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Introduction: There are evidences that the nervous system produces motor
tasks using a low-dimensional modular organization of muscle activations,
known as motor modules. Previous studies have identified characteristic
motor modules across similar tasks in healthy population. This study
explored the generalizability of motor modules across two families of
walking-based (level-walking, downhillwalking and stair-decent), in-place
ascending (sit-to-stand, squat-to-stand), and in-place descending (stand-
to-sit and stand-to-squat) motor tasks in a group of six individuals undergone
total knee replacement (TKR) surgery.

Methods: Motor modules were extracted from the EMG data of CAMS-Knee
dataset using non-negative matrix factorization technique. A distribution-
based approach, employing three levels of k-means clustering, was then
applied to find the shared and task-specific modules, and assess their
representability among the whole task-trial data.

Results and Discussion: Results indicated a four- and a seven-subcluster
arrangement of the shared and task-specific motor modules, depending
upon the membership criteria. The first arrangement revealed motor
modules which were shared across all tasks (min coverage index: 76%;
modules’ distinctness range: 7.08–8.91) and the latter among tasks of the
same family mainly, although there remained some interfamily shared
modules (min coverage index: 81%; modules‘ distinctness range:
7.17–9.89). It was concluded that there are shared motor modules
across walking-based and in-place tasks in TKR individuals, with their
generalizability and representability depending upon the analysis
method. This finding highlights the importance of the analysis method
in identifying the shared motor modules, as the main building blocks of
motor control.
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1 Introduction

Human movements are complex due to two main factors. First,
the issue of muscle redundancy, where multiple muscles can achieve
the same movement, complicates how the central nervous system
(CNS) selects which muscles to activate. Second, the degree of
freedom (DOF) redundancy means the body has many joints and
muscles that canmove in multiple ways to accomplish the same task.
It is often hypothesized that the central nervous system (CNS)
produces tasks by implementing a low-dimensional modular
organization of muscle activations, i.e., motor modules, to
overcome these complexities (Ting and Macpherson, 2005; Clark
et al., 2010; Darvishi et al., 2022a). Synergy analysis of the
electromyography (EMG) envelopes can unveil the coordination
between muscle activities and help to identify the motor modules as
the building blocks of motor control, which are activated through
time-dependent activation profiles to accomplish a motor task
(Hayes et al., 2014; Shojaeefard et al., 2018; Mehryar et al., 2020).
Recent studies have demonstrated that a similar analogy might be
applied to the kinematic level, where the synergy analysis characterizes
the coordination of the joint motions during complex movements and
recognizes several kinematic modules or movement primitive as the
building blocks (Darvishi et al., 2022b; Esmaeili et al., 2022; Tavasoli
et al., 2023). Based on this concept, muscle synergies are thought to
serve as the neural counterparts of the kinematic synergies, providing a
structured mechanism for generating coordinated movements across
various tasks. In fact, recent studies have shown that there is a one-to-
one association between the motor modules and kinematic synergies,
suggesting that each individual movement primitive might be
implemented by the recruitment of a paired motor module
(Esmaeili et al., 2022).

As a rational consequence of the synergy hypothesis, it might be
assumed that different motor tasks are produced through
appropriate activation of a limited number of common motor
modules. Previous studies have shown that, in spite of the
strikingly diverse mechanics and energetics, there are common
muscle modules during walking, arm and leg cycling, and
recumbent stepping (Zehr et al., 2007), treadmill walking and
recumbent stepping (Stoloff et al., 2007), walking and running
(Cappellini et al., 2006), walking and cycling (Barroso et al.,
2014), walking and slipping (Nazifi et al., 2017), and walking and
reactive balance (Allen et al., 2019). There are also reports of
common motor modules when performing the same task with
different conditions in humans and animals, e.g., walking at
different speeds (Barroso et al., 2014).

The similarity of motor modules across different tasks has been
often investigated in previous studies using scalar product (Barroso
et al., 2014) and Pearson correlation coefficient (Routson et al.,
2014), as well as fixing the modules based on one task and extracting
the activation profiles of other tasks (Hug et al., 2011). An important
limitation of all these studies, however, is examining the similarities
between the averaged motor modules; this approach might be
reasonably criticized for limiting the analysis to the trimmed
averaged data which does not reflect the variations among
population and trials. In order to examine if the subjects truly
demonstrate shared motor modules across different tasks, the motor
modules of different tasks should be compared in a distribution-
based approach which weighs the whole task-trial data.

