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Thanks to the diverse advantages of electrospun nanofibers, multiple drugs have
been loaded in these nanoplatforms to be delivered healthily and effectively.
Doxorubicin is a drug used in chemotherapy, and its various delivery and efficacy
parameters encounter challenges, leading to the seeking of novel delivery
methods. Researchers have conducted numerous laboratory investigations on
the encapsulation of doxorubicin within nanofiber materials. This method
encompasses various parameters for the production of fibers and drug
loading, categorized into device-related, material-related, and study design
parameters. This study employed a supervised machine-learning analysis to
extract the influencing parameters of the input from quantitative data for
doxorubicin-loaded electrospun nanofibers. The study also determined the
significance coefficient of each parameter that influences the output results
and identified the optimum points and intervals for each parameter. Our Support
Vector Machine (SVM) analysis findings showed that doxorubicin-loaded
electrospun nanofibers could be optimized through employing a machine
learning-based investigation on the polymer solution parameters (such as
density, solvent, electrical conductivity, and concentration of polymer),
electrospinning parameters (such as voltage, flow rate, and distance between
the needle tip and collector), and our study parameters, i.e., drug release and
anticancer activity, which affect the properties of the drug-loaded nanofibers,
such as the average diameter of fiber, anticancer activity, drug release
percentage, and encapsulation efficiency. Our findings indicated the
importance of factors like distance, polymer density, and polymer
concentration, respectively, in optimizing the fabrication of drug-loaded
electrospun nanofibers. The smallest diameter, highest encapsulation
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efficiency, highest drug release percentage, and highest anticancer activity are
obtained at a molecular weight between 80 and 474 kDa and a doxorubicin
concentration of at least 3.182 wt% with the polymer density in the range of
1.2–1.52 g/cm3, polymer concentration of 6.618–9 wt%, and dielectric constant of
solvent more than 30. Also, the optimal distance of 14–15 cm, the flow rate of
3.5–5 mL/h, and the voltage in the range of 20–25 kV result in the highest release
rate, the highest encapsulation efficiency, and the lowest average diameter for
fibers. Therefore, to achieve optimal conditions, these values should be considered.
These findings open up new roads for future design and production of drug-loaded
polymeric nanofibers with desirable properties and performances by machine
learning methods.

KEYWORDS

machine learning, anticancer activity, electrospun nanofibers, electrospinning,
doxorubicin, artificial intelligence

1 Introduction

Doxorubicin (DOX) is one of the most widely used
chemotherapy drugs whose antitumor activity has been proven in
treating a variety of cancers such as breast, lung, bladder, ovary, and
stomach (Sohail et al., 2021). This drug is a class I anthracycline
antibiotic with hydrophilic and fluorescent properties (Ansari et al.,
2024). It acts on the S phase of the cell cycle and interferes with the
structure and synthesis of DNA. DOX causes cell death by
interfering with nucleotides, inhibiting topoisomerase II, and
producing oxygen-free radicals (Pal, 2024). However, this drug
has a short half-life, and a high dose is needed to achieve the
desired therapeutic index, which leads to toxicity and various side
effects on normal cells (Rivankar, 2014). For example, intravenous
injection of high doses causes alopecia, vomiting, cell suppression,
myelotoxic poisoning, gastrointestinal toxicity, cardiac toxicity, and
various arrhythmias (Schrijvers et al., 2023). These issues highlight
the necessity of developing a suitable carrier system to reduce side
effects, reduce cost, and prevent local cancer recurrence.

Over the past few years, researchers have developed various
carrier systems to improve the effectiveness of the DOX for
chemotherapy by lowering the required dose and increasing its
therapeutic outcomes. Among these systems, we can mention
liposomes (Pal et al., 2023), dendrimers (Singh and Kesharwani,
2021), micelles (Almajidi et al., 2023), nanoparticles (Harris et al.,
2022), and nanofibers (Bahmani et al., 2024). Nanofibers are
promising carriers for DOX due to their high surface-to-volume
ratio, porosity between fibers, large specific surface area, suitable
mass transfer, and the ability to tailor encapsulation efficiency and
drug release profile by modifying the features of the nanofibers, such
as morphology, fiber diameter, and composition, and adding

different functional groups to the surface of nanofibers
(Mozaffari et al., 2022).

Electrospinning is a simple and widely used method to scale up
nanofiber fabrication from all kinds of polymers, ceramics,
composites, and semiconductors (Venmathi Maran et al., 2024).
This method produces fibers with diameters ranging from a few
nanometers to a few micrometers by applying a strong electric field
to the polymer solution. The electric field evenly distributes the
induced charges on the surface of the polymer drop. The
electrospinning process involves inducing a uniform distribution
of charges on the polymer drop at the tip of the needle, initiating the
polymer spinning through the generation of a strong enough electric
force (applied voltage), overcoming the surface tension of the
polymer droplet, collecting the charged polymer nanofibers on
the grounded metal plate or collector, and finally obtaining a
polymer mat after solvent evaporation (Keirouz et al., 2023).

