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Introduction: Convolutional neural networks are widely used in gesture
recognition research, which employs surface electromyography. However,
when processing surface electromyography data, current deep learning
models still face challenges, such as insufficient effective feature extraction,
poor performance in multi-gesture recognition, and low accuracy in
recognizing sparse surface electromyography.

Methods: To address these issues, this study proposed a multi-stream adaptive
convolutional neural networks with residual modules (MSACNN-RM) for surface
electromyography gesture recognition, which integrates multiple streams of
convolutional neural networks, adaptive convolutional neural networks, and residual
modules to enhance the model’s feature extraction and learning capabilities. This
improves the model’s ability to extract and understand complex data patterns.

Results: The experimental results demonstrated that the model achieved
recognition accuracies of 98.24%, 93.52%, and 92.27% respectively on the
Ninapro DB1, Ninapro DB2, and Ninapro DB4 datasets. Compared with other
deep learning models, MSACNN-RM achieves higher accuracy compared to
existing models.

Discussion: The proposed model explores features of sparse sEMG signals by
leveraging multi-stream convolution, the combination of adaptive convolution
modules and ResNet blocks enhances the model’s ability of extracting crucial
gesture features. In the future, in order to deal with differences in sEMG signals
caused by variations among individuals, a universal multi-gesture recognition
algorithm should be developed. Meanwhile, the model should focus on
optimizing and streamlining the network to reduce computational load.
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1 Introduction

Surface electromyography (sEMG) records bioelectrical signals and captures electrical
activity generated by motor units (including muscle fibers and neurons) during muscle
movement. Skin surface electrodes are placed on the muscles to record electrical activity,
which eliminates electrodes being inserted into the muscle tissue. This method provides
both temporal- and frequency-domain information regarding electrical activity in the
muscle and creates dynamic images of contraction and relaxation.
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sEMG has extensive applications in various fields, such as
human-computer interaction (HCI) (Tian et al., 2022; Hocaoglu
and Patoglu, 2022), speech recognition (Li et al., 2023d),
rehabilitation medicine (Copaci et al., 2022; Zhong et al., 2021),
and exercise physiology (Moniri et al., 2021; Chang et al., 2023). In
the HCI domain, gesture recognition based on sEMG is a popular
research topic. The technology allows freedom from the constraints
of traditional input devices, thereby enabling more intuitive and
natural interactions. The system detects muscle activity to perceive
user gestures, thereby facilitating control over external devices. In
the field of speech recognition, sEMG technology can be utilized to
monitor the electrical activity of throat muscles, analyzing the
vibration of vocal cords and the movements of throat muscles
during speech. Furthermore, sEMG can record and analyze the
activity of the lip muscles, as lip movements directly affect speech
production. This highlights the significant potential of sEMG in
speech recognition research and development in rehabilitation
medicine, where sEMG is employed to evaluate patients’ muscle
function and activity levels. By monitoring muscles’ electrical
activity, rehabilitation professionals can understand the patient’s
muscle contraction patterns, coordination, and strength levels,
thereby formulating more precise rehabilitation therapies. In
exercise physiology, sEMG is utilized to monitor muscle fatigue
as it develops during physical activity. By observing changes in the
muscles’ electrical activity, researchers can assess the fatigue levels of
athletes at different exercise intensities and durations.

As machine-learning methods have advanced, significant
progress has been made in the field of sEMG gesture recognition.
Advanced machine-learning algorithms enable more accurate
gesture recognition by the system. Support vector machines
(SVM) (Cai et al., 2019), decision trees (Song et al., 2019), the
K-nearest neighbors algorithm (Zheng et al., 2022), multilayer
perceptron (Luo et al., 2017), and the random forest algorithm
(Wang et al., 2022a) have been applied to the prediction and
estimation of sEMG motion signals. These developments have
driven the widespread application of sEMG gesture-recognition
technology in areas such as virtual reality, smart homes, and
medical treatment.

More recently, in machine learning, deep learning technology
has gained popularity among researchers owing to its excellence in
automatically learning features and strong data-fitting capabilities.
Deep learning models also exhibit robust adaptability and can
accommodate individual diversity, muscle activity patterns, and
environmental conditions, demonstrating excellent generalization
capabilities. These advantages have earned deep learning high praise
in sEMG recognition tasks. Techniques such as convolutional neural
networks (CNNs) (Vijayvargiya et al., 2021; Li et al., 2023c),
recurrent neural networks (RNNs) (Hu et al., 2018), and long
short-term memory (LSTM) networks (Bai et al., 2021) have
been widely applied to the motion prediction and estimation of
sEMG signals, yielding favorable results.

