects of modified MSCs on diseases.

KEYWORDS

mesenchymal stem cells, natural bioactive compounds, resveratrol, icariin, Ginkgo
biloba extract, tanshinone IIA, astragaloside IV, curcumin

1 Introduction

There are many types of stem cells that can be divided into three categories: embryonic
stem cells derived from early embryos, induced pluripotent stem cells, and adult stem cells,
including haematopoietic stem cells, neural stem cells, and mesenchymal stem cells (MSCs)
(Tian et al., 2023). MSCs were first discovered from bone marrow in 1976 (Lan et al., 2021)
and have been found in almost all tissues in the human body. Compared with unipotent
stem cells, stem cells have high self-renewal ability and good differentiation ability. The
pluripotency of MSCs manifests in their ability to differentiate into bone cells,
chondrocytes, fat cells, and other cell lines. Bone marrow and subcutaneous fat are the
preferred sources of MSCs (Zhou and Shi, 2023; Eirin et al., 2024). MSCs can also be isolated
from various adult tissues, such as adipose tissue (Gou et al., 2024), synovial membrane (Li
et al., 2020), dental pulp (Yang et al., 2025), skin (Rendra et al., 2023), peripheral blood
(Chen et al., 2023), nasal olfactory mucosa (Valipour et al., 2024), lung (Rangasamy et al.,
2021), breast milk (Rahmani-Moghadam et al., 2022), muscle (Serteyn et al., 2024),
periosteum (Ye et al., 2024), corneal limbus (Santra et al., 2024), endometrial and
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menstrual blood (Song et al., 2024), cervix (Eiro et al., 2024), and
foetal/neonatal tissue (Thiruvenkataramani et al., 2024). MSCs are
good candidates for future experimental or clinical applications and
have received increasing attention (Matsuzaka and Yashiro, 2024;
Pharoun et al., 2024; Shan et al., 2024). Stem cells have three
important functions that make them potentially useful. The first
is homing, which is the chemotactic effect of stem cells when damage
occurs in the body (Han et al., 2022). The second is differentiation,
whereby stem cells can differentiate into a variety of cell types by
means of transplantation and by adding or replacing damaged tissue
to enhance functional recovery (Nie et al., 2023). The third is the
secretion of bioactive factors, which may influence local and
systemic physiological processes (Daneshmandi et al., 2020). The
most important function of stem cells is self-renewal (Wilkinson
et al., 2020).

The contribution of stem cells to modern medicine is crucial.
Not only because they can be widely used in basic research but also
because they offer more and better opportunities to develop new
treatment strategies (Pharoun et al., 2024). Their properties make
them valuable for a wide range of applications in the biological and
medical sciences (Lu et al., 2025). MSCs play a wide range of
physiological roles, including maintaining tissue homeostasis and
regeneration (Zhidu et al., 2024), as well as modulating immune
effects (Hazrati et al., 2024). As a result, indications for MSCs have
expanded to include graft-versus-host disease, multiple sclerosis,
Crohn’s disease, amyotrophic lateral sclerosis, myocardial

infarction, and acute respiratory distress syndrome (ARDS) (Han
et al., 2022; Pharoun et al., 2024). Over the past decade, several
preclinical studies and more than 5,000 clinical trials involving
MSCs have been registered, with more than 1,500 completed (Al-
Azab et al., 2023). In addition, more than 100 clinical trials have
tested stem cells for regenerative medicine, and MSCs have great
potential in treating Parkinson’s disease, among other conditions
(Abbott, 2025). Although the clinical application of stem cells is
promising, there are still some challenges that warrant consideration
in cell therapy and regenerative medicine. Studies have shown that
most MSCs lose their biological activity within a week, even after the
orthotopic transplantation of MSCs (Preda et al., 2021). Moreover,
most transplanted MSCs are concentrated in pulmonary
microvessels, and the amount of targeted tissues is limited (Shan
et al., 2024). Therefore, even though MSCs have various advantages,
there are also various challenges, such as the low survival rate of
transplanted cells and poor migration and homing of MSCs; thus,
the function of MSCs is limited. Currently, various studies have
shown that they can increase the survival, migration, proliferation
and differentiation of stem cells; promote homing; and induce the
release of nutrient factors in various ways to further promote the
recovery of neural function (Han et al., 2024). Some studies have
been conducted to pretreat stem cells before injection to change
some of the characteristics of the cells, thereby improving the
efficacy of stem cell transplantation (Huang et al., 2018; Yu et al.,
2023) (Figure 1).

FIGURE 1
Source and function summary diagram of theMSCs. (A) Three important functions of stem cells: homing, differentiation, and secretion. (B) Themain
challenges associated with stem cells are their higher concentration in pulmonary microvessels, low survival rates, and poor migration and homing. (C)
The source of the stem cells.
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According to the World Health Organization (WHO), two-
thirds of the world’s population has access to herbal medicines.
Therefore, theWHO encourages the inclusion of plants in treatment
regimens for various diseases to improve their effectiveness and
reduce potential costs (Mekhemar et al., 2020). Natural bioactive
compounds are defined as chemical substances derived from natural
sources (such as plants, animals, or microorganisms) that have
biological effects on living organisms, tissues, or cells. Plants
constitute one of their main sources (Li et al., 2024). Since
ancient times, plant-derived natural compounds have been widely
used to treat various diseases (Gugliandolo et al., 2020; Huang et al.,
2024). In recent years, increasing attention has been given to natural
bioactive compounds, and the modification of stem cells is a new
research direction. They are able to modulate stem cell self-renewal
and differentiation potential and target a wide range of types of
intracellular signal transduction (Feng et al., 2022; Li et al., 2023; Li
et al., 2024). An increasing amount of data show that natural
bioactive compounds may have different protective mechanisms
through their antioxidants, free radical scavengers, harmful metal
ion chelators, regulation of cell survival genes and signals, and
antiapoptotic activity, so they have a wide range of applications
in the treatment of many diseases (Huang et al., 2023; Pacyga et al.,
2024; Wang et al., 2024). In addition to treating diseases, some
natural bioactive compounds can also play an antioxidant role by
activating the proliferation of lymphocytes to enhance immune
function, increasing the number of natural killer (NK) cells and
scavenging free radicals (Kim et al., 2022; Mahmoudi et al., 2024).
Studies have shown that natural bioactive compoundsmay be able to
effectively regulate the proliferation and differentiation of stem cells
(Lakshminarayanan et al., 2025). Therefore, natural bioactive
compounds have the potential to be a new source for improving
stem cells, increasing their proliferation and improving their
function. In this work, the regulatory effects of natural bioactive
compounds on MSCs were reviewed to provide better theoretical
support for the improvement of stem cells and enhance their
application in clinical and basic research.