Moreover, only few studies have investigated the common
synergies in the individuals with neuromusculoskeletal disorders
and/or the tasks of dissimilar natures. Fox et al. (2013) studied the
shared motor modules in children with incomplete spinal cord
injury during a number of locomotion tasks and reported
reduced generalizability compared to the control children. Also,
Saito et al. (2021) investigated the shared motor modules in healthy
subjects across some diverse motor tasks, i.e., locomotion, dynamic
and static stability, and reported that 13 muscle synergies accounted
for 24 tasks.

The objective of this study was to investigate the motor module
generalizability across two families of walking-based and in-place
motor tasks, in a group of total knee replacement (TKR) individuals
with similar ages. In particular, we employed a distribution-based
approach to examine the whole task-trail data for shared
motor modules.

Understanding the nature and consistency of shared motor
modules between different activities is vital for advancing our
fundamental knowledge of how the central nervous system
organizes and adapts motor commands. Demonstrating these
common modules can provide insights into the capacity of both
healthy and those with musculoskeletal issues—to transfer motor
skills across tasks, thereby informing more effective motor learning
and rehabilitation strategies.

Given that total knee replacement is a commonly performed
surgery for end-stage knee osteoarthritis, understanding whether
TKR individuals utilize similar neuromuscular control strategies
(i.e., motor modules) across different tasks is crucial for developing
targeted rehabilitation protocols. This research addresses an
important gap in existing literature by assessing the consistency
of these modules in a clinical population, and the findings have the
potential to inform individualized rehabilitation strategies that
leverage or adapt these shared motor control elements for
improved functional outcomes.

2 Materials and methods

2.1 Data and processing

The muscle activity data used in this study were taken from the
CAMS-Knee dataset (Taylor et al., 2017; CAMS-Knee, 2019)
containing the EMG, kinematic and kinetic data from six
subjects (5 male, 1 female, aged 68 ± 5 years, mass 88 ± 12 kg,
height 173 ± 4 cm) who had undergone TKR with a cemented
INNEX knee implant (FIXUC, Zimmer, Switzerland). The data was
captured while the subjects performed multiple trials of free level
walking, stair descent, downhill walking, Squat, and Sit-Stand-Sit.
The surface EMG signals were acquired from 16 muscles in both legs
(eight predominant muscles of each leg), including rectus femoris
(RF), vastus medialis (VM), vastus lateralis (VL), tibialis anterior
(TA), medial hamstrings (HM), lateral hamstrings (HL), medial
gastrocnemius (GM), and lateral gastrocnemius (GL), with a
sampling frequency of 2,000 Hz.

The EMG data of muscles were analyzed for seven tasks,
categorized into two families of walking-based and in-place. The
walking-based tasks included level walking (WLV), downhill
walking (WDH), and stair descent (WSD), which were all
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considered to be consisted of standard cycles from heel strike to heel
strike of the instrumented leg. The in-place activities included two
ascending tasks, i.e., squat to stand (ASQ) and sit to stand (AST),
and two descending tasks, i.e., stand to squat (DSQ) and stand to sit
(DST). Each motion task required at least five valid trials to be
conducted. All valid trials for each participant and each task were
included in the analysis. A trial was considered valid for the walking-
based tasks if the knee was within the field of view of the image
intensifier during both the stance and swing phases, and if the force
plates were struck accurately. For further details on the task explanation,
please consult the provided resource (CAMS-Knee, 2019). The motion
data (marker data) from the CAMS-knee dataset were visualized using
the OpenSim software (V. 4.3) environment. For walking-based tasks,
the heel markers were used to determine the timing of heel strikes. The
period between the first heel strike of one limb and the subsequent heel
strike of the same limb was defined as one cycle of walking-based tasks.
For the in-place tasks, the sacrum marker was tracked; specifically, the
time from when the sacrum was stationary to moving downward and
then back to stationary was considered a descending cycle (DSQ and
DST), while the time from stationary tomoving upward was considered
an ascending cycle (ASQ and AST).