Previous research has suggested the vast potential of sEMG
signals in the HCI domain. However, owing to the inherent
differences among subjects in sEMG data collection (Castellini
et al., 2009) and its susceptibility to interference (Xiao, 2022),
factors such as varying muscle strength among individuals (Liu
et al., 2022) and different body fat percentages (Lanza et al., 2020)
can affect the expression of sEMG data. Moreover, the signals

collected by sEMG electrodes are likely to be influenced by
electrode displacement (Wang et al., 2022c) and perspiration
(Abdoli-Eramaki et al., 2012). To address these challenges,
researchers have begun utilizing semi-dry electrodes and
flexible electrodes. Semi-dry electrodes reduce dependence on
conductive gels by combining the advantages of dry and wet
electrodes while maintaining excellent signal transmission
performance, thereby exhibiting high comfort and reliability
in practical applications (Li et al., 2021a). Additionally,
flexible electrodes are capable of conforming better to the skin
surface, minimizing electrode displacement, and enhancing
signal stability, thereby improving the accuracy and reliability
of data acquisition (Li et al., 2023a; Li et al., 2024). Although the
use of semi-dry and flexible electrodes can improve the stability
and reliability of signal acquisition, reducing interference and
more accurately extracting motion features from sEMG signals
remains a major challenge in current gesture recognition
technology.

To address these challenges, researchers have begun exploring
deep learning methods to extract deeper information from sEMG
signals, overcoming the limitations of traditional methods in
capturing complex spatial and temporal patterns. Hu (Hu et al.,
2018) proposed a hybrid CNN-RNN architecture based on an
attention mechanism for sEMG-based gesture recognition. This
approach leverages Convolutional Neural Networks to extract
spatial features from sEMG signals and combines them with
Recurrent Neural Networks (RNNs) to capture temporal
sequence characteristics. Additionally, the study introduced a
novel sEMG image representation method, enabling the model to
learn correlations between sparse multi-channel signals. This
method achieved accuracies of 87.0% and 82.2% on the Ninapro
DB1 and DB2 datasets, respectively, significantly outperforming
traditional methods and demonstrating an effective capability to
extract complex gesture signal patterns. Although this performance
is achievable under controlled laboratory conditions, practical
applications, particularly in the daily use of prosthetics, still face
challenges. To further enhance the performance of dynamic hand
movement recognition, Yang (Yang et al., 2021) proposed a Multi-
Stream Residual Long Short-Term Memory network (MResLSTM)
for dynamic hand movement recognition. This architecture
combines residual models and Convolutional Long Short-Term
Memory networks to extract spatiotemporal features from both
global and deep aspects, and preserves necessary information
through feature fusion. It achieved an accuracy of 89.65% on the
Ninapro DB1 dataset. It is well known that deep feature signals are
critical for gesture classification. Although existing studies have
integrated multi-stream convolutional neural networks and
residual networks, there remains a research gap in further
incorporating adaptive convolutional neural networks to enhance
the model’s dynamic characteristics and robustness.

To address these issues, this study adopted amulti-stream neural
network as a backbone that integrates adaptive CNNs and residual
networks (ResNets). A novel network model was constructed for
sEMG-based gesture recognition. The experimental results show
that the network model achieved higher recognition accuracy on the
Ninapro DB1, Ninapro DB2, and Ninapro DB4 datasets,
demonstrating better performance compared to other models.

The contributions of this study are as follows:
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1. Building on a multi-stream CNN, we addressed individual
differences and susceptibility to interference in sEMG signals
by introducing an adaptive CNN. This network can flexibly
adjust the number and size of convolutional kernels based on
the features of sEMG images and better adapt to various
gesture movements. This enhances the flexibility and
adaptability of gesture recognition, enabling it to handle
diverse gestures.

2. To extract deep-level sEMG features, we introduced residual
modules. The advantage of residual modules lies in their
ability to improve the training of deep networks. The
incorporation of residual modules facilitated the extraction
of crucial features from sEMG signals, thereby supporting the
model’s ability to capture variations in gestures. The
integration of this deep-learning architecture enhances the
model’s modeling and recognition capabilities for
complex gestures.

3. By leveraging residual networks, multi-stream CNNs, and
adaptive CNNs, we formulated the MSACNN-RM
framework, resulting in a significant improvement in the
accuracy of sEMG-based gesture recognition tasks. This
approach effectively utilizes the deep learning capabilities
of residual networks, the information fusion properties of
multi-stream CNNs, and the dynamic feature learning
abilities of adaptive CNNs. By amalgamating different
types of neural networks, we enhanced the resolution of
the sEMG signal analysis, contributing to more accurate
and reliable gesture recognition in practical applications.

4. The proposed model was compared with five other machine
learning methods, showing improved performance. The
proposed model’s performance was verified through in-
depth analysis and comparisons. The comparisons involved
multiple key indicators, and experimental results demonstrate
the model’s advantages across different scenarios
and datasets.

The remainder of this paper is organized as follows: Section 2
introduces work by other scholars that is related to this study.
Section 3 describes how the MSACNN-RM model is implemented.
The experimental data, data preprocessing methods, experimental
results, and analysis are described in Section 4. The conclusions are
presented in Section 5.