2 Overview of MSCs

MSCs are pluripotent stem cells that can self-renew and
differentiate into multilineage cells (Lin et al., 2022). These cells
have the ability to differentiate into osteoblasts, chondrocytes, and
adipocytes, and the cell phenotypes CD73, CD90, and CD105 are
positive, while the major histocompatibility complex class II (MHC-
II), CD11b, CD14, CD31, CD34, and CD45 are negative (Zhou and
Shi, 2023; Cao et al., 2024). The quality and criteria of MSCs should
include cell surface markers, differentiation potential and other
necessary parameters. These parameters include cell surface
labelling profiles, bone formation capacity in the model, as well
as cell and particle sizes, telomere length, state of ageing, secretion of
trophic factors (secretomes), and immune regulation (Trivanović
et al., 2015; Samsonraj et al., 2017). Because MSCs are easy to extract
from foetal and adult tissues and do not require overly demanding
cell culture conditions, they are promising research targets. Many
studies have confirmed their anti-inflammatory components,
multilineage potential, tissue regeneration ability and
immunomodulatory effects, so they have been widely studied in

the treatment of many diseases (Al-Azab et al., 2022;
Gopalarethinam et al., 2023).

2.1 Bone marrow mesenchymal stem
cells (BMSCs)

BMSCs are the most widely used stem cells in regenerative
medicine and tissue engineering. They are nonhematopoietic stem
cells that exist in the bone marrow and have pluripotent
differentiation potential (Zhang et al., 2023). However, the
mobilization of BMSCs from the bone marrow and their
migration to damaged tissue during healing are key issues. The
migration of BMSCs to target tissues is a complex biological process.
This transport process is affected by many factors, such as chemical
factors (e.g., chemokines, cytokines, and growth factors) and
mechanical factors (e.g., shear stress and vascular circulation) (Fu
et al., 2019). At present, several methods are used to evaluate the
migration of BMSCs, the most common methods are the Transwell
method and the scratch test (Sun and Fan, 2025). Moreover, BMSCs
can also be labelled with fluorescence to track their location (Yun
et al., 2023). The therapeutic use of BMSCs also has certain
limitations, such as cell rejection, poor immune response,
toxicity, tumorigenicity, potential contamination by viruses and
problems with cell transport and storage prior to transplantation
(Tayebi et al., 2022; Zhang et al., 2022).

2.2 Human umbilical cord mesenchymal
stem cells (HUCMSCs)

The human umbilical cord is a promising source of
mesenchymal stem cells (HUCMSCs). Unlike that for BMSCs,
the process of HUCMSC collection is painless, and HUCMSCs
exhibit faster self-renewal. HUCMSCs are a better source than
commonly used embryonic stem cells. They can differentiate into
three types of germ layers that promote tissue repair, regulate the
immune response, and have anticancer properties (Rodríguez-
Eguren et al., 2022). However, HUCMSCs also have certain
limitations, such as maintaining biological activity and
quantifying bioactive substances (Ding et al., 2018).

2.3 Adipose-derived mesenchymal stem
cells (ASCs)

ASCs are generally isolated from heterogeneous cell populations
produced in the stromal vascular fraction (SVF) of adipose tissue.
The SVF is obtained from subcutaneous fat tissue from individuals
who undergo surgical procedures such as liposuction to remove
excess, unwanted fat, so easy access to sources is one reason for its
widespread use (Yaylacı et al., 2023). ASCs can self-renew and
differentiate into multiple cell lines. ASCs have been proven to
have anti-inflammatory, antifibrotic, antiapoptotic and
proangiogenic effects both in vitro and in vivo. Therefore, they
have been widely used in cell therapy and regenerative medicine (Al-
Ghadban et al., 2022; Zeng et al., 2022; Barone et al., 2023). ASCs are
widely used in many diseases, such as multiple sclerosis, diabetes,
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Crohn’s disease, SLE, and graft-versus-host disease (Al-Ghadban
et al., 2022). Unlike BMSCs, ASCs differ in that their fatty acid
translocase marker CD36 and cell adhesion marker CD106 are not
expressed (Poon et al., 2020). Previous reports have shed new light
on the ability of ASCs to differentiate. ASCs can differentiate into
various types of epithelial cells, such as renal tubular epithelial cells
and retinal pigment epithelial cells (Cawthorn et al., 2012). However,
other researchers have demonstrated that these cells may have less
potential for bone formation and cartilage formation than BMSCs.
The importance of adipose tissue-derived stem cells has been
questioned (Al-Sammarraie et al., 2024).

2.4 Other types of mesenchymal stem cells

Other well-known sources of adult MSCs include the cervix,
placenta, amniotic fluid, dental pulp, breast milk, and synovial
membrane. Compared with other methods used to obtain other
MSCs (such as bone marrow or adipose tissue), human cervical stem
cells (hUCESCs) are also a type of MSC that can be obtained via
cervical smears, are easy to separate, have a high proliferation rate,
and can yield a greater number of hUCESCs or exosomes and other
derivatives, which is conducive to basic research and clinical
applications (Vizoso et al., 2017; Ge et al., 2024). Compared with
MSCs from other sources, human placental mesenchymal stem cells
(hPMSCs) have the advantages of stable proliferation and low
immunogenicity. These properties make hPMSCs ideal materials
for stimulating tissue repair (Lu et al., 2021; Yu et al., 2024).
Amniotic fluid MSCs are a type of MSC produced during the
perinatal period. Compared with adult MSCs such as BMSCs,
their advantages include a minimally invasive separation process,
more primitive cell characteristics, nontumorigenicity, and low
immunogenicity. Currently, they have received increasing
attention (Doktor et al., 2025). On the basis of the clinical
diagnosis of nonfunctional or pathogenic tissues in the mouth,
oral MSCs can be obtained through minimally invasive surgery.
In addition, they are often discarded as medical waste after they are
removed from the mouth. Therefore, compared with the use of
MSCs from other tissues, this is a unique advantage of dental MSCs
in research (Masuda et al., 2021).