Drug-carrying nanofibers offer the advantage of delivering
multiple drugs, along with high encapsulation efficiency and
affordability. Electrospinning can generate fibers with a core-shell
structure to incorporate different drug release profiles. However,
electrospinning is a multi-parameter method in which various
parameters, including polymer solution parameters (such as
molecular weight, density, solvent, electrical conductivity, and
concentration), machine settings (such as voltage, flow rate, and
distance between needle tip and collector), and environmental
conditions (such as temperature and moisture), affect the
characteristics of the resultant nanofibers, like the diameter of the
fibers, the amount of drug loading and release, the mechanical
properties of nanofibers, and the therapeutic effects of the drug
(Figure 1). On the other hand, it is impossible to control and check
all these parameters simultaneously in vitro and in vivo evaluations.
In silico computational and optimization algorithms could be a
useful facility in predicting and controlling the mentioned
parameters. Artificial intelligence (AI) technology can aid in
assessing medicine and drug release systems. Although some
environmental parameters, such as temperature, humidity,
pressure, and solvent boiling point can also affect the procedure,
they have been ignored in most studies, and utilizing them was
unavailable.

Integrating AI and machine learning (ML) approaches with
nanomedicine and tissue engineering technologies leads to the

Abbreviations: AI, Artificial intelligence; CNTs, Carbon nanotubes; DOX,
Doxorubicin; LSSVR, Least square support vector regression model; LW-
KPLSR, Locally weighted kernel partial least squares regression; ML,
Machine learning; MAE, Mean Absolute Error; MSE, Mean Squared Error;
PLSR, Partial least square regression; PSO, Particle Swarm Optimization;
PLLA, Poly-L-lactic acid; PAN, Polyacrylonitrile; PLA, Polylactic acid; PVDF,
Polyvinylidene fluoride; PCR, Principal component regression; RF, Random
forest; RMSE, Root Mean Squared Error; SHCC, Secondary hepatocellular
carcinoma; SVM, Support Vector Machine.
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design and development of smart drug release systems with rational
design, high efficiency, and predefined functions (Lin et al., 2022).
This advancement accelerates the transfer of drug-carrier systems
from research settings to their practical use in clinical settings. The
rapid growth of computing power, a large volume of data, and
different data analysis algorithms have made it possible for AI to
assess and predict all the parameters mentioned above in DOX
carriers based on existing research findings in the literature (Lin
et al., 2022; Serov and Vinogradov, 2022).

Numerous studies have explored the application of machine
learning computations in electrospinning from different
perspectives (Sukpancharoen et al., 2024; Subeshan et al., 2024).
Toscano et al. (2020) carefully examined the electrospinning of
polyacrylonitrile (PAN) at a concentration of 10% using a
combination of experimental investigation and data-driven
modeling. They reported subjecting the acquired data to three
machine learning techniques: Lasso, random forest (RF), and
support vector machine (SVM). According to their study, the RF
model demonstrates a high level of predictability, with an average
relative error of around 15% when making predictions on testing
data over 100 replications (Toscano et al., 2020).

Pervez et al. (2023a) used Taguchi’s statistical orthogonal design
to construct a model known as locally weighted kernel partial least
squares regression (LW-KPLSR) for predicting the diameter of the
electrospun nanofiber membrane made from chitosan. Based on
their study, through employing the LW-KPLSR model, the
coefficient of determination (R2) reached 0.9996, which is an
exceptional accuracy value in ML modeling techniques.

Although other researchers have made efforts to explore the
novelties of ML application in solving electrospinning challenges
and predicting the resulting outcomes (Pervez et al., 2023b; Sarma

et al., 2022; Shin et al., 2021; Wang et al., 2020), the topic is still a
broad and underexplored area, and studies have not
comprehensively covered the key aspects of this field. ML
techniques can successfully train on drug-loaded nanofibers,
specifically encapsulated via electrospinning techniques, to
predict the system and its outputs (Khedri et al., 2022).
Therefore, there is an urgent need to comprehensively explore
the potential of ML in enhancing both the efficiency and
effectiveness of electrospinning, especially in drug delivery
systems that employ electrospun fibers. Hence, this study focuses
on developing a new supervised machine-learning analysis of
doxorubicin-loaded electrospun nanofibers. The primary objective
is to determine the optimal parameters for the electrospinning of
drug-loaded nanofibers across different materials to achieve the best
loading efficiency, a high drug release profile, and enhanced
therapeutic efficacy.

2 Materials and methods

Multiple previously published in vitro and in vivo evaluations on
DOX-loaded electrospun nanofibers were considered, and their
corresponding data were collected by the authors. For data
analysis and the machine learning approach, four sequential steps
were taken as follows: (1) data preprocessing (data cleaning), (2)
feature importance, (3) model training and evaluation, and (4)
model optimization. The applied dataset consisted of 12 features
and 4 labels. The features were divided into two main categories as
fixed and additional features, in which the first category included
two subgroup features as (i) inputs related to the machine conditions
(flow rate (mL/h), distance (cm), and voltage (kV)); and (ii)

FIGURE 1
A schematic diagram illustrates that electrospinning is a multi-parameter method in which various parameters, including polymer solution
parameters (such asmolecular weight, density, dielectric constant of solvent, additivemolecular weight, additive concentration, and drug concentration),
machine parameters (such as voltage, flow rate, and distance between needle tip and collector), and study parameters such as drug release and
anticancer activity study times, affect the properties of the resultant nanofibers, such as the diameter of the fibers, the amount of drug loading and
release, encapsulation efficiency, and anticancer activity.
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materials associated parameters, which consisted of polymer
molecular weight (Mw, kDa), polymer density (g/cm3), additive
molecular weight (Mw, kDa), additive concentration (wt.%), DOX
concentration (wt.%), dielectric constant of solvent, and polymer
concentration (wt.%). The latter feature category included drug
release time (day) and anticancer activity study time. Table 1
summarizes the details of all feature categories. Moreover, in this
study, average diameter (nm), encapsulation efficiency, drug release
percentage, and anticancer activity were considered as outputs
or labels.