2 Related work

In deep learning, effective feature extraction is crucial for
recognizing sEMG data. A suitable network architecture can
better capture and represent useful information in sEMG signals,
thereby improving recognition performance. Therefore, the design
and selection of an appropriate network structure are paramount for
successful sEMG recognition. Elahe (Rahimian et al., 2021)
proposed the Few-Shot learning-Hand Gesture Recognition (FS-
HGR) architecture for gesture recognition, achieving classification
accuracies of 85.94% and 73.6% on the Ninapro DB2 and Ninapro
DB5 datasets, respectively. Chen (Chen et al., 2020) applied a
transfer learning strategy to a hand gesture recognition method
based on a CNN and CNN + LSTM. Compared to methods without
transfer learning, the accuracy improved by 10%–38% in

recognizing 30 gestures, and the training time was reduced. Li (Li
et al., 2021b) used a multi-stream convolutional network with a
fusion attention mechanism for sEMG gesture recognition,
achieving an average accuracy of 84.39% on 52 gestures obtained
from 27 subjects in the Ninapro DB1 dataset. Wang (Wang et al.,
2023) proposed a parallel structure network (IRDC-net) using an
architecture with residual modules and expanded convolutions to
enlarge the model’s receptive field, achieving a classification
accuracy of 89.82% on the Ninapro DB1 dataset. Despite the
remarkable achievements in sEMG-based gesture recognition, the
current accuracy of multi-gesture sEMG recognition still requires
further improvement (Yu et al., 2020; Li et al., 2022).

Multi-stream CNNs have made significant strides in the field
of sEMG gesture recognition. These networks can receive outputs
from multiple channels, with each channel having a dedicated
feature-extraction network, typically culminating in feature
fusion in the final layer. This design enhances the feature
extraction capabilities (Pan et al., 2022). Wang (Wang et al.,
2022b) proposed a multi-stream convolutional block attention
module-gated recurrent unit (MCA-GRU) network by
integrating attention mechanisms, gated recurrent units, and
multi-stream CNNs. They fused acceleration signals and
sEMG signals, achieving an accuracy of 89.7% on the Ninapro
DB1 dataset. Gu (Gu et al., 2022) employed a multi-stream CNN
to extract features from different sub-images of sEMG. The
features were then fused, resulting in accuracies of 92.76% on
the Ninapro DB1 dataset. This outperformed traditional machine
learning methods for gesture recognition. Peng (Peng et al., 2022)
combined attention mechanisms, residual blocks, and multi-
stream CNNs to extract multidimensional spatial features
from signal morphology, electrode space, and feature map
space. They fused the learned multiview depth features using a
view aggregation network composed of early and late fusion
networks, achieving higher gesture recognition accuracy for
each participant on the Ninapro DB2 and Ninapro
DB4 datasets compared with previous models.

Although existing research in the field of sEMG-based gesture
recognition has yielded notable achievements, the inherent non-
linearity of sEMG signals, individual variability, and susceptibility to
environmental interference pose challenges. Consequently, there
remains significant potential for improvement in algorithms for
gesture recognition using sEMG.

3 Algorithm implementation

3.1 Multiple-stream CNN

The MSCNN architecture can handle multiple modalities. Its
uniqueness lies in its ability to utilize simultaneously multiple input
streams (or channels) to process different types of information (Pan
et al., 2022). The multimodal processing capability of the MSCNN
endows it with potential value across various application domains
(Eslami and Yun, 2021; Peng et al., 2021; Niu et al., 2021; Yang
et al., 2022).

The MSCNN design allows the network to accommodate
multiple input streams, each capable of containing different types
of data such as images, text, and other features. These input streams

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Xia et al. 10.3389/fbioe.2025.1487020

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1487020


can undergo parallel convolution and pooling for feature extraction.
Furthermore, the MSCNN adopts a multibranch structure, with
each branch corresponding to an input stream. Each branch
comprises independent convolution, pooling, and fully connected
layers to learn specific feature types. The outputs of these branches
are typically merged into the subsequent layers of the network to
form the overall network output.

To leverage to the fullest extent the features learned from each
input stream, the MSCNN often introduces a feature fusion layer at
the last level in the network. This step, achieved through
concatenation or weighted summation, helps integrate the
information learned from various branches, thereby enhancing
the network’s performance.

In this study, we leveraged the multi-input stream capability of
the MSCNN by applying different network structures to extract
features from each input stream for processing the sEMG signals.
Lastly, a feature fusion operation outputs the fully connected layers
as the final output. A simplified diagram of the multi-stream neural
network structure used in this study is shown in the Figure 1.

3.2 Adaptive CNN

An adaptive CNN (ACNN) is an innovative neural network
architecture (Wang et al., 2022d) primarily distinguished by
introducing an adaptive mechanism. This mechanism enables the
shape and weights of the convolutional kernels to be dynamically

adjusted during convolution operations. The design objective was to
enhance the adaptability of the model, making it more flexible and
capable of effectively accommodating the spatial structures of
various input data.

An ACNN dynamically adjusts input data features by replacing
fixed-size convolutional kernels in traditional convolutional layers
with adaptive convolutional kernels (Sang and Ruan, 2021). In
contrast to traditional convolutional kernels, adaptive
convolutional kernels can flexibly adjust their shapes and weights
based on the features of the input data. This adaptability enables the
network to capture the local features of the input data more
accurately, thereby significantly improving the effectiveness of
feature extraction. Additionally, ACNN demonstrates spatial
adaptability, not only in terms of convolutional kernel shape and
weights but also in flexible handling of the spatial structure of input
data. This spatial adaptability makes the network more suitable for
processing the features of different scales and shapes, significantly
enhancing its capability for modeling complex input data.

To achieve this adaptability in deep learning, the learning of
convolutional kernel weights and shapes is typically accomplished
automatically through backpropagation, without the need for
additional parameters.