3 Effects of different types of natural
bioactive compounds on MSCs

Because MSCs are good candidates for clinical and basic
research, it is especially important to obtain adequate numbers of
these cells. They are usually cultured in vitro with animal serum and
various growth factors. However, repeated freeze‒thaw cycles,
in vitro culture conditions and continuous passages during the
culture process have adverse effects on the proliferation of MSCs,
such as reduced self-renewal, increased cell senescence, increased
apoptosis and premature differentiation, and these cells are very
susceptible to the influence of the microenvironment (Yang et al.,
2018; Preda et al., 2021). A variety of natural bioactive compounds
are used worldwide to treat and prevent various diseases, and they
have multitarget, multilevel and multipathway characteristics
(Huang et al., 2023). The bioactive compounds naturally present

in seaweed, herbs, fruits, and vegetables have the ability to regulate
the self-renewal and differentiation potential of adult stem cells.
They mainly target a wide range of intracellular signal transduction
pathways (Li et al., 2022). Natural plant compounds can improve the
rate of tissue regeneration, which has certain advantages in the tissue
engineering of stem cell therapy and alternative therapy. Although
bioactive ingredients have not been widely used in the clinic because
of their variability and complexity, a growing number of studies have
focused on the modified effects of natural compounds on MSCs
(Table 1) (Figure 2).

3.1 Resveratrol

Resveratrol (RSVL) is a natural polyphenol plant antitoxin
(Huang et al., 2020; Huang et al., 2023) and is a natural
polyphenolic phytoestrogen. It was first found in the root
extract of white mustard (Veratrum grandiflorum) and was
found in the roots of knotweed in 1963 (Vauzour, 2012).
RSVL has two configurations, cis-type or trans-type structures,
among which trans-RSVL is the main form existing in nature and
the most widely studied form (Huang et al., 2020). RSVL has a
wide range of biological activities, including antioxidant,
antiviral, anti-inflammatory, antiaging and anticancer
properties (Khattar et al., 2022). It has great potential to
prevent a variety of acute and chronic diseases. Recent studies
have shown that it can play a reliable rejuvenating role in various
animal models, tissues and organs, especially in the modification
of stem cells. Studies have shown that RSVL can improve the
therapeutic effect of MSCs by increasing their survival rate, self-
renewal ability and antiaging effects (Hu and Li, 2019). RSVL is
also involved in the regulation of bone formation and fat, as well
as nerve regeneration, in MSCs (Joe et al., 2015).

In terms of the antiaging effects of MSCs on BMSCs, studies
have shown that RSVL can activate Sirtuin 1 (SIRT1), reduce β-
catenin activity, increase extracellular signal-regulated kinase (ERK)
phosphorylation and glycogen synthase kinase-3 beta (GSK-3β)
phosphorylation, improve the self-renewal potential of early-
passage MSCs and improve their pluripotency (Yoon et al.,
2015). Different concentrations of RSVL had different antiaging
effects on HUCMSCs. At 0.1, 1 and 2.5 μM, RSVL promoted cell
viability and slowed the ageing of MSCs by increasing
SIRT1 expression and inhibiting p53 and p16 expression. At
concentrations of 5 and 10 μM, RSVL can increase the degree of
senescence and apoptosis of MSCs by inhibiting SIRT1 and PCNA
and stimulating the expression of p53 and p16 (Wang et al., 2016).
Therefore, not all concentrations of RSVL are beneficial for the
growth of MSCs.

RSVL is involved in the differentiation of MSCs. Studies have
shown that RSVL can enhance the osteogenic differentiation ability
of BMSCs by increasing NO production and the cGMP content,
activating ERK1/2 and p38 mitogen-activated protein kinase
(MAPK), and upregulating the expression of mitogens (Song
et al., 2006; Dai et al., 2007; Lv et al., 2018). RSVL can also
replace insulin in lipid-forming medium, increase the
phosphorylation of cyclic AMP response element binding protein
(CREB), and induce lipid differentiation in MSCs (Caldarelli
et al., 2015).
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TABLE 1 Effect of natural bioactive compounds modified mesenchymal stem cells.

Compounds Sources of MSC Function Mechanism of action Ref

Icariin BMSC 1.Promote proliferation and
osteogenic differentiation of BMSC,
inhibit lipogenic differentiation

1.Upregulated Runx2, ALP and I
collagen promote bone formation,
the expression of PPARγ, adipsin,
CCAAT/C/EBPα and
FABP4 mRNA was inhibited to
inhibit the differentiation of
BMMSC into adipocytes

Sheng et al. (2013), Huang et al.
(2017), Liu et al. (2017), Wu et al.
(2017), Lim et al. (2018)

2.Activation of STAT-3 increases
the activity and expression of
cysteine (C)-X-C motif chemokine
receptor 4 (CXCR4)

2.Promote migration of BMSCs 3. Stimulate the MAPK signaling
pathway

4.Stimulation of Wnt/β-catenin
signaling pathway

ASCs Promote osteogenic differentiation The mRNA expression of ALP, Col-
1 and OC, Dlx5 and Runx2, BMP-2,
-4 and -7 genes was stimulated.
Improve Runx2, bmp and OC levels

Yang et al. (2019), Sharifi et al. (2020)

Resveratrol BMSC Promote proliferation and
osteogenic differentiation of BMSC,
inhibit lipogenic differentiation.
Promote homing of MSC.

Runx2 gene expression on the
SIRT1/FOXO3A axis can also be
upregulated through ERK1/2 and
MAPK signaling pathways

Dai et al. (2007), Tseng et al. (2011),
Okay et al. (2015)

HUCMSCs Increase cell vitality, slow down
aging and aging

Increase SIRT1 level, inhibiting the
expression of p53 and p16

Wang et al. (2016)

ASCs Enhance the epithelial and
osteogenic differentiation of MSCs

ASC differentiation was induced on
collagen scaffolds

Wang et al. (2018)

Ginkgo biloba
extract

BMSC Promote proliferation and
osteogenic differentiation of BMSC

1.Promotes osteogenesis by up-
regulating BMP and Wnt/β-catenin
signaling pathways

Gu et al. (2015)

2. Upregulated PAX6 expression in
cells

Tanshinone IIA BMSC 1.Better anti-neuroinflammatory
effects

1.Downregulated
BACE1 expression

Zhang et al. (2018), Huang et al.
(2019), Yuan et al. (2022)

2.Promote the differentiation of
neuron cells

2.It may improve the survival rate of
transplanted BMSCs, increase the
level of nutrient factors secreted by
BMSCs to the lesion area, and
reduce inflammatory cytokines

Promote hBMSCs proliferation 3.Increase the release of fibroblast
growth factor 2 (FGF2)

Human periodontal ligament
stem cells (hPDLSC)

It promotes this differentiation and
hPDLSC maturation

Osteogenesis of hPDLSC was
induced by the ERK1/2-Runx2 axis

Liu et al. (2019)

MSC Regulate the migration ability
of MSC.