The EMG data was pre-processed in MATLAB R2020. The
EMG data was high-pass filtered (40 HZ, zero lag, fifth-order
Butterworth), demeaned, full-wave rectified, low-pass filtered
(4 HZ, zero lag, fourth-order Butterworth) (Allen and Neptune,
2012), and down-sampled by taking means using 10 msec time
binning (Chvatal et al., 2011). For each trial of each task, the EMG
data of each muscle was then normalized to its maximum value
during that trial (Cheung et al., 2005). Finally, to enable better
comparison between the results, the EMG data of each trial was
resampled to form an 8 × 101 matrix.

2.2 Synergy analysis

For each trial, the muscle modules were extracted from the
processed EMG envelope of that trial using Non-Negative Matrix-
Factorization (NNMF) method in MATLAB R2020 (Ting and
Macpherson, 2005). NNMF’s nonnegativity condition for the
activation of basis vectors is particularly useful in identifying
physiologically meaningful synergies, as it prevents outputs
containing negative activation of the muscles. This feature makes
NNMF an effective tool for analyzing muscle modules, ensuring that
the extracted synergies reflect realistic muscle activations (Lambert-
Shirzad and Van der Loos, 2017). The Variability Accounted For
(VAF) measure was used to assess the reconstruction error, which
represents the discrepancy between the original experimental EMG
signals and those reconstructed from the extracted motor modules.
The VAF quantifies how well the identified muscle synergies can
explain the variance in the recorded EMG signals. VAF was
calculated using the following formula:

VAF � 1 − ∑ EMGexp − EMGrec( )
2

∑ EMGexp( )
2

where EMGexp represents the experimental EMG data, and EMGrec

represents the reconstructed EMG data. A higher VAF value
indicates a better reconstruction and a lower reconstruction error.

The number of modules increased from one, and the optimal
muscle modules and activation profiles were found using alternative
least square method (Haghpanah et al., 2017) inMATLAB R2020. In
order to ensure that the optimization is global, the procedure was
repeated 500 times with random initial values (Esmaeili et al., 2022).
For each trial, the reconstruction accuracy was assumed to be
acceptable, if the VAF of all muscles (VAFglobal) was higher than
95%, and that of each muscle (VAFlocal) higher than 85% (Esmaeili
et al., 2022).

For each task, the Most Frequent Number (MFN) of modules
which met the VAF criteria across all trials was determined. The
synergy analysis was then executed again on all task-trial data, with
the MFN assumed as the number of modules.

2.3 Clustering and correlation analysis

This study employed a distribution-based approach to ensure
that the entire set of motor modules across trials was considered in
the generalizability analysis. Instead of averaging motor modules
within a task, all task-trial modules were pooled, and their
distributions were analyzed using a multi-level clustering process
implemented in MATLAB R2020. First, for each task, the
characteristic motor modules were found by an intra-task
clustering process. The muscle modules of all task-trial data were
clustered using k-means procedure, with the number of clusters set
to the MFN of the task. Modules indicating Pearson correlations
coefficient (r) less than 0.576 (corresponding to p = 0.05 for eight
muscles) with the mean of the cluster were drawn out (Chvatal and
Ting, 2013). Moreover, if two modules of a trial were in the same
cluster, the one with lower correlation was removed. The centroids
of the clusters were assumed to represent the characteristic muscle
modules of the task.

In the next level, the characteristic motor modules were
clustered in an inter-task clustering process, to find the shared
characteristic modules across the tasks. The membership value was
the same as in the previous step (r > 0.576), but the number of
clusters was not pre-set. The clustering procedure started with the
largest MFN across the tasks, assumed as the number of clusters. If
the characteristic modules of the tasks were all assigned to clusters,
the procedure was terminated; otherwise, it was repeated with
adding a single unit to the number of clusters.