In adaptive convolutional layers, the weights of the
convolutional kernels are adjusted through an attention
mechanism and then used to convolve the input feature maps.
Below is the iterative formula description of this process: Global
Average Pooling (GAP) is as shown in Equation 1:

GAP X( ) � 1
H × W

∑
H

i�1
∑
W

j�1
Xij (1)

Where X is the input feature map, andH andW are the height and
width of the feature map, respectively.

Generation of AttentionWeights is formulated as in Equation 2:

A � softmax dense GAP X( )( )( ) (2)

A represents the attention weights generated by a fully
connected layer followed by a softmax activation function,
corresponding in dimension to the number of output channels of
the convolution layer (i.e., the number of filters).

Expansion of Attention Weights is given in Equation 3:

A′ � expand A( ) (3)

In this step, the attention weights A are expanded to the same
four-dimensional shape as the convolutional kernels K to enable
element-wise multiplication with each kernel.

Adjusted Convolutional Kernel Weights is formulated as in
Equation 4:

K′ � K · A′ (4)
Where K is the original convolutional kernel, and K′ is the kernel
after applying the attention weights.

Convolution Operation is given in Equation 5:

Y � conv2d X,K′( ) (5)

The adjusted kernels K′ are used to perform standard
convolution operations on the input feature map X.

FIGURE 1
Simplified diagram of the MSCNN.
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The ACNN demonstrates the potential for widespread
applications, especially when dealing with complex images,
videos, or other types of spatial data. Its advantage lies in its
ability to better adapt to spatial structural changes in different
scenarios (Zhou et al., 2023). Therefore, when there are
variations between subjects in sEMG, incorporating an ACNN
can enhance the extraction of features in the signal that are
unrelated to the subjects.

3.3 Residual network

ResNets are deep learning architectures designed to address
issues such as gradients vanishing or exploding when deep neural
networks are trained. Their key innovation is the introduction of
residual blocks to construct deep networks, that facilitate the
network’s ability to learn identity mapping (He et al., 2016).

The core of the ResNet is a residual block that includes skip or
shortcut connections. These connections allow the input signal to
bypass one or more layers, making it easier for the network to learn
the identity mappings. For this, let the input be X and output be Y.
The mathematical expression for a residual block can be represented
as in Equation 6:

Y � X + F X( ) (6)
where F(X) is the output of nonlinear transformation within the
residual block. The key concept introduced by ResNet is to learn
residuals, by which it aims to reduce the identity mapping residuals
toward zero. This approach effectively mitigates the risk of gradient
vanishing because, even with an increase in network depth, learning
the identity mapping residuals remains relatively straightforward. In
addition, ResNet incorporates skip connections between layers,
allowing the input signal to pass to subsequent layers. Through
additional operations, the input signal is merged with the features
learned by the subsequent layers. This connection method helps
alleviate the issue of gradient vanishing, enabling the network to
learn feature representations more effectively.

ResNet constructs deep networks by stacking multiple residual
blocks, enabling the network to maintain a relatively good training
performance, evenwhen it is very deep. This is highly beneficial for deep
learning tasks such as image classification and object detection. To
reduce the computational complexity of the model, ResNet introduces
the “Bottleneck” architecture, which involves arranging 1 × 1, 3 × 3, and
1 × 1 convolutional layers sequentially within a residual block. This
design reduces the number of channels in the intermediate
convolutional layers, thereby enhancing computational efficiency.
Finally, ResNet employs global average pooling to transform the
final feature map into a vector that can be used for classification tasks.

The introduction of ResNet has propelled the development of
deep learning significantly, making it feasible to design deeper
neural networks. Its improved performance in large-scale image
recognition competitions, such as the ImageNet Challenge,
demonstrates its effectiveness in practical applications. The
principles of ResNet have also been widely applied in the designs
of other deep learning architectures (Alaeddine and Jihene, 2021;
Shen et al., 2021; Dutande et al., 2022), providing crucial insights for
enhancing the training and performance of models.

The residual block receives an input feature map. The initial
convolutional layer processes the input feature map with a kernel
size of (2,1). The stride of the convolutional layer is set to 1, and
“SAME” padding is used to ensure the size of the output feature map
remains unchanged. The output of this convolutional layer is then
passed through a batch normalization (BN) layer to stabilize the
training process and accelerate convergence. Subsequently, the
result is transformed non-linearly using the ReLU activation
function. The mathematical expression for the ReLU function is
as follows in Equation 7:

f x( ) � max 0, x( ) (7)

This implies that if the input value is positive, then the output is
the value itself; if the input value is negative, the output is zero.
Utilizing the ReLU function can enhance computational efficiency
and the generalization capability of the network, and it can also
address the issue of vanishing gradients during the training of deep
networks. A secondary convolutional layer applies the same
configuration (i.e., same kernel size, stride, and padding) to the
output of the initial convolutional layer. Similarly, the output from

FIGURE 2
Residual block used in this study.
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this layer is also subjected to BN and processed through the ReLU
activation function. A residual connection allows the original input
to be processed by a convolutional layer with a kernel size of (1,1)
and a stride of 1 (to match dimensions and adjust stride), ensuring it
can be added to the output of the secondary convolutional layer.
This transformed inputis then added to the output of the secondary
convolutional layer to form a residual connection. This operation
facilitates the flow of information and prevents gradient vanishing
issues in deep networks. Finally, the resultant feature map after
addition is processed through the ReLU activation function to
produce the final output feature map. In this article, the residual
blocks used are depicted in Figure 2.