Regulate the expression of CXCR4 Xie et al. (2013)

Curcumin BMSC 1.Delay the aging 1.Activated autophagy Gu et al. (2012), Wang et al. (2019),
Chen et al. (2021), Deng et al. (2021)2.It is associated with HO-1

expression

2.Promote osteogenic differentiation.
Inhibition of lipogenic
differentiation

The expression of Kruppel-like
factor 15 was inhibited

ASCs Delay the aging 1.Increase the expression of TERT
gene

Liu et al. (2015),Pirmoradi et al.
(2018)

2.Increased tolerance to oxidative
stress damage

hDP-MSC Enhance immune regulation and
regeneration

Ayadilord et al. (2022)

(Continued on following page)
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RSVL has also been shown to improve the regulation of nerve
regeneration. In BMSCs, RSVL can upregulate AMPK/SIRT1 signal
transduction, thereby increasing the level of neural progenitor cell
markers in MSCs isolated from ALS patients (Yun et al., 2019). In
dental pulp stem cells, RSVL can increase the expression of the
neuron-specific marker genes Nestin, Musashi and NF-M, thereby
promoting the differentiation of dental pulp stem cells into neuronal
cells (Geng et al., 2017). RSVL can activate the phosphatidylinositol
3-kinase (PI3K) signalling pathway or increase the levels of protein
kinase A, GSK-3β, and ERK1/2 in HUCMSCs, thereby increasing
the expression of neural markers and promoting neural repair
(Jahan et al., 2018a; Jahan et al., 2018b). Moreover, RSVL can
play a positive role in the treatment of periodontitis by
promoting the proliferation, osteogenic differentiation and
immune regulation of MSCs (Jiang et al., 2023).

Thus, although RSVL can regulate the survival of MSCs, it can
promote their self-renewal and maintain their pluripotency.
However, to some extent, the concentration of RSVL, the time of
administration and the method and time of pretreatment all affect
the effect of RSVL on MSCs. Moreover, although many studies have
focused on RSVL, few studies have investigated RSVL derivatives.
Perhaps related studies can be conducted in the future, which will
contribute to further exploration of the improvement effect of RSVL
on MSCs in regenerative medicine. There are also several
contradictory conclusions in the research. For example, some
studies have shown that RSVL can help MSCs maintain

pluripotency (Yoon et al., 2015), but other studies have shown
that RSVL can lead to the production of neural markers in
HUCMSCs (Jahan et al., 2018a; Jahan et al., 2018b). This may be
related to the different types of MSCs, doses and intervention
methods used.

3.2 Icariin (ICA)

ICA is the main bioactive compound of Epimedium brevicornum
Maxim (Hsieh et al., 2011). The composition of ICA includes a C-3
glucose group, a C-4 methoxy group, a C-8 isoprene group and a C-7
rhamnosyl group, and it is a class of isoprene flavonoid compounds.
Themolecular formula of ICA is C33H40O15, and its molecular weight is
676.67 g/mol (Sharifi et al., 2020). ICA has a variety of pharmacological
activities, including hormone-like, antitumour, immunomodulatory
and antioxidant effects (Bi et al., 2022; Seyedi et al., 2023). ICA has
been used to treat many diseases, such as preventing osteoporosis,
improving sexual dysfunction, regulating immune system function and
improving cardiovascular function (He et al., 2020).

As mentioned earlier, while the use of MSCs has many
advantages, many methods have been developed, which limits
their application. Therefore, new drugs have been developed to
promote the proliferation and differentiation of MSCs. The effects of
ICA have been extensively studied in animal and in vitro models,
and its ability to modify MSCs has attracted much attention. The

TABLE 1 (Continued) Effect of natural bioactive compounds modified mesenchymal stem cells.

Compounds Sources of MSC Function Mechanism of action Ref

Astragaloside MSC Promotes angiogenesis of
endothelium-like cells

Upregulated expression of Cx37, Cx
40 and Cx43

Li et al. (2018)

ASCs 1.Enhance its ability to proliferate 1.Decreased PC-I secretion and
increased MMP-1 release were

induced in fibroblasts

Niu et al. (2020), Wang et al. (2022)

2.Promote migration and homing 2.FAK phosphorylation induced by
CXCR2

hBMSCs Ability to promote proliferation and
differentiation

Regulated by the miR-124-3p.1/
STAT3 axis

Cao et al. (2021)

Ginsenoside Rg1 BMSCs 1.Delay the aging 1.Inhibition of phosphorylation of
GSK-3β

Gu et al. (2016), Wang et al. (2020),
Wang et al. (2021)

2.Activation of AKT or NRF2

2.Promote osteogenic differentiation 3.Example Activate the GR/BMP-
2 signal path

Thymoquinone G-MSCs Promotes cell transformation into an
immunocompetent differentiated
phenotype

Increase the expression of TLR3 Mekhemar et al. (2022)

Breast CSCs Wnt/PI3K signaling pathway Altered angiogenesis capacity and
mesenchymal to epithelial
transformation

(Haiaty et al., 2021b; a)

MSCs Promote differentiation Triggers inhibition of NF-κB
signaling

Rahmani-Moghadam et al. (2021),
Banu (2022), Ishaque et al. (2022)

Ptychotis verticillate 1. Promote migration PI3K and MAPK signaling
pathways

Maeda, 2020; Najar et al. (2024)

2. Immunomodulation
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beneficial effect of ICA on MSCs involves promoting osteogenic
differentiation and inhibiting lipogenic differentiation. Some studies
suggest that this effect is achieved by inactivating GSK-3β and
inhibiting the expression of PPARγ (Sheng et al., 2013). Some
studies suggest that this effect is related to the BMP (BMP-2,
BMP-4, BMP-7) and MAPK/ERK pathways (Wu et al., 2017).
Some studies suggest that it promotes osteogenesis through the
upregulation of Runx2, ALP and I collagen and the Notch signalling
pathway and inhibits PPARγ, adipsin gene expression, and CCAAT/
enhancer binding protein α (C/EBPα) and fatty acid binding protein
4 (FABP4) mRNAs (Huang et al., 2017; Liu et al., 2017). EGb
761may be associated with findings in other studies that have shown
that ICA can activate STAT-3 and increase the activity and
expression of cysteine (C)-X-C motif chemokine receptor 4
(CXCR4) (Lim et al., 2018), thus promoting the proliferation and
osteogenic differentiation of MSCs. Moreover, ICA can promote
BMSC migration by stimulating the MAPK signalling pathway (Jiao
et al., 2018).