2.1 Data cleaning

In the first step of data cleaning, the Box-Cox transformation
was applied to transform each of the dataset columns (both features
and labels) to achieve a dataset with the normal distribution.

2.2 Feature importance

The next step involved removing 126 missing values from the
dataset. The imputation process was performed using the
fancyimpute package and Soft-Impute for imputing missing
values. The missing features were approximated, in which each
feature or label was scaled between 0 and 1 via min-max scaling to
guarantee comparability and consistency in the dataset. This scaling
for a feature or label X of a data sample is shown in Equation 1:

XScaled � X − XMin

XMax − XMin
(1)

Where X is the feature or label that is desired to be labeled, and XMin,
XMax, and XScaled are the minimum, maximum, and scaled values of
the desired feature or label, respectively. The dependence of each
label on another was investigated through the feature importance
step prior to the modeling step. For measuring the feature
importance of each label, Spearman’s rank correlation coefficient

was calculated between one specific output and various inputs for
finding the strength of a relationship between a pair of features or
labels, which ranges from 1 to −1.

Although there are various correlation coefficients, in this study,
Spearman’s correlation coefficient was applied because of its
promising advantages, which include simplicity, non-linearity
support, and computational efficiency. Equations 2 and 3 can
calculate the Spearman’s correlation coefficient for a pair of
features and labels X and Y. This coefficient helps to understand
the interdependencies among variables in the dataset.

rs � 1 − 6∑d2
i

n n2 − 1( ) (2)
di � R Xi( ) − R Yi( ) (3)

Where R(Xi) and R(Yi) are rank values of the ith data
correspond to X (feature) and Y (label), respectively. It should be
highlighted that the time considered for evaluating the drug release
% is effective in the acquired values for drug release percentage. Also,
investing time in researching the anticancer activity is efficient in
anticancer activity data outcomes. This information guides the
selection of training datasets for the development of ML models.
Finally, Table 2 summarizes the import of four groups of datasets for
training the ML model.

2.3 Model training and evaluation

The next step involved training and testing the SVMmodel. The
SVM model is designed for regression and prediction of continuous
values and seeks to find a function to accurately predict complex and
nonlinear data by maintaining the maximum margin between the
data points and the prediction function and keeping the prediction
errors within a certain range (ε). However, careful parameter tuning
and proper kernel selection are necessary for optimal performance.
Parameters and values for developing the SVM model for each label
are outlined in Table 3.

TABLE 1 Input features of the current study.

Inputs

Fixed features Flow rate (mL/h) (Machine conditions)

Distance (cm)

Voltage (kV)

Polymer molecular weight (kDa) (Materials associated parameters)

Polymer density (g/cm3)

Additive molecular weight (kDa)

Additive concentration (wt.%)

Doxorubicin concentration (wt.%)

Dielectric constant of solvent

Polymer concentration (wt.%)

Additional features Drug release time (day)

Anticancer activity study time
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The applied dataset was divided into two sections: a training set
(80% of the whole dataset) and a testing set (20% of the whole
dataset). For the evaluation of the model’s performance, three
evaluation metrics, including Mean Absolute Error (MAE)
(Equation 4), Mean Squared Error (MSE) (Equation 5), and Root
Mean Squared Error (RMSE) (Equation 6), were tested and
compared (Hyndman and Koehler, 2006). R(Xi) and R(Yi) are
rank values of the ith data correspond to X (feature) and Y (label),
respectively.

MAE � 1
n
∑n
i�1

Yi − f X( )i
∣∣∣∣ ∣∣∣∣ (4)

MSE � 1
n
∑n
i�1

Yi − f Xi( )( )2 (5)

RMSE �
���������������
1
n
∑n
i�1

Yi − f Xi( )( )2√
(6)

2.4 Model optimization

The optimization process was performed via the Particle Swarm
Optimization (PSO) algorithm to fine-tune three key control
optimization parameters, such as C1 (cognitive coefficient), C2
(social coefficient), and Omega (inertia weight). C1 determines how
much a particle should be influenced by its personal best position, while
C2 controls the influence of the global best position found by the
swarm. Omega controls the particle’s momentum, affecting how much
it maintains its previous velocity. Through trial and error optimization,
we determined the optimal values to be C1 = 0.4862, C2 = 2.5067, and
Omega = −0.2887 (Pedersen, 2010). These values balance the
algorithm’s exploration and exploitation capabilities: the relatively
low C1 reduces individual particle bias, the higher C2 encourages
convergence toward the global best solution, and the negative Omega
helps prevent premature convergence by allowing particles to change
direction more readily (Pereira, 2011).