3.4 Multi-stream adaptive CNN with
residual modules

This study introduced a multi-stream adaptive CNN with residual
modules. A multi-stream neural network has three inputs and each

identical input passes through a different network architecture. These
architectures include multiple adaptive convolutional layers, residual
blocks, MaxPooling layers, activation layers, feature-fusion layers,
convolutional layers, flattened layers, and fully connected layers. The
residual blocks used in this context differed only in the number of
convolutional kernels.

The first convolutional stream is composed as follows: The data
initially undergo a convolutional layer with 64 convolutional kernels and
a kernel size of (2, 1). The ReLU activation function, zero-padding, BN,
andMaxPooling layer are employed to prevent data loss and stabilize the
neural network learning process. Subsequently, ResNet residual blocks
with 64, 128, 256, and 512 convolutional kernels are connected. These
four residual blocks are defined as the MRN module in Figure 3.
Subsequently, three layers of adaptive convolutional neural layer
(ACNL), each initialized with 32 convolutional kernels and a kernel
size of 1, are employed. After each ACNL, connections to a BN layer, a
ReLU activation layer, and aMaxPooling layer 2 × 2 in size, aremade. In
Figure 3, we define the module composed of ACNL, BN, ReLU, and
MaxPooling as the ACBmodule. Finally, the output is obtained through

FIGURE 3
The figure depicts the MSACNN-RM process for sEMG signal analysis. Features extracted via sliding window technique are fed into the model,
producing three feature vectors, a, b, and c. These vectors are then fused and processed through a fully connected layer, followed by the application of a
softmax function for feature classification.
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a dropout layer with a dropout rate of 50%, a global average pooling
layer, and a flattened layer. The design goal of the first convolutional
stream is adaptively to extract deep features from the sEMG signals.

The second convolutional stream functions as follows: The sEMG
featuremaps are fed into three layers of adaptive convolution for feature
extraction, with each layer initially equippedwith 32 kernels, each of size
(1,1). After each layer of adaptive convolution, there are connections to
a BN layer, a ReLU activation layer, and a MaxPooling layer 2 × 2 in
size. This design can help stabilize the model during training, accelerate
the convergence rate, reduce the number of parameters and
computational load, and enhance the model’s robustness and
adaptability to changes in input. Finally, the output is obtained
through a dropout layer with a dropout rate of 50% and a flattened
layer. The second convolutional stream is included to enhance the
model’s adaptive ability to extract features from sEMG signals.

The third convolutional stream functions as follows. The input
data first enter a convolutional layer with 64 convolutional kernels
and a kernel size of (2, 1). The ReLU activation function is applied,
and zero-padding is used. After this convolutional layer, the network
sequentially connects a BN layer and a MaxPooling layer. The BN
layer standardizes the distribution of input batches to mitigate

gradient anomalies, while the MaxPooling layer adopts a 2 ×
2 window (stride = 2) to preserve locally salient features and
reduce spatial dimensions. The ResNet residual blocks are
connected with 64, 128, 256, and 512 convolutional kernels.
Finally, the output is obtained through a global average pooling
layer and a flattened layer. The third convolutional stream is used to
extract deep features from the sEMG signals.

Finally, the outputs from all the convolutional streams converge
to the fusion layer and are fused column-wise. The fused data then
enter the output layer with 52 neurons, which utilizes softmax as an
activation function to transform the output into a probability
distribution. The final model architecture is illustrated in Figure 3.

4 Experimentation

4.1 Dataset

The Ninapro dataset which has been widely used in sEMG research
(Li et al., 2023b; Soroushmojdehi et al., 2022; Xiong et al., 2023) was
used for the testing and training. It consists of ten complete data subsets,

FIGURE 4
Flow chart of sliding window method and the preparation of training data.
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labeled DB [1–10], covering sEMG signal files both from amputees and
non-amputees. To ensure the generalization and effectiveness of the
proposed model across different datasets, we selected DB1, DB2, and
DB4 for training and testing. The diversity of gestures in the Ninapro
dataset makes it widely applicable for research on gesture recognition.
Additional data can further evaluate the model’s ability to extract
essential features from sEMG signals.

In DB1, ten electrodes (MyoBock 13E200, Ottobock SE & Co.
KGaA) were used to record the sEMG signals (Atzori et al., 2014).
Among them, eight were evenly distributed on the forearm at a height
corresponding to the radius-elbow joint, whereas the remaining two
electrodes captured signals from primary activity points on the flexor
and extensor muscles. The dataset comprised the sEMG data from
27 healthy subjects who performed 52 hand gestures. These included
basic finger movements, isometric and isotonic hand gestures,
fundamental wrist movements, grasping, and functional motions.

DB2 utilized 12 active double-differential wireless electrodes from a
wireless sEMG system (Delsys Trigno, Delsys Inc.) and sampled the
sEMG signals at 2,000 Hz (Atzori et al., 2014). Eight electrodes were
evenly distributed on the forearm corresponding to the radius of the
elbow joint. Two electrodes were placed at the main activity points of
the flexor and extensor muscles and two additional electrodes were
positioned at the main activity points of the biceps and triceps brachii
muscles. The dataset included 49 gesture actions repeated 10 times,
involving basic finger movements, grasping, and functional motions.
The participants were instructed to repeat the actions with their right
hand. Each repetition lasted for 5 s, followed by a 3-s rest to prevent
muscle fatigue. The experimental design involved 49 different actions
(with rest intervals) performed by 40 participants.