In addition to BMSCs, hADSCs can effectively promote
osteogenic differentiation by stimulating the mRNA expression of
bone matrix protein (ALP, Col-1, and OC), bone transcription factor
(Dlx5 and Runx2), and bonemorphogenetic protein (BMP-2, -4, and
-7) genes (Yang et al., 2019; Sharifi et al., 2020). The beneficial effect
of ICA on MSCs involves mainly promoting osteogenic
differentiation and inhibiting lipogenic differentiation, and
studies on whether ICA can promote proliferation, survival,
homing and migration are limited, which also provides ideas for
future studies.

3.3 Ginkgo biloba extract (GBE)

GBE is a bioactive component of Ginkgo biloba L. with various
pharmacological activities (Hu et al., 2023). Its two main extracts have
similar compositions: EGb 761, which has 24% ginkgo flavonoid
glycosides and 6% terpenoids, and LI1370, which is composed of 25%
ginkgo flavonoid glycosides and 6% terpenoids. GBE has been widely
used to treat cerebrovascular insufficiency, peripheral vascular
insufficiency, and cognitive impairment associated with ageing and
neurodegenerative diseases (such as Alzheimer’s disease) because of its
ability to improve high blood pressure, antithrombosis, inflammation,
oxidative stress, and infection (Mousavi et al., 2022; Xie et al., 2022).
Specifically, GBE can reduce oxidative stress and inhibit the expression of
inflammatory cytokines. In addition, studies have confirmed that GBE
can promote the growth and proliferation of different cell types, such as
neural stem cells, endothelial progenitor cells, and cochlear hair cells (Gu
et al., 2015).

Studies have reported that GBE can promote the growth and
differentiation of a variety of cells, including neural stem cells and
endothelial progenitor cells (Zheng et al., 2018). Studies have shown
that when GBE is in the range of 25–75 mg/L, GBE can promote the
proliferation and osteogenesis of human BMSCs by upregulating the
BMP andWnt/β-catenin signalling pathways. When the concentration
of GBE was 100 mg/L or above, the ability of GBE to promote the
proliferation of BMSCs weakened or disappeared (Gu et al., 2015). The
concentration of GBE is particularly important for the modification of
BMSCs, which directly determines whether the growth of MSCs is
promoted or inhibited; thus, special attention should be given to GBE

FIGURE 2
Effects of different types of natural bioactive compounds on MSCs. This simple schematic diagrammainly illustrates the effects of different types of
natural bioactive compounds on MSCs. The chemical structures and main sources of the nine representative ingredients on the grey outside the circle
include resveratrol (RSVL), icariin (ICA), Ginkgo biloba extract (GBE), tanshinone IIA (Tan IIA), astragaloside IV (AGS-IV), curcumin, ginsenoside Rg1,
thymoquinone (TQ), and Ptychotis verticillata (PV).
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concentrations in future studies. In rat models of myocardial infarction,
EGb 761 may mediate the protective effect of EGb on myocardial
infarction by increasing the implantation rate of MSCs, thereby
improving the viability and differentiation of cardiomyocytes (Liu
et al., 2014). Other studies have shown that MSCs modified with
GBE may have good applications in the treatment of local
inflammation and the oxidative microenvironment (Gu et al., 2015).
Hence, these findings underscore the concentration-dependent
therapeutic potential of GBE in stem cell-based neuroregeneration.

3.4 Tanshinone IIA (Tan IIA)

Tan IIA, a bioactive ingredient isolated from the herb Salvia
miltiorrhiza Bge, is an antioxidant and anti-inflammatory agent that
inhibits the cytotoxicity of damaged tissues, significantly improves
blood circulation and delays tumour progression (Zeng et al., 2021;
Ng et al., 2022). Studies have shown that Tan IIA has the potential to
reduce oxidative stress by regulating the levels of antioxidant
enzymes, including glutathione peroxidase (GPx), superoxide
dismutase (SOD), and catalase. The anti-inflammatory effect of
Tan IIA may be mediated by weakened inflammatory mediators
in RAW264.7 macrophages, namely, interleukin (IL)-1β, IL-6 and
tumour necrosis factor (TNF)-α (Ansari et al., 2021).

With respect to the modification effect of Tan IIA on MSCs, Tan
IIA can regulate the migration ability of MSCs. Studies have shown that
Tan IIA is at least partially regulated by regulating CXCR4 expression
(Xie et al., 2013). Tan IIA can improve the survival rate of MSCs, and
some researchers have reported that Tan IIA can promote the
differentiation of transplanted BMSCs into neurocell-like cells in SCI
models. The hypothesized mechanism is that TIIA can improve the
survival rate of transplanted BMSCs, increase the level of nutrient
factors secreted by BMSCs to the lesion area, and reduce the secretion of
inflammatory cytokines (Zhang et al., 2018). Tan IIAmay better induce
the osteogenic ability ofMSCs. Studies have confirmed that Tan IIA can
induce hPDLSC osteogenesis through the ERK1/2-Runx2 axis, which
provides a choice in regenerativemedicine approaches for the treatment
of periodontitis (Liu et al., 2019). However, Tan IIA-modifiedMSCs can
play a better role; for example, researchers have reported that Tan IIA-
pretreated stem cells can reduce neuronal death by increasing the levels
of anti-inflammatory cytokines (such as IL-4, -6, -8, and -13) and
reducing inflammation through the PI3K/Akt/mTOR and/or
TREM2 signalling pathways (Dai et al., 2017; Huang et al., 2022;
Kaiser et al., 2022; Wu et al., 2024). Studies have also shown that
TIIA-MSCs can significantly improve the learning and memory ability
of Aβ25-35 model rats and are more effective thanMSCs. The protective
mechanism may involve promoting the survival of hippocampal
neurons by downregulating BACE1 expression and regulating
neuroinflammation-related cytokines (Huang et al., 2019). In
general, many studies have investigated the modification effect of
Tan IIA on MSCs, but the specific mechanism of action of Tan IIA
on MSC modification still needs further study.