3 Results and discussion

3.1 Evaluation of model accuracies

The dataset of this study contained 12 inputs (features) and
four outputs (labels), which were tested through the SVM
model. As mentioned previously, three evaluation indices,
namely, MAE, MSE, and RMSE, measured the accuracy of
the applied model. The final results are summarized in
Table 4, demonstrating the capability and precision of the
predictive model in elucidating the relationships between the
input variable and output labels. Also, scatter-plots are
presented in Supplementary Figures S1–S4.

MAE is a simple interpretation of the average magnitude of
errors in a set of forecasts (regardless of their magnitude and
direction) that uses the same units as the output variable to
express the average error. Since MAE uses the same penalty for
large and small errors, it is not desirable in applications where
larger errors are more important (Hyndman and Koehler, 2006).
MSE can give greater weight and sensitivity to larger errors than
outliers by measuring the mean squared errors (the mean squared
difference between the estimated values and the true value) and
squaring the differences. However, this squaring of errors causes
the adverse effect of several large errors on the overall metric and
does not accurately reflect the performance of the model (Hastie
et al., 2009).

RMSE, by expressing the root mean squared errors in the same
units as the output variable, is known as a measure of the degree of
dispersion of the residuals and provides a satisfactory degree of data
division ratio. A smaller RMSE indicates better accuracy, but the
high impact of outliers in it leads to a lack of a complete picture of
the model’s performance (Pervez et al., 2023b). Utilizing these
criteria, it is possible to obtain a comprehensive assessment of
the forecasting performance of SVM models and determine the
error distribution, overall accuracy, and sensitivity of this model
to outliers.

TABLE 2 Used input features for each label.

Label (output) Used features Total features

Average diameter 10 fixed features 10

Encapsulation efficiency 10 fixed features 10

Anticancer activity 10 fixed features +1 additional feature (anticancer activity study time) 11

Drug release percentage 10 fixed features +1 additional feature (drug release time) 11

TABLE 3 Parameters of trained SVM model.

Labels Gamma C Epsilon

Average diameter 41.50438 32.19417 6.44520 × 10−5

Encapsulation efficiency 1.16007 30.52169 1.23861 × 10−3

Drug release percentage 3.49121 12.33292 1.60926 × 10−5

Anticancer activity 0.85080 41.04649 0.08052

TABLE 4 Evaluation indices of the trained model performances.

Label MAE MSE RMSE

Average Diameter 43.74205 8361.02123 91.43862

Encapsulation Efficiency 2.35201 117.63967 10.84618

Drug Release Percentage 3.21023 47.71458 6.90757

Anticancer Activity 13.14296 99.67285 9.98362
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3.2 Feature importance

Feature importance analysis resulted in measuring the
importance score and relative importance score (%). The relative
importance scores (%) for each label are depicted in Figure 2. As
shown, among the four investigated labels in this study, the average
diameter of nanofibers is strongly influenced by the distance, which
is a machine-condition feature. However, three other labels,
including encapsulation efficiency, drug release percentage, and
anticancer activity, are highly influenced by the features of the
materials used for the fabrication of nanofibers. For
encapsulation efficiency and drug release percentage, the polymer
concentration plays a significant role, and anticancer activity is
dependent on the polymer density.

Figure 2 demonstrated that the factors that significantly affect
the average diameter, such as distance and polymer density, have a
more direct influence on the physical properties and structure of the
polymer layer. Parameters like polymer concentration and flow rate
might have a smaller, more subtle effect because their impact is only
noticeable under certain conditions or within a specific range. The
other parameters might be optimized or controlled in such a way

that they do not significantly alter the average diameter, thus leading
to their minimal effect in our model.

3.3 Model optimization

As previously mentioned, PSO is used for hyperparameter
tuning. The results of the feature optimization are summarized in
Table 5. This table shows the optimization points of each feature for
reaching the minimum average diameter and the maximum
encapsulation efficiency, drug release percentage, and anticancer
activity. For instance, for obtaining the minimum average diameter,
the maximum encapsulation efficiency, the drug release percentage,
and the anticancer activity, polymer density should be 1.5299,
1.1960, 1.1983, and 1.5207, respectively. The optimization results
are depicted in Figure 2, focusing on the three features with the
highest relative importance score according to their investigated
labels, as tabulated in Table 6.

As previously mentioned, electrospinning uses
electrohydrodynamic processes to produce nano- and micro-scale
fibers by placing a drop or polymer solution, which is placed under a

FIGURE 2
Relative feature importance score (%) of (A) average diameter, (B) encapsulation efficiency, (C) drug release percentage, and (D) anticancer activity. A
highly important feature for the average diameter is distance, which is a machine condition feature. However, three other labels, including encapsulation
efficiency, drug release percentage, and anticancer activity, are highly dependent on thematerial’s associated parameters and features. For encapsulation
efficiency and drug release percentage, the most important parameter is polymer concentration, and anticancer activity is dependent on the
polymer density more than other parameters.
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high-voltage electric field. This method utilizes a device that includes
parts of a feeding pump, a voltage source, and a material collection
part. The feeding pump features a needle that receives an electric
field. A Taylor cone of polymer solution forms at the end of the
needle due to the interplay of the material flow from the feeding
pump and the application of voltage (Keirouz et al., 2023). Next, the
polymer solution is thrown towards the collector plate, and then the
solvent in the solution evaporates, and dried and solid fibrous
networks are formed.