Finally, two steps of intra-cluster clustering process were
performed to identify the representative motor modules and
examine and improve their representability for the whole task-
trial data. Initially, for each cluster of the previous step, the
motor modules of all trials assigned to that cluster were pooled.
Then in the first step, the pooled data were clustered by k-means,
with the number of clusters set to one and applying a membership
value of r > 0.576. The centroid of each cluster was considered as the
representative of the common motor module, and its
representability was assessed by the coverage index (CI), i.e., the
number of cluster members over that of the pooled data. The second
intra-clustering process was performed to identify common motor
modules with improved representability among the task-trial data.
The pooled data of each cluster was clustered again by k-means to
identify subclusters of task-trial modules with similar structures.
The number of subclusters started from one, and members showing
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low correlations (r < 0.576) with the centroid were eliminated. If
90% of the pooled data was assigned to the subclusters, the
procedure was terminated; otherwise, a single unit was added to
the number of subclusters, and the process was repeated. The
centroids of the subclusters were considered as the
representatives of the common motor modules.

After identifying the representative motor modules through the
clustering process, the activation profiles for each task were
calculated by averaging the activations of all the trials of different
tasks assigned to a given cluster/subcluster. Specifically, for each
representative motor module, the activation time series of all task-
trial data categorized in that cluster/subcluster were extracted and
averaged across trials to obtain the characteristic activation pattern
of that module.

To visualize the clustering results, t-distributed Stochastic
Neighbor Embedding (t-SNE) was applied in MATLAB R2020
(Laurens van der Maaten, 2008). Each task-trial’s m-dimensional
motor module was projected into two-dimensional space. The
consistency of the representative shared modules was quantified
using the radius of the circle that encompassed 95% of the cluster
points, R95, and their distinctness using the means of the distances
between the R95 centers, d (Sawers et al., 2015).

2.4 Statistical analyses

To compare the distribution for the number of muscle synergies
for trials of each of seven tasks (WLV,WDH,WSD, AST, DST, DSQ,
and ASQ), a one-way analysis of variance (ANOVA) with post hoc
multiple comparisons is used. Also, each of the LW, DHW, SD, AST,
ASQ, DST, and DSQ motor module muscles are compared with the
average (pooled) motor modules in terms of muscle activity through
the exploitation of the two-sided t-test. All significance level for the
statistical analyses is set to 0.05, and all results are reported as mean
± 1 standard deviation.

3 Results

The box plots and ranges of the number of muscle synergies for
the trials of each task (Figure 1A) indicated relatively consistent
results for the walking-based tasks, i.e., WLV, WDH, and WSD, as
well as the in-place ascending tasks, i.e., ASQ and AST. In particular,
for the WDH, all trials except for three, exhibited the same number
of modules. The in-place descending tasks, i.e., DSQ and DST,
demonstrated more variability in the number of modules among
different trials. Statistical comparison of the number of synergies of
different tasks indicated significantly larger numbers of modules for
all walking-based tasks compared with all in-place tasks (p < 0.05).
Also, among the walking-based tasks, the WSD and WDH had
larger numbers of synergies than the WLV (p < 0.05). No significant
difference was found between the number of muscle synergies of in-
place tasks, nor between those of the WSD and the WDH. Based on
the global and local VAF results (Figure 1B), the MFNs of different
tasks were obtained as 4 for all walking-based tasks, 3 for all in-place
tasks except for ASQ, and 2 for ASQ.

Clustering of the characteristic motor modules of the tasks
resulted in a four-cluster arrangement of shared modules

(Figure 2A). In this study, we regarded the main contributing
muscles within each module as those with a relative weight
exceeding 0.3. The representative modules of cluster I and cluster
II were common among all tasks (CI: 86% and 83%, respectively).
The representative module of cluster III included the TA as the main
contributor and was shared by the walking-based tasks only (CI:
94%). Finally, the representative module of cluster IV contained the
hamstring group as the main muscles and was common across all
tasks, except for the ASQ. This module had the lowest
representability (CI: 76%), mainly due to the contributions of
muscles other than the hamstring group in the in-place
tasks (p < 0.05).