In DB4, the sEMG data were collected using 12 electrodes (Cometa
Systems Inc.) at a sampling rate of 2000Hz (Pizzolato et al., 2017). Eight
electrodes were evenly distributed on the forearm, corresponding to the
height of the radius-elbow joint. Two captured sEMG signals from the
flexor and extensor muscles, whereas the last two recorded signals from
the biceps and triceps brachii muscles. The dataset included 52 hand
movements repeated six times, including isometric and isotonic hand
configurations, basic wrist movements, fundamental finger actions,
grasping, and functional motions. The data covered sEMG
recordings from 10 subjects who repeated 52 hand movements,
including static postures. Each repetition of an action lasted
approximately 5 s, followed by a 3-s rest to prevent muscle fatigue.
During data collection, the participants were instructed to use their right
hand to repeat these actions.

The dataset was randomly divided into three groups: one for use
as the training set, the second as the test set, and the last to generate a
confusion matrix. The training set accounted for 70% of the total
dataset, the test set for 15%, and the validation set for 15%. The
experimental hardware environment comprised an Intel(R)
Core(TM) i9-13900K CPU @ 5.8 GHz with 32 GB of memory,
and all experiments were implemented using TensorFlow 2.10.0 +
cu160 on an NVIDIA RTX 4090 GPU.

4.2 Data preprocessing

When dealing with time-series signals such as sEMG, the sliding
window method effectively captures the temporal features of muscle
electrical signals, thereby improving the performance of tasks such as

gesture recognition (Bu et al., 2023). Therefore, in this study, the data
were segmented using a sliding-window approach. Considering the
acceptable delay range for the human body (Côté-Allard et al., 2019),
the window size was set to 256ms, and the sliding step was set to 100ms.

Before training the model, a series of preprocessing steps were
performed. Firstly, the data were randomly shuffled to avoid overfitting
and to increase the diversity of the training samples, effectively
mitigating the potential impact of the data’s native ordering. This
approach significantly benefits support for mini-batch stochastic
gradient descent and enhances training efficiency.

Secondly, the data underwent one-hot encoding, transforming
the labels into a one-hot encoded form. This step is crucial for
handling multiclass problems, adapting to neural networks and deep
learning models, improving model performance, mitigating the
impact of training with numerical labels, and supporting multi-
output scenarios.

Finally, the training and test sets were split into three parts to
accommodate multiple streams of the CNNs. The aforementioned
preprocessing steps ensure the robustness and efficiency of model
training, allowing it to better adapt to the complexity of gesture
recognition tasks. These steps help the model better adapt to the
features of different gestures when learning sEMG, ultimately
improving the accuracy and robustness of gesture recognition tasks.
This approach aims to utilize the information in the datamore reasonably
and improve its suitability for training deep-learning models. Figure 4
presents the processing pipeline for sEMG signals in this article.

4.3 Experimental results and analysis

The model employed the Adam optimizer with categorical
cross-entropy as the loss function and accuracy as the
performance metric for both training and evaluation. The
training consisted of 150 epochs with a batch size of 32.
Ultimately, on the Ninapro DB1 dataset, the model was trained
on data from subjects 1–5, 7, 9, and 11–13, achieving a training set
accuracy of 99.86% and a maximum testing set accuracy of 98.24%.
On the Ninapro DB2 dataset, the model was trained on data from
subjects 1-3 and 5-8, resulting in a training set accuracy of 99.78%
and a maximum testing set accuracy of 93.52%. Similarly, on the
Ninapro DB4 dataset, the training involved data from subjects 1–4,
6, and 8–10, producing a training set accuracy of 99.85% and a
maximum testing set accuracy of 92.27%. These results validate the
effectiveness of the proposed model. The Table 1 displays the final
training results.

4.3.1 Evaluation of model performance using
K-fold cross-validation

To better demonstrate the experimental results, we conducted a
K-fold cross-validation analysis to provide more reliable outcomes.
K-fold cross-validation is a widely used validation method that
involves dividing the dataset into K subsets and performing K
iterations of training and testing. In each iteration, a different
subset is used as the test set, while the remaining subsets are
used as the training set. After completing all K iterations, the
average of all test results is calculated as the final performance
evaluation metric for the model. This process helps to reduce the
bias associated with a single partition, providing a more reliable
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model evaluation. This method effectively reduces bias and variance
in model evaluation, thereby enhancing the reliability and
robustness of the results. In this experiment, we set the value of
K to 5 and introduced Precision, Recall, and F1 Score as additional
evaluation metrics. The final results are shown in Table 2. From
Table 2, it can be concluded that the model’s performance on dataset
DB1 is significantly superior to the other two datasets, with an
average accuracy and precision close to 97%. In terms of standard
deviation, the model on dataset DB1 is the most stable (with a
standard deviation ranging from 0.0049 to 0.0052). Overall
performance metrics indicate that dataset DB1 excels in all
aspects, making it suitable for high-precision applications. The
performance of datasets DB2 and DB4 is comparable; however,
DB4 exhibits greater variability, indicating a need for further
optimization. In summary, the model achieves satisfactory
performance and stability across all three datasets.