Multiple applications for nano/micromaterials produced by this
method are considered, from electronics and batteries to
pharmaceuticals, food packaging, and medical applications, with

a focus on tissue engineering, drug delivery, and nanoencapsulation.
In medical applications, the produced nanofibers should meet
particular characteristics, including size, surface-to-volume ratio,
and porosity, which are evaluated experimentally to ensure the
proper functionality of nanomaterials for target applications
(Khedri et al., 2022). This work analyzes the DOX encapsulation
in electrospun nanofiber mats using ML and carefully explores the
optimal points for each of these parameters.

3.4 Average diameters of nanofibers

According to the analyses performed on the gathered data,
among machine-related parameters like voltage, flow rate, and
the distance between the needle and the collector, and material-
related parameters like polymer concentration, polymer molecular
weight, and DOX concentration, the most significant effective
parameter on the size and diameter of the fibers is dedicated to
the distance between the needle and the collector (Figure 2A). This
coefficient of influence is based on the output obtained from
ML training.

It should be noted that all device parameters and polymer
solution characteristics are influential and important in the
production and preparation of fibers. All these parameters are
interdependent, such that without optimizing the concentration
of the polymer solution, fibers cannot be produced at any
distance. Furthermore, it can be emphasized that by altering the
distance and operational conditions, more uniform and desirable
nanofibers can be obtained. Hence, among the device parameters,

TABLE 5 Features optimization points for each label.

Label
Features

The minimum average
diameter (nm)

The maximum
encapsulation efficiency

The maximum drug
release percentage

The maximum
anticancer
Activity

Polymer Molecular
Weight (kDa)

80.8597 474.8010 318.1338 262.0249

Polymer Density 1.5299 1.1960 1.1983 1.5207

Additive Molecular
Weight (kDa)

493.0598 188.3852 250.7143 83.3650

Additive
Concentration (wt.%)

0.0848 22.3219 2.5661 23.2383

Dox
Concentration (wt.%)

1.0044 9.6091 2.0584 3.1828

Dielectric Constant of
Solvent

14.8257 65.1107 5.3971 25.8070

Polymer
Concentration (wt.%)

0.2593 7.1982 6.6184 0.1391

Flow Rate (mL/h) 0.8129 15.0100 19.6483 6.2994

Distance (cm) 15.0380 13.0735 14.1093 19.5443

Voltage (kV) 19.9763 31.2323 46.1441 26.7860

Drug release time (hours) __ __ 0.2208 __

Anticancer activity study
time (day)

__ __ __ 15.4382

TABLE 6 Three features with the highest importance (for each label).

Label Related most importance (for each
label)

Average diameter Distance
Polymer density

Polymer concentration

Encapsulation efficiency Polymer concentration
Dielectric constant of solvent

Voltage

Drug release percentage Polymer concentration
Distance
Flow rate

Anticancer activity Polymer density
Polymer concentration
Dox concentration
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the distance parameter has shown the greatest influence on the
diameter of nanofibers.

Studies have shown that most previous works use a distance of
8–26 cm between the tip of the needle and the collector. Studies have
shown that fibers with larger diameters are produced at shorter
distances (Haider et al., 2018;Wen et al., 2021). It can be seen that by
increasing the distance from 8 cm to 15 cm, the average diameter of
the produced nanofibers decreases, and at 15 cm, the lowest
diameter of nanofibers has been reported. The adjustment of the
needle-to-collector distance is a parameter that largely depends on
the properties of the polymer solution and the applied voltage of the
device. As we move away from this area toward either end of the
range, the production of fibers and their uniformity are expected to
decrease (Figure 3A).

Previously, the ability of other machine learning models to
estimate the diameter of electrospun fibers has been proven.
Pervez et al. (2023b) developed a new LW-KPLSR model
integrated with response surface methodology to predict
nanofiber membrane diameter. Using electrospinning process
data from three case studies, they investigated various parameters
such as voltage, flow rate, polymer solution concentration, and tip-
to-needle distance. Their results showed that the LW-KPLSR model
performed better than other used models such as principal
component regression (PCR), fuzzy, partial least square
regression (PLSR), locally weighted partial least squares
regression (LW-PLSR), and least square support vector regression
model (LSSVR) models, which was proved by lower values of RMSE
and MAE as well as high R2 (up to 0.9989). They showed that this

model can help quickly optimize the electrospinning process and
achieve the desired membrane diameter.

The polymer density, a crucial parameter affecting the average
diameter of nanofibers, demonstrated a substantial influence,
accounting for 46% of the variations in the average fiber
diameter (Figure 2A). After comprehensive exploration in the
literature, it is notable to report that the density of the polymers
used in these studies varied between 0.5 and 1.6 g/cm3. Research
findings indicate that by increasing the density of polymers from
0.5 to 1.2 g/cm3, the average diameter of fibers does not change;
however, beyond the density of 1.3 g/cm3, the average diameter of
the fiber decreases. A higher density of 1.529 g/cm3 creates the
smallest diameter of nanofibers, suggesting an optimal density
(Figure 3B). Polymer density influences parameters such as
viscosity, surface tension, adhesion, and chain entanglement in
the polymer solution. Probably, with the increase in the density
of the polymer, the amount of chain entanglement in the polymer
solution increases. This means that molecules and polymer chains
stretch continuously.