The activation profiles of the modules of different tasks
(Figure 2B) show how the shared motor modules reconstructed
the muscle activation patterns of different tasks. In this study, a
module was deemed active if its activation level surpassed 50% of the
maximum. For instance, the module of cluster I was activated in the
mid stance of WLV, mid stance to terminal stance of the WDH and
WSD, from the beginning to the middle of the in-place ascending
tasks, and from the middle to the end of in-place descending tasks.

The final intra-cluster clustering results indicated a seven-
subcluster arrangement for the shared modules (Figure 3A). In
this study, subclusters within each cluster are indicated by numbers
with Roman numeral subscripts (e.g., 1I, 2I for Cluster I), denoting
that these subclusters originate from the clustering of Cluster I.
Similarly, subclusters 1II, 2II belong to cluster II, and so on. This
notation ensures clear differentiation between clusters and their
respective subclusters. The cluster I was divided into two subclusters
1I and 2I, where the first was common in walking-based and in-place
ascending tasks (CI: 94%), and the second across in-place
descending tasks only (CI: 86%). A similar observation was made
for cluster II, with subcluster 1II being shared by the WLV, WDH
and AST tasks (CI: 89%), and subcluster 2II by theWSD and in-place
descending tasks (CI: 90%). While cluster III remained unchanged
as subcluster 1III, cluster IV was divided to two subclusters 1IV and
2IV, where the first was common across the walking-based and DSQ
tasks (CI: 89%), and the second among the in-place ascending tasks
and the DST (CI: 81%). The activation profiles of the shared motor
modules (Figure 3B) exhibited different temporal patterns, in
accordance with the muscle activation data of each specific task.

The t-SNE plots of the four-cluster and seven-subcluster
arrangements of the shared motor modules are illustrated in
Figure 4. The four-cluster arrangement (Figure 4A) involved
relatively good consistency (R95 between 7.08 and 8.91) and
distinctness (well-separated R95 circles) based on visual
evaluation of the circles but missed more than 16% of the task-
trial data. The seven-subcluster arrangement (Figure 4B), resulted in
a decrease in the consistency (R95 between 7.17 and 9.89) and
particularly the distinctness (overlapping R95 circles). However, it
improved the coverage index of the task-trial data to about 90%.

4 Discussion

More detailed research on the similarity of muscle synergies
across different tasks helps to obtain a deeper insight into the
organization of motor modules by the central nervous system to
overcome the motor control complexities. This study investigated
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the generalizability of the motor modules across two families of
walking-based and in-place motor tasks, in TKR individuals with
similar ages. In particular, this study employed a more sophisticated
methodology, based on multi-level k-means clustering, which
enabled identifying the representatives of the shared motor
modules, considering the whole task-trial data, and assessing
their representability quantitatively.

The results of this study for the number of muscle synergies
(Figure 1) indicated a significantly larger number of modules for the
walking-based tasks in comparison with the in-place tasks (p < 0.05),
which is a reflection of their higher motor complexity. Also, among
the walking-based tasks, the WSD and WDH had larger number of
synergies than the WLV (p < 0.05); this result might be explained by
the fact the WSD and WDH require more antagonistic muscle
actions than the WLV to stabilize the body and hence involve a
higher degree of motor control complexity. A similar reasoning
might be used to explain the high inter-trial variability of the synergy
numbers of in-place descending tasks compared to the walking-
based and in-place ascending tasks. Unlike the latter tasks which are
muscle-driven, the first tasks are mainly accomplished by
antagonistic muscle actions to control a potentially variable
weight induced motion.

The characteristic muscle synergies found in this study for level
walking of TKR patients (Figure 2) are similar to those reported in
the literature for healthy population (Neptune et al., 2009; Clark

et al., 2010). This result might suggest that despite missing the
proprioceptive information provided by cruciate ligaments in intact
knees (Johansson et al., 1990; Halata et al., 1999), the motor patterns
of TKR patients remain unchanged. Similar results were observed in
comparison with those of the healthy population during other tasks,
including WDH (Dewolf et al., 2020), WSD (Smale et al., 2016), and
in place tasks (Smale et al., 2016; Hanawa et al., 2017).