3.5 Astragaloside IV (AGS-IV)

AGS-IV is one of the main compounds of Astragalus
membranaceus water extract and is a cycloartemisane-type

triterpenoid glycoside chemical. Several studies have shown that
AGS-IV has a strong protective effect on cardiovascular, lung,
kidney, and brain-related diseases (Zhang et al., 2020). The
pharmacological effects of AGS-IV are multifactorial and include
anti-inflammatory effects via the inhibition of inflammatory factors,
increased proliferation of T and B lymphocytes, and the inhibition of
neutrophil adhesion-related molecules. Moreover, it has
neuroprotective, antifibrotic and antitumour effects (Liang
et al., 2023).

The ability of AGS-IV to modify MSCs is first reflected in the
increased proliferative and paracrine activities of these cells. AGS-
IV-treated ADSCs can significantly reverse the UV-B-induced
decrease in PC-I secretion and increase MMP-1 release in
fibroblasts. In addition, ASI-treated ADSCs significantly increased
dermal thickness, collagen content, and microvascular density in the
photoaged skin of nude mice (Niu et al., 2020). Second, AGS-IV has
a positive effect on the cell cycle and osteogenic differentiation of
MSCs. Studies have shown that AGS-IV can promote the activity of
hBMSCs, the cell cycle, ALP activity and osteogenic differentiation
through the miR-124-3p.1/STAT3 axis while increasing the
expression of osteoblast marker molecules (Cao et al., 2021).
Furthermore, AS-IV improved ADSC migration, angiogenesis,
and endothelial recruitment. In vivo, AS-IV-pretreated ADSCs
have greater angiogenesis potential and better therapeutic efficacy
in ischaemic hindlimb models. The molecular mechanism may be
related to the upregulation of CXCR2 to promote the
phosphorylation of FAK (Wang et al., 2022). In contrast to other
biological compounds, some studies have combined the
modification effect of AGS-IV on MSCs with other biological
compounds to explore the modification effect on MSCs. Studies
have shown that the combination of tanshinone IIA and
astragaloside IV can promote the proliferation and differentiation
of MSCs. The mechanism may involve regulating the mobilization
of MSCs by regulating the expression of CXCR4. Similarly, studies
have shown that they can promote angiogenesis of endothelium-like
cells by upregulating the expression of Cx37, Cx40 and Cx43 and
enhancing the function of intercellular communication (Xie et al.,
2013; Li et al., 2018).

3.6 Curcumin

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione) is a phenolic natural product isolated from
the roots of Curcuma longa L. Curcumin is reported to be a
nutritional compound with a wide range of therapeutic effects
and great medicinal potential. Curcumin has a variety of
pharmacological effects, including anti-inflammatory, antioxidant,
antiproliferative and antiangiogenic effects. It has been extensively
studied in a variety of diseases, including cancer, cardiovascular
disease, diabetes, arthritis, neurological diseases, and Crohn’s disease
(Genchi et al., 2024; Moon, 2024).

In terms of the ability of curcumin to modify MSCs, first,
curcumin can slow the ageing of MSCs. Some studies have
shown that curcumin can delay ageing by activating autophagy
(Deng et al., 2021), and some studies have reported that its antiaging
effect is related to its concentration. Curcumin at concentrations of
1 and 5 µM is a good antioxidant that can improve the lifespan of
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ASCs. The mechanism involves increasing the expression of the
TERT gene (Pirmoradi et al., 2018). Second, curcumin can promote
the osteogenic differentiation of BMSCs and inhibit the formation of
adipocytes, which may be related to the expression of HO-1 (Gu
et al., 2012). It has also been confirmed that curcumin can inhibit the
expression of Kruppel-like Factor 15 (KLF15), which may bind to
the PPARγ promoter, resulting in the downregulation of PPARγ
expression to inhibit the lipid-forming differentiation of hMSCs. In
addition, it can also protect the mitochondrial function of BMSCs.
Moreover, it can improve the tolerance of ASCs to oxidative stress
damage (Wang et al., 2019). The dual effects of curcumin on stem
cell survival and proliferation are related to its concentration,
treatment period and type of stem cells. Therefore, these results
should be applied reasonably to aid in understanding the role of
curcumin in the transformation of stem cells (Attari et al., 2015).

3.7 Ginsenoside Rg1

Ginsenoside Rg1 belongs to the B-panaxtriol group of
ginsenosides and is one of the main natural bioactive compounds
of Panax ginseng. In traditional Chinese medicine, roots and
rhizomes are the main medicinal parts of the plant.
Rg1 ginsenosides are present in the stems, leaves and buds of P.
ginseng and Panax notoginseng (Wu et al., 2022). In recent years, the
pharmacological activity and bioavailability of ginsenoside Rg1 have
been studied, and some new insights have been obtained (Gao et al.,
2020; Lu et al., 2022). Ginsenoside Rg1 is a natural ginseng extract
that has a variety of pharmacological effects, including anti-
inflammatory, antioxidant and antiaging properties (Wang et al.,
2021). The antiaging and antioxidant effects of Rg1 are related to the
activation of the nuclear Factor E2-related Factor 2 (Nrf2) signalling
pathway. Rg1 may activate the Nrf2 pathway by upregulating
P62 and activating Akt to increase the interaction between
P62 and KEAP1. Therefore, the activation of Akt or Nrf2 may be
an important target for preventing BMSC ageing (Wang et al., 2021).
In addition, studies have shown that Rg1 can reduce overactivation
of theWnt pathway in ageing cells by inhibiting the phosphorylation
of GSK-3β and regulating the differentiation ability of MSCs (Wang
et al., 2020). Rg1 can also promote the osteogenic differentiation of
MSCs. Studies have shown that Rg1 can promote the osteogenic
differentiation of BMSCs by activating the GR/BMP-2 signalling
pathway (Gu et al., 2016). Other studies have shown that Rg1 can
also induce the expression of cellular neurons, such as cells. The
researchers cultured rat MSCs with the serum-free ginsenoside Rgl
(10 μmol/L) for 3 days. Some of the cells expressed NSE, but GFAP
staining was negative. The NGF mRNA level in the ginsenoside Rgl
treatment group was significantly greater than that in the control
group, suggesting that ginsenoside Rgl induced neuron-like cells to
express NGF mRNA (Si et al., 2014).