Polymer concentration is another parameter that affects the
ability to produce fibers from the polymer solution and, in turn, their
shape and size (Angel et al., 2020). The data extracted from the
previous studies shows the polymer concentration mostly varies
from 1 to 50 wt.% in the polymer solution, and that the size of fibers
increases as polymer concentration increases. With the increase in
the viscosity of the solution used in the electrospinning process, the
formation of larger cones at the tip of the needle leads to an increase
in the diameter of the nanofibers (Khedri et al., 2022).

FIGURE 3
Optimization trends of average diameter: (A) distance, (B) polymer density, (C) polymer concentration, (D) schematic presentation of selected
parameters (red-colored) influencing the average diameter of drug-loaded electrospun nanofibers.
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When viscosity increases, it affects how the material flows from
the tip of the needle, resulting in the nanofibers not being able to
stretch effectively, which in turn increases their diameter.
Additionally, at the tip of the needle, due to increased viscosity, a
larger Taylor cone is formed, causing the liquid to exit the needle
more slowly. This can lead to the ejection of larger droplets of
material, meaning that instead of forming a thin and continuous jet,
larger masses of material are released from the needle. Ultimately,
these factors work together to result in an increased diameter of the
nanofibers. However, at concentrations beyond 9 wt.%, the average
diameter of the fibers remains constant (Figure 3C).

Similar to the polymer density, the concentration of the polymer
solution, affects the characteristics of viscosity, surface tension,
adhesion, and chain entanglement (Ogazi and Osifo, 2023). Sarma
et al. (2022) used black-box models and a model-agnostic interpretable
game theory approach as an efficient approach to determine the optimal
conditions for the electrospinning of polyvinylidene fluoride (PVDF)
and the relationships between variables. Their results showed that
PVDF fiber diameter is affected by various parameters such as
polymer concentration, relative energy difference, and feed, which is
in agreement with our results. Typically, a concentration below 9 wt.%
could be regarded as a favorable concentration, efficient fiber
production, and adaptable for multiple practical applications. A
schematic presentation of selected parameters (red-colored)
influencing the average diameter of the fiber is shown in Figure 3D.

Based on the analysis conducted, it is observed that
nanofibers with a uniform structure, measuring below the

average diameter of 500 nm, can be produced at
concentrations below 10 wt.%. In fact, a concentration of
9 wt.% can be identified as the optimal concentration for the
production of nanofibers under 500 nm. Studies focusing on drug
incorporation into fibers have identified the average diameter,
shape, porosity, and uniformity of fibers as essential factors for
their proper practical applications, particularly in drug delivery
applications where consistent homogeneity and small fiber sizes
are key considerations (Abdulhussain et al., 2023).

3.5 Encapsulation efficiency

The utilization of electrospun nanofibers is highly valued for
their notable capacity to efficiently load bioactive substances. These
nanofibers are favored due to their ease of operation, cost-
effectiveness, and high encapsulation efficiency, which are vital
for efficient drug delivery applications like DOX loading into the
fibers. The success of encapsulation efficiency in nanofiber materials
can be controlled by several factors, including a high surface-to-
volume ratio, significant porosity, and effective trapping facilitated
by polymer chains.

In the analyses conducted on the impact ratio of the input
parameters on the encapsulation efficiency, it has been ascertained
that the parameter of polymer concentration holds significant
importance, scoring 100%. The effectiveness coefficients for the
parameters of solvent properties, voltage, polymer molecular

FIGURE 4
Optimization trends of encapsulation efficiency: (A) polymer concentration, (B) dielectric constant of solvent, (C) voltage, and (D) schematic
presentation of selected parameters (red-colored) influencing the encapsulation efficiency of drug-loaded electrospun nanofibers.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Rostami et al. 10.3389/fbioe.2025.1493194

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1493194


weight, distance, and polymer density are 65%, 63%, 60%, 50%, and
40%, respectively (Figure 2B). These results emphasize the
significance of managing different input parameters to maximize
the encapsulation efficiency of bioactive compounds in nanofibers.
This graph showing the influence coefficients of the input
parameters and how they affect the amount of DOX
encapsulation makes it clear that all of the parameters have an
influence coefficient higher than 15%.

The efficacy of encapsulation is contingent upon the generation
of appropriate and high-quality fibers, with all parameters playing a
significant role in attaining this objective. Based on the optimal
parameters, the encapsulation efficiency is significantly influenced
by the polymer concentration.

Figure 4A shows that concentrations ranging from 0.1% to 16%
have the highest encapsulation efficiency. When the concentration
of polymers exceeds 20%, there is a reduction in drug loading. Such
reduction in drug loading is likely attributed to a decline in the fiber
production capability at higher polymer concentrations. Our data
analysis demonstrated that there is a higher frequency of data falling
within the range of 1%–16%.

Furthermore, as the range extends towards its upper limit, there
is a noticeable decrease in loading efficiency. Yu et al. (2015) used the
incorporation of DOX-carrying carbon nanotubes (CNTs) (DOX@
CNTs) into electrospun poly (lactic-co-glycolic acid) (PLGA)
nanofibers as a substrate for cancer therapy. Their results showed
that the nanofibers had a smooth design and a uniform distribution
of nanoparticles, and the PLGA/DOX@CNTs platform could

effectively inhibit HeLa cell viability in vitro. The DOX was
released from the composite nanofibers in a sustained and
prolonged manner, and as a result, a significant anticancer effect
was obtained in in vitro conditions. 20% polymer concentration
leads to 81.50% encapsulation, and the change in the amount of
CNTs does not change this amount, which indicates the importance
of polymer concentration in drug encapsulation, which is in
agreement with our results.