The inter-task clustering results (Figure 2) indicated a high
generalizability of motor modules across different tasks. Four
representative common motor modules were identified, with
relatively good consistency, distinctness (Figure 4) and
representability. In particular, the modules of clusters I and II
were common in all walking-based and in-place tasks, with a CI
of 83% at least. Also, the modules of cluster III and IV were shared
by walking-based tasks and all tasks except for the ASQ, respectively,
with a CIs of 94% and 76%. Nevertheless, for some tasks, significant
differences were observed in the detailed structures of the
characteristic modules compared to the representative shared
modules, e.g., ASQ and DSQ in cluster I (Figure 2), which might
suggest that the criteria employed for the generalizability analysis
were insufficient.

In an attempt to impose more restrictive criteria on the
generalizability analysis and identify representative shared motor
modules with higher CIs, each of the clusters I, II and IV were
divided into two subclusters, providing seven representative shared

FIGURE 1
(A) Box plots and ranges of the number of muscle synergies for trials of each task. The numbers inside the boxes indicate themost frequent numbers
(MFNs) of motor modules, and the red dots represent the outlier data for the WDH. Also, The * sign indicates a significant difference (p < 0.05). (B) The
average VAF results for different numbers of muscle synergies of each task. WLV: level walking;WDH: downhill walking; WSD: stair descent, ASQ: squat to
stand; AST: sit to stand; DSQ: stand to squat; DST: stand to sit.
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modules in total (Figure 3). As a consequence, the generalizability of
the motor modules was reduced and task-specific modules were
emerged for the tasks. More specifically, four representative
common motor modules (subclusters 1I, 1II, 1III and 1IV) were
identified for all walking-based tasks, except for the WSD which had
a single shared module with the in-place descending tasks
(subcluster 2II). Also, two representative common modules were
found for the in-place ascending tasks (subclusters 1I and 2IV),
where the AST had an additional module in common with the
walking-based tasks. Finally, two representative shared modules
were identified specifically for in-place descending tasks, with one
additional module for each of the DST and DSQ in common with
the in-place ascending and the walking-based tasks, respectively.
Although the representability of the shared motor modules was

improved from 84% to 90% of the task-trial data, their consistency
and distinctness were reduced (Figure 4). Based on these
observations, it might be suggested that there are shared motor
modules across walking-based and in-place tasks in TKR
individuals, with their generalizability and representability
depending upon the analysis method. With a less restrictive
analysis, such as the four-cluster arrangement (Figure 2), the
motor modules appear to be highly generalizable, even across
tasks of different families. However, with more strict criteria, as
that of seven-subcluster arrangement (Figure 3), the generalizability
reduces to the tasks of the same family mainly, although there
remain some inter-family shared modules. Moreover, in spite of the
fact the latter method improves the representability of the shared
motor modules, it might cause reduced consistency and distinctness.

FIGURE 2
Four-cluster arrangement of shared motor modules. (A) Characteristic motor modules of different tasks (first seven rows) and the representative
motor modules of each cluster and their coverage rate across all task-trial data (last row). The main contributing muscles into each module (relative
weights larger than 0.3) are colored and * sign indicates a significantly different muscle weight from that of the representative module (p < 0.05). (B)
Activation profiles of the muscle modules. The lines above each profile indicate activation levels above 50% of the maximum and red lines separate
the stance and swing phases of the gait cycle. WLV: level walking;WDH: downhill walking; WSD: stair descent, ASQ: squat to stand; AST: sit to stand; DSQ:
stand to squat; DST: stand to sit.
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These findings suggest that more detailed investigations are required
to provide a deeper insight into the generalizability of the motor
modules across different tasks.

While the clustering results indicated that motor modules could
be shared across tasks, the activation profiles revealed notable
differences in their recruitment patterns. This suggests that
although similar muscle synergies are employed for different
tasks, their temporal coordination varies depending on task
demands. Such differences in activation patterns highlight the
adaptability of neuromuscular control, indicating that motor
modules are not rigidly executed but are flexibly modulated to

accommodate distinct movement requirements. This finding
underscores the importance of analyzing both the structure and
timing of muscle synergies when studying motor control strategies
across different tasks.