3.8 Thymoquinone (TQ)

Nigella damascena L. is an annual herb in the Ranunculaceae
family. TQ is the key active component of N. damascena L., with a
molecular formula of C10H12O2 and a molar mass of 164.20 g/mol
(Mekhemar et al., 2020). Its anti-inflammatory, antioxidant,

antibacterial and anticancer properties have broad application
prospects in biomedicine. TQ-mediated stimulation preserves the
pluripotency of gingival mesenchymal stem cells/progenitors
(G-MSCs) and promotes the transformation of these cells into
immunocompetent differentiated phenotypes by increasing
TLR3 expression. This characteristic may influence the potential
therapeutic application of G-MSCs (Mekhemar et al., 2022). TQ can
alter angiogenesis and the mesenchymal to epithelial transformation of
human breast CSCs in vitro. Therefore, TQ, together with
antiangiogenic therapy, may be a novel therapeutic agent to inhibit
breast cancer angiogenesis (Haiaty et al., 2021a; Haiaty et al., 2021b).

Acute neurodegeneration due to stroke or trauma, for example, can
lead to local cell damage in the injured area, whereas chronic
neurodegeneration can lead to damage to specific subtypes of
neurons and widespread loss of specific groups of neurons (Qin
et al., 2007). Regenerating neurons by using stem cells seems to be a
useful approach, as these cells can differentiate into multiple lineages
(Lunn et al., 2011). The potential of stem cells to differentiate into
neuronal lineages can be enhanced by the use of various compounds.
TQ is a bioactive compound with neuroprotective properties (Ishaque
et al., 2022). TQ was found to induce the differentiation of MSCs and
promote significant gene expression of neuronal markers, including
neuronal-specific enolase (NSE), nestin, microtubule-associated protein
2 (MAP2), neurofilament light chain (Nefl), and tau, as well as astrocyte
markers, Glial fibrillary acidic protein (GFAP) (Ishaque et al., 2022).
Similarly, studies have shown that TQ promotes the acceleration of
stem cell differentiation into osteoblasts, the mechanism of which may
be related to the inhibition of NF-κB signalling (Banu, 2022), and has
been shown to not alter the physical and mechanical properties of the
scaffold (Rahmani-Moghadam et al., 2021).

3.9 Ptychotis verticillata (PV)

Ptychotis verticillata L. is an aromatic plant, and PV and its
phytochemical components (thymol and carvacrol) have been
reported as valuable medicinal candidates (El Ouariachi el et al.,
2011; Seo et al., 2019). Some studies have explored the effects of PV
and its compounds on the immunological characteristics of MSCs. It
was first emphasized that PV extracts can maintain low
immunogenicity and enhance the immunomodulatory function of
MSCs. The positive effects of the essential oils thymol and carvacrol
on the immune properties of MSCs will open a new field for the use of
natural compounds in cell therapy (Najar et al., 2024). Like many of the
compounds mentioned earlier, thymol is also concentration dependent,
and in the presence of thymol (3 and 6 μg/mL), MSCs show an
increased ability to inhibit T-cell responses during direct coculture.
High concentrations of thymol were more effective at reducing MSC-
activated T-cell responses. The incubation time also affected the
inhibitory properties of MSCs pretreated with thymol, as a small
reduction was observed after 5 days. Based on this evidence, we
aimed to study the effects of the characteristics of the MSC immune
system, PV and its compounds (Najar et al., 2024). In addition,
carvacrol and thymol have been shown to alter the maturation and
function of dendritic cells, as well as the T-cell response and activation.

Different plant-derived components have been shown to
promote MSC migration and homing to damaged sites to
enhance tissue repair and healing. The activation of the PI3K
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and MAPK signalling pathways and the CXCL12/CXCR4 axis and
the increased expression of matrix metalloproteinases (MMPs) may
stimulate extracellular matrix remodelling, thereby promoting the
migration of MSCs (Maeda, 2020). Other studies have shown that
thymol and carvacrol increase osteogenesis and adipogenesis in a
time- and dose-dependent manner and stimulate tissue regeneration
and the repair function of MSCs, and further optimization of PV
compound extraction and characterization and cell processing
conditions should increase their therapeutic value in combination
with MSCs (Bouhtit et al., 2022).

4 Regulatory effects of natural
bioactive compounds on MSCs

Although many natural bioactive compounds have shown great
potential for improving MSCs, they involve many mechanisms and

pathways, making related research complicated and confusing. In fact,
we found that natural bioactive compounds promote MSC
proliferation, migration and homing and promote MSC
differentiation and antiaging effects (Figure 3). However, their effects
can be guaranteed only under certain conditions. For example, although
resveratrol can increase the self-renewal potential and pluripotency of
early-passage MSCs, it also accelerates the senescence of late-passage
MSCs. Therefore, cell passage and SIRT1 expressionmust be considered
before resveratrol is used for late-passage MSCs (Yoon et al., 2015). In
addition, the amount of naturally active compounds is also an
important influencing factor; for example, 250 mg/kg/day is the
most effective dose under the conditions where ICA has been
shown to be beneficial to OP rats. However, ICA may inhibit the
differentiation of MSCs into adipocytes by inhibiting the expression of
PPARγ, C/EBPα, and FABP4 mRNAs. ICA can also inhibit Notch2
mRNA expression by inhibiting N1ICD expression. Therefore, further
preclinical studies are needed to better define the pharmacological

FIGURE 3
Regulatory effects of bioactive compounds on MSCs. Natural bioactive compounds can promote the diffusion, migration, homing, differentiation
and antiaging effects of MSCs.
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targets of ICA and to determine the associations between different
signalling pathways (Liu et al., 2017). In the modification of MSCs by
GBE, the key role of drug concentrationwas clearly proposed, and it was
proposed that GBE improved the proliferation and osteogenesis of
human BM-MSCs in a dose-dependent manner in the range of
25–75 mg/L. However, this effect was weakened or inhibited at
100 mg/L or higher (Gu et al., 2015). In summary, natural bioactive
compounds have complex and context-dependent effects on MSCs.