The dielectric constant is another significant factor that
contributes to enhancing the encapsulation efficiency,
demonstrating an influential value of 64% to enhance the
encapsulation of DOX in the solvent (Figure 2B). It was found
that changing the dielectric constant of the solvent from 1 to
40 results in a higher level of encapsulation efficiency; beyond
the dielectric constant of 40, there is no further increase in the
encapsulation efficiency. Hence, to obtain a higher encapsulation
efficiency, a minimum value of solvent dielectric constant should be
at least 40 (Figure 4B).

The fabrication process of electrospun fibers widely recognizes
the voltage parameter as a highly influential factor. There is a
consistent increase in encapsulation efficiency within the voltage
range of 10–23 kV. It is important to acknowledge that the range
commonly employed in electrospun fiber production research is
typically between 10 and 35 kV (Figure 4C). There is a potential
correlation between the voltage parameter and the dielectric
constant in enhancing the efficacy of the drug, as both are
associated with the characteristic of electric charge conduction.

FIGURE 5
Optimization trends of drug release percentage: (A) polymer concentration, (B) distance, (C) flow rate, and (D) schematic presentation of selected
parameters (red-colored) influencing the drug release percentage of drug-loaded electrospun nanofibers.
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Liu et al. (2013) used Poly-L-lactic acid (PLLA) (6 wt.%) fibers
loaded with DOX for local chemotherapy against secondary
hepatocellular carcinoma (SHCC). The voltage of 1.9 kV and the
dielectric constant of 11.22 led to the loading of only 6 wt.% of the
drug in these nanofibers and the death of 90% of the tumor cells,
which could be a proper confirmation for the parameters
optimization via our ML model performed in this study. A
schematic presentation of selected parameters (red-colored)
influencing the encapsulation efficiency is shown in Figure 4D.

3.6 Drug release percentage

The drug release behavior within the anticipated time frame is a
crucial attribute of electrospun nanofibers that significantly
influences the research application and objectives (Khedri et al.,
2022). According to the analysis of the data, the most important
input parameters for controlling drug release are polymer
concentration, the distance between the needle and collector, and
flow rate. The release rate of the drug from the electrospun fibers was
primarily influenced by the concentration of the polymer
(Figure 2C). A greater polymer concentration results in a higher
drug release over time. An upward trend is observed in the amount
of release as the polymer concentration ranges from 1 to 11, reaching
a maximum release of approximately 100% at a polymer
concentration in the range of 6.618%–11% (Figure 5A).

As the concentration increases, we observe enhanced stability
and a corresponding reduction in drug release at higher
concentrations. Data analysis reveals that the optimal threshold
for drug release is a polymer concentration of 6.618%–11%. The
presence of high concentrations likely hindered the reduction of
fiber production, as the density of the polymer posed a potential
barrier to the release of drugs.

Furthermore, the distance between the needle and the collector
emerges as a significant parameter in drug release. Typically, the
distance falls within the range of 5–25 cm, which plays a significant
role in the manufacturing process of fibers as well as their
production capacity (Figure 5B). It is evident that there is a
discernible upward trend in the amount of drug release when the
distance is increased from 8 cm to 15 cm. Subsequently, the amount

FIGURE 6
Optimization trends of anticancer activity: (A) polymer density, (B) polymer concentration, (C)Dox concentration, and (D) A schematic presentation
of selected parameters (red-colored) influencing the anticancer activity of drug-loaded electrospun nanofibers.

TABLE 7 The best optimal range of features for obtaining theminimum fiber
average diameter, the maximum encapsulation efficiency, the maximum
drug release percentage, and the maximum anticancer activity.

Features Optimal range

Polymer Molecular Weight (Mw, kDa) 80.85–474.80

Polymer Density (g/cm3) 1.19–1.53

Additive Molecular Weight (Mw, kDa) 83.36–250.71

Additive Concentration (wt%) 0.08–23.23

Dox Concentration (wt%) 1.01–9.61

Dielectric Constant of Solvent 5.39–65.11

Polymer Concentration (wt%) 0.14–7.19

Flow Rate (mL/h) 0.81–19.65

Distance (cm) 13.07–19.54

Voltage (kV) 19.97–46.14
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of drug release decreases. In order to have themaximum drug release
percentage, the optimal point for distance between the needle and
the collector is identified as 14.109 cm. Moreover, it reveals that the
highest level of encapsulation has been observed at the specific
coordinate of 13.073 cm. Note that the fibers exhibiting the smallest
diameter have been generated at a distance of 15 cm. Thus, we can
conclude that the most effective region for maximum drug release,
minimum fiber diameter, and maximum encapsulation efficacy is
observed within the range of 13–15 cm.