4.3.2 Loss analysis and confusion matrix analysis
The model training on the DB1, DB2 and DB4 dataset is illustrated

in Figure 5. On the DB1,The loss curve exhibited rapid convergence,

with learning gradually slowing after approximately 20 epochs and
eventually stabilizing. On the DB2 and DB4 datasets, the loss curve also
demonstrates rapid convergence, with learning gradually slowing after
approximately 40 epochs and eventually stabilizing. This indicates that
the model rapidly learns the general features of the data in the early
stages and achieves better fitting results through deeper learning in later
stages. As the training progressed, the model adjusted the parameters to
better fit the training data. The confusion matrix reveals that the model
performs well for each category. The predicted results for each category
matched the actual labels, indicating that the model was capable of
capturing the features of different categories. The training dynamics and
performance demonstrated the effectiveness and robustness of the
model. At approximately 100 epochs, the model approached a
balanced state, and the learned features fit the training data well.
The final results indicate that the model achieved its optimal
accuracy at 171 epochs on DB1, at 158 epochs on DB2, and at
187 epochs on DB4. This was a satisfactory outcome, indicating that
themodel performed convincingly on the DB1, DB2, and DB4 datasets.

The confusion matrix provides crucial insights into the
performance of the model for different gesture classification tasks.

FIGURE 5
The figure illustrated the changes in loss and accuracy curves for the training and testing sets during the model training process. Area (a) shows the
training process of MSACNN-RM on DB1, area (b) displays the training on DB2, and area (c) represents the training on DB4. The image clearly
demonstrates that the model proposed in this paper possesses robust data fitting capabilities.

TABLE 1 Training and test set accuracy of MSACNN-RM across datasets DB1, DB2, and DB4.

Dataset name Training set Accuracy (%) Test set Accuracy (%)

DB1 99.86 98.24

DB2 99.78 93.52

DB4 99.85 92.27
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The confusion matrices for DB1 in Figure 6 respectively confirm that
the model exhibited excellent performance in gesture recognition tasks,
achieving high accuracy for most gestures. However, there was a small
proportion of misclassifications in the confusion matrices. These errors
can be attributed to the similarity between the sEMG signals of certain
gestures, making it difficult for the model to differentiate them
accurately.

4.3.3 Ablation experiments
To further validate the effectiveness of the MSACNN-RM in

sEMG gesture recognition, we conducted ablation experiments by
fine-tuning the adjustments to the network structure as shown in
Table 3. A standardized multi-stream CNN (MSACNN) was used as
the baseline model for five experiments. The sliding windowmethod

was employed to process the sEMG images as model inputs. Table 3
lists the different model configurations that were tested. Figure 7
illustrates the accuracies of the different model configurations for
DB1, DB2, and DB4.

To comprehensively evaluate the effectiveness of MSACNN-RM in
sEMG-based gesture recognition, we compared it with four othermodels:
Test4, Test5, Test6, andTest7. Allmodelswere tested using a 5-fold cross-
validation method on the same datasets (DB1, DB2, and DB4). The
evaluationmetric usedwasAccuracy. A Shapiro-Wilk test was conducted
to verify the normality of the results, and all outcomes conformed to the
normal distribution assumption. Consequently, paired t-tests were
employed to assess the performance differences between models. The
test results indicated thatMSACNN-RM exhibited statistically significant
improvements over the comparison models in Accuracy (P < 0.05).

TABLE 2 Performance metrics of MSACNN-RM after K-fold cross-validation on datasets DB1, DB2, and DB4.

Dataset Average accuracy Recall F1 Precision Std

DB1 0.9685 0.9685 0.9693 0.9701 0.0049–0.0052

DB2 0.9059 0.9059 0.9124 0.9189 0.0091–0.0095

DB4 0.9053 0.9053 0.9102 0.9152 0.0182–0.0194

FIGURE 6
Confusion Matrix of MSACNN-RM on DB1 validation dataset.
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By comparing the training results of different models on the
same dataset, the significant impact of BN on recognition accuracy
can be clearly observed. The unique advantage of BN lies in reducing
the internal covariate shift, which alleviates the model’s sensitivity to
parameter initialization and choice of learning rate. This effectively
optimizes the gradient descent and accelerates the convergence.
Therefore, introducing BN helps fit the dataset better and achieves a
higher recognition accuracy.

Comparing the DB1, DB2, and DB4 training results in Figure 7, the
introduction of adaptive convolution and ResNet into the multi-stream
convolutional network significantly improved the model’s recognition
accuracy. This advantage was most pronounced for DB1. The inclusion

of adaptive convolution layers increased the average recognition
accuracy of 52 gestures to 79.9%, and ResNet further increased the
average recognition accuracy to 88.2%. By combining the ACNN and
ResNet, theMSACNN-RMachieved an average recognition accuracy of
98.24% for DB1. This combination maximizes the advantages of both
and significantly advances feature learning and extraction. The gesture
recognition accuracy of MSACNN-RM also shows significant
improvements on DB2 and DB4.