4.1 Promotion of proliferation, migration
and homing

Although MSCs have various advantages and good applications
in regenerative medicine, they are limited in the amount of tissue
they target and have challenges associated with poor migration and
homing. Therefore, it is worth exploring how to promote the
proliferation, migration and homing of MSCs to play a better
role in clinical practice (Galipeau and Sensébé, 2018; Ullah et al.,
2019). RSVL can play a positive role in the treatment of periodontitis
by promoting the proliferation of MSCs (Jiang et al., 2023).
Furthermore, AS-IV improved ADSC migration (Wang et al.,
2022). In vivo animal experiments have confirmed that
Rg1 promotes the homing of rabbit BMSCs to myocardial tissue
(Wang et al., 2005). These changes reduced the myocardial infarct
size and improved cardiac function. Some of them are obviously
related to their concentration, so special attention should be given to
this point when they are used (Gu et al., 2015).

4.2 Promotion of differentiation

In some pathological conditions, such as ageing, osteoporosis and
some bone defects, the osteogenic ability of BMSCs is significantly
inhibited. Therefore, methods that can modulate the osteogenic
differentiation of BMSCs to manage and treat these diseases are
needed (Houdek et al., 2016; Zhang et al., 2021). In addition to
RSVL, GBE, Tan IIA, and AGS-IV can promote the osteogenic
differentiation of MSCs, as mentioned above, and studies have
shown that walnut leaf extract regulates the osteogenic
differentiation and autophagy of hBMSCs through the BMP2/Smad/
Runx2 and Wnt/β-catenin pathways (Pang et al., 2022). Unlike the
concentration dependence mentioned earlier, this study confirmed that
different concentrations of walnut leaf extract did not have a significant
effect on cell proliferation, indicating a reliable safety profile of hBMSCs
treated with walnut leaf extract (Pang et al., 2022). Quercetin can
activate the Wnt/β-catenin pathway through the H19/miR-625-5p axis
and promote the osteogenic differentiation of BMSCs (Bian et al., 2021).
In summary, various natural bioactive compounds have been
demonstrated to enhance the differentiation of MSCs through
distinct signalling pathways.

4.3 Anti-aging

Cellular senescence is the result of cumulative changes in cellular
structure and function. Its function manifests as reduced oxidative
phosphorylation, a slowed respiratory rate, and reduced enzyme activity

and receptor protein levels, resulting in decreased cell function and
inhibited cell proliferation (Young et al., 2019). Studies have shown that
senescent cells and the VDR gene expression interference system can
reduce cell viability, proliferation and bone differentiation ability. MSCs
inevitably encounter the problem of ageing, but studies have shown that
after the addition of Astragalus, the viability and osteogenic ability of
BMSCs are significantly increased. Among them, the expression levels
of FGF23, Klotho andCYP24A1 decreased, whereas the expression level
of CYP27B1 increased, and the effect became more obvious with
increasing Astragalus concentration. It has been confirmed that
astragalus can inhibit the ageing of BMSCs and improve their
osteogenic ability by regulating the VD-FGF23-Klotho pathway (Pu
et al., 2020). As mentioned earlier, curcumin can alleviate the ageing of
BMSCs by activating autophagy, and curcumin is also a good
antioxidant that can increase the lifespan of ASCs (Liu et al., 2015;
Ayadilord et al., 2022). In summary, regulating ageing-related pathways
and promoting autophagy are key to improving the effects of natural
bioactive compounds on MSCs. The effects of natural bioactive
compounds themselves, such as antioxidation, are the potential basis
for these effects.

5 Discussion

With the continuous development of cell therapy, researchers are
striving to achieve the goal of effective repair and regeneration after
tissue damage. The application of allogeneic human stem cells benefits
from the immune tolerance of specific types of stem cells. In this
context, the use of MSCs as promising tools for cellular
immunotherapy is being explored for the treatment of a variety of
diseases (Hussen et al., 2024). However, the clinical application of
MSCs also faces many challenges. In the process of preparing MSC
products, the main challenges include the following: 1) the
heterogeneity of MSCs is caused by donor differences such as
health status, genetics, gender and age. 2) The dry stability and
differentiation ability of MSCs isolated from different sources
(such as bone marrow, adipose tissue, the umbilical cord, or
muscle) differ.3) The amplification ability was different under
different culture conditions. In stem cell applications, the
application of MSCs may be limited for the following reasons: 1)
Challenges remain regarding the influence of the homing ormigration
ability ofMSCs under different administration routes (local/systemic),
injection sites, infusion times, and cell carrier materials. 2)
Immunocompatibility between donors and recipients is key to
reducing the risk of rejection. 3) The complex active components
released by MSCs depend on the host microenvironment
(inflammatory state, hypoxia, and ECM), which can lead to highly
variable factors shaping the different functions of MSCs (Zhou et al.,
2021). Therefore, improving the treatment efficiency of MSCs on the
premise of ensuring safety, which has been discussed in the relevant
literature (Seo et al., 2019), is imperative.

Natural bioactive compounds such as RSVL, GBE and curcumin
can regulate the survival and proliferation of MSCs, but their effects
on proliferation are closely related to their concentration, so caution
should be taken. ICA and RSVL can promote osteogenic
differentiation and inhibit lipid differentiation via different
mechanisms, and research on nonbone tissue differentiation is
insufficient. Tan IIA and AGS-IV can promote MSC migration
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and homing, but few relevant studies exist. Curcumin and Rg1 can
inhibit MSC ageing, but such studies are scarce. These compounds
have multitarget and multilevel effects, have different effects on the
improvement of MSCs, and may receive more attention in
the future.

Although the effects of many bioactive compounds on MSCs
have been discussed above, several issues warrant attention. For
example, not all concentrations of bioactive compounds can
positively modify MSCs, and they are not all concentration
dependent; each has its own characteristics. In addition, relatively
few in vivo experiments have investigated the effects of natural
bioactive compounds on MSCs, which may be the direction of our
attention in the future. Moreover, another challenge is that most of
the natural bioactive compounds mentioned in the literature are
only 98% or 99% pure. However, their application in the field of stem
cell research is promising, and we hope to further identify their
purity, remove impurities, and achieve better promotion and
application of these compounds in the future (Li et al., 2024).

6 Conclusion

Different types of natural bioactive compounds have different
effects on the improvement of MSCs, such as promoting their
proliferation and differentiation, migration and homing, and
antiaging effects. It is expected that improved MSCs can provide
new ideas for disease treatment and regenerative medicine in
the future.
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