This study introduced a distribution-based approach to address
a key limitation of previous motor module generalizability analyses.
Prior studies commonly relied on averaged motor modules (Hug
et al., 2011; Barroso et al., 2014; Routson et al., 2014), which may
obscure important trial-specific variations and inter-subject
differences. By considering the full distribution of motor modules
across trials rather than a single mean representation, this method

FIGURE 3
Seven-subcluster arrangement of shared motor modules. (A) Characteristic motor modules of different tasks (first seven rows) and the
representative motor modules of each subcluster and their coverage rate across all task-trial data (last row). The main contributing muscles into each
module (relative weights larger than 0.3) are colored and * sign indicates a significantly different muscle weight from that of the representative module
(p < 0.05). (B) Activation profiles of the muscle modules. The lines above each profile indicate activation levels above 50% of the maximum and red
lines separate the stance and swing phases of the gait cycle. WLV: level walking; WDH: downhill walking; WSD: stair descent, ASQ: squat to stand; AST: sit
to stand; DSQ: stand to squat; DST: stand to sit.
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ensures that both common and task-specific motor modules are
identifiedmore accurately. The advantage of this approach is evident
in how the shared modules were distributed across tasks (Figure 3),
revealing both highly generalizable synergies and task-specific
adaptations.

This study suffers from some limitations that should be
addressed in future investigations. First of all, the number of
subjects and the muscles under study were limited. A larger
number of subjects would make the results statistically more
reliable. Also, considering the critical role of motor coordination

FIGURE 4
t-SNE plots for the (A) four cluster and (B) seven-subcluster arrangements of the shared motor modules. The center of each circle represents the
centroid of a cluster/subcluster and hollow and solid circles illustrate preserved and eliminated data, respectively.
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in the synergy analysis, investigation of a larger number of
muscle actions can provide more meaningful synergy data.
Moreover, the surface EMG signals are usually subjected to
noise and cross-talk. Recording the EMG signals using needle
electrodes might provide more trustworthy data. Furthermore, a
threshold-based correlation analysis was used as the primary
method for identifying common motor modules; other methods
might be employed in future studies to assess these findings.
Additionally, although these results supported the
generalizability of motor modules across different tasks and
even task families, it is not clear whether this observation can
be generalized across all motor tasks. Future studies shall
investigate a wider range of activities to provide more insight
into the motor generalizability concept. Moreover, the absence of
longitudinal data is another limitation, as motor modules may
evolve pre- and post-surgery or through rehabilitation. Tracking
changes over time would provide insight into neuromuscular
plasticity and recovery trajectories in TKR patients. Finally, it is
also important to note that this investigation focused specifically
on TKR patients rather than individuals with unicompartmental
or combined knee implants (Rossi et al., 2021; Andriollo et al.,
2024). The partial knee replacements can exhibit distinct
biomechanical characteristics and clinical outcomes compared
to TKRs. Therefore, the findings presented here may not be
directly generalizable to those with partial knee replacements,
and future studies are encouraged to explore whether similar or
different motor modules emerge in those populations.

Moreover, future research could explore the integration of
these muscle synergy findings with kinematic modularity
analyses of walking-based and in-place tasks (Darvishi et al.,
2022b) to gain a more comprehensive understanding of the
interplay between muscular and kinematic coordination. Such
combined analyses may help in tracking changes in both
kinematic and muscular modules during rehabilitation,
potentially serving as a valuable parameter for personalized
treatment. Furthermore, these insights could be incorporated
into smartphone-based care management platforms (Rossi et al.,
2024) to monitor patients remotely and guide real-time
adjustments to therapy plans based on evolving
neuromuscular and kinematic patterns.

5 Conclusion

The generalizability of motor modules across two families of
walking-based and in-place motor tasks was investigated in
individuals who have undergone total knee replacement surgery.
It was found that there are shared motor modules across tasks, even
those of different families, with their generalizability and
representability depending upon the analysis method. Less strict
criteria result in highly generalizable modules across diverse tasks,
while stricter criteria limited generalizability mainly to tasks of the
same nature. This finding highlights the importance of the analysis
method in identifying the shared motor modules, as the main
building blocks of motor control, and provides insight into their
organization by the central nervous system to overcome the motor
control complexities.
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