4.3.4 Comparison with other network models
The exceptional performance of the proposed MSACNN-RM

network model was validated by a detailed comparison with other
recent research models, particularly on the Ninapro DB1 dataset.
This dataset was aligned with the dataset employed in this study and
comprised 52 different hand gestures by 27 healthy subjects,
enabling a direct and intuitive comparison of the experimental
results. A horizontal comparison confirmed that the MSACNN-
RM network algorithm outperformed the other algorithms
regarding recognition accuracy, as shown in Table 4.

Based on Table 4, it is evident that there are variations in structural
design and performance among the different models. Zheng (Zheng
et al., 2022) employs the Adaptive K Nearest Neighbor (Adaptive KNN)
method, which, although simple to implement and computationally
efficient, is sensitive to noisy data and highly dependent on feature
extraction, resulting in lower recognition accuracy. He (He et al., 2018)
combines Long Short-Term Memory networks (LSTM) with Multi-
Layer Perceptron (MLP), effectively capturing temporal features and

FIGURE 7
The figure shows the ablation experiment results of different models on the DB1, DB2, and DB4 datasets. MSACNN-RM demonstrates statistically
significant differences (P < 0.05) compared to the other models in accuracy.

TABLE 3 Overview of network structures evaluated in experimental tests
(Test1 to Test7).

Test Network structure

Test1 MSCNN

Test2 MSCNN + BN

Test3 MSCNN + BN + MaxPooling

Test4 MSCNN + BN + MaxPooling + ACNN

Test5 MSCNN + BN + MaxPooling + ResNet

Test6 MSCNN + BN + MaxPooling + ResNet + ACNN

Test7 MSCNN + BN + MaxPooling + ResNet + Integration of ACNN Module
and ResNet
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suitable for handling sequential data, but the model is highly complex
and requires longer training times. Geng (Geng et al., 2016) utilizes
convolutional neural networks for feature extraction, offering a relatively
simple structure that effectively extracts spatial features, yet its ability to
distinguish complex gestures is somewhat limited. Hu (Hu et al., 2018)’s
CNN-RNN model integrates the strengths of both CNN and RNN,
enabling the extraction of spatial features and the capture of temporal
features, thereby improving recognition accuracy. However, the training
process is complex and the model has a large number of parameters.
Yang (Yang et al., 2021)’s MResLSTM model enhances the model’s
generalization capability through multi-resolution feature extraction,
achieving high accuracy but demanding significant computational
resources and longer training times. Xu (Xu et al., 2022) proposes
the CFF-RCNN model, which introduces multi-layer feature fusion
techniques to further enhance recognition precision, though the model
structure is complex. Wang (Wang et al., 2023)’s IRDC-net model
possesses deep feature extraction capabilities, demonstrating strong
representational power. Finally, Gu (Gu et al., 2022) employs a
Multi-stream CNN structure, effectively enhancing feature extraction
capability and achieving a high accuracy of 92.76%, but with a complex
model structure and high computational resource requirements.

As shown in Table 4, despite significant progress made by
previous studies on the Ninapro DB1 dataset, recognition
accuracy has struggled to surpass 93%. The method proposed in
this study achieves higher accuracy compared to the above methods.
Additionally, the combination of deep learning modules used in past
methods was relatively simple. In contrast, our study designs
shallow, intermediate, and deep feature extraction streams,
effectively enhancing the feature extraction capability for sEMG
through the rational integration of ACNL and Residual modules.
Moreover, the flexibility of the ACNL layer also strengthens the
model’s ability to adapt to individual differences in sEMG. However,
the more complex convolutional structure of the model, compared
to those of previous models, incurs greater computational costs.

5 Conclusion

To address challenges such as inadequate effective feature
extraction in sEMG-based deep learning models, poor gesture
recognition speed, and low accuracy in sparse sEMG signals, this

paper introduces a novel multi-stream adaptive CNNs, MSACNN-
RM. By leveraging multi-stream convolution, the model explores
features of sparse sEMG signals from multiple acquisition channels.
The inclusion of adaptive convolution modules and ResNet blocks
enhances the model’s ability to learn crucial gesture features, with a
focus on more differentiated signal regions. Simultaneously, the
network adaptively learns features from different feature maps,
reinforcing feature extraction, ensuring accurate gesture
classification, and accelerating model convergence.

The network processes electromyographic signals intomodel inputs
using a sliding window approach, allowing the precise identification of
52 gestures. The introduction of adaptive convolution modules in
multi-stream convolution effectively mitigates overfitting. Moreover,
the use of residual blocks further enhances the network’s ability to
extract features from sEMG signals, thus improving recognition
accuracy. MSACNN-RM achieved satisfactory results on the
Ninapro DB1, DB2, and DB4 datasets, demonstrating its broader
potential applications in fields such as human-computer interaction
and electromyographic gesture recognition.

Future research will focus on the differences in
electromyographic signals caused by variations in body fat levels,
disparities in arm skeletal size, and differences in hand movement
capabilities among individuals. This calls for a deeper investigation
into the development of a universal multi-gesture recognition
algorithm. Additionally, since the model’s extensive use of
convolutional computations results in a significant computational
load, future research will prioritize optimizing and streamlining this
network model to enhance its suitability for resource-constrained
human-computer interaction platforms.
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