The flow rate is an additional effective parameter in the process of
electrospinning. The relative impact factor of this parameter on the
drug release percentage is calculated at around 70% (Figure 2C).
Depending on the type of polymer solution, the flow rate in
electrospinning machines is usually selected between 0.1 and
5 mL/h. However, research findings indicate that the typical flow
rate used for electrospinning ranges from 1 to 3 mL/h. Furthermore,
the studies revealed that a flow rate of approximately 1 mL/h yielded
the maximum drug release, which significantly decreased as the flow
rate escalated to 5 mL/h (Figure 5C). Dai et al. (2017) used a pearl
powder/Polylactic acid (PLA) composite containing DOX for targeted
drug delivery. Their results showed the optimal loading of DOX in
nanofibrous scaffolds. Most importantly, the flow rate of 0.9 mL/h
resulted in DOX delivery rates ranging from 59% to 97%, which
increased further with the increase of pearl powder, and the anticancer
effect of the drug on HeLa cells was better demonstrated (Dai et al.,
2017). A schematic presentation of selected parameters (red-colored)
influencing the drug release percentage is shown in Figure 5D.

3.7 Anticancer activity

The predominant applications of nanofibers are associated with the
encapsulation and delivery of pharmaceutical substances. The
effectiveness of drugs, such as those with anticancer properties, is
dependent on production characteristics, encapsulation efficiency, and
drug release rate. All input parameters that influence the anticancer
property exhibit a relative impact factor of more than 40% (Figure 2D).
The polymer density exhibited the greatest influence, which subsequently,
the concentration of the polymer solution is followed by the DOX
concentration, with coefficients of 80% and 60%, respectively.

By elevating the polymer density beyond 0.5, the activity of the
anticancer properties showed a significant increase of over 80%, as
presented in Figure 6A. The increased quantity has resulted in a
consistent improvement in its anticancer efficacy. In the case where
the polymer density value is 1.2, the anticancer property has
achieved a 100% level of activity. It has been determined that a
polymer density of 1.520 points is the maximum value of polymer
density for the manufacturing of nanofibers, which have near 99%
anticancer activity.

The concentration of the polymer is the second parameter
influencing the anticancer activity of drug-loaded nanofibers, with
concentrations ranging from 1 to 10 wt.% exhibiting the highest
proportion of anticancer activity, followed by a decline beyond this
concentration range, demonstrating the destructive effect of elevated
polymer concentrations for fiber fabrication (Figure 6B).

It is essential to note that there exists a generally linear
correlation between these two parameters, where an increase in
polymer concentration correlates with a rise in density. Moreover,T
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the molecular weight of the polymer significantly influences this
relationship, as higher molecular weight polymers tend to form
more physical entanglements, resulting in a denser material
structure that can enhance the mechanical properties of the
resulting fibers. These entanglements also play a crucial role in
fiber formation, impacting key characteristics such as diameter,
shape, and overall morphology. Higher concentrations facilitate
increased entanglements, leading to better-defined fiber
structures. Therefore, selecting appropriate values for both
density and concentration is critical for accurate analysis, and
employing empirical data alongside modeling approaches can
provide deeper insights into their interactions, ultimately
contributing to improved fiber quality and performance.

The drug concentration parameter is the third factor that influences
the efficacy of anticancer fibers. The concentration of drugs and their
subsequent release play a crucial role in determining the efficacy of the
anticancer properties of nanofibers. The amount of drug released from
the system directly influences the manifestation of its anticancer effects.
The analysis reveals that the drug exhibits the most pronounced
anticancer properties when administered at concentrations ranging
from 0 to 4 wt.%, with an effective point of 3.182, representing the
most pronounced impact on anticancer activity. At this particular
dosage, optimal efficiency and maximum release have been attained,
and higher dosages yield no further benefits (Figure 6C). A schematic
presentation of selected parameters (red-colored) influencing the
anticancer activity is shown in Figure 6D.

Our analysis revealed that each input (feature) could influence the
outputs (labels) of the electrospinning procedure of DOX-
encapsulated nanofibers. This SVM model exhibited the best
optimal range of multiple features for obtaining the minimum
fiber average diameter, the maximum encapsulation efficiency, the
maximum drug release percentage, and the maximum anticancer
activity as four labels (Table 7). The essential point to declare is that
this analysis is based on the published in vitro and in vivo studies,
which reported DOX-loaded nanofibers produced via an
electrospinning procedure. As the anticancer study and drug
release times are different in various studies, they could not have
an optimum range. The overall statistics of the utilized dataset are
summarized in Table 8 and extracted-data references of DOX-loaded
electrospun nanofibers are gathered in Supplementary Table S1.

4 Conclusion

Several techniques have been employed for the delivery of
doxorubicin as a chemotherapeutic agent. Among these
techniques, electrospinning has emerged as a prominent method
for the fabrication of nanomaterials, owing to its favorable attributes
for drug encapsulation. This approach has garnered significant
attention from researchers, who have repeatedly utilized it in
their investigations. These nanomaterials stand out for their
remarkable drug encapsulation efficiency, enhanced by the use of
cost-effective and suitable polymeric materials that can
accommodate various polymer types.

Numerous investigations have been conducted to explore the
encapsulation of doxorubicin within various polymeric materials,
with the aim of facilitating drug delivery in cancer chemotherapy.
Several parameters have been identified as influential factors in the

production process, fiber characteristics, and drug loading of
nanofiber materials, aiming to achieve high encapsulation
efficiency and optimal anticancer activity. The aforementioned
parameters are associated with the characteristics of the device as
well as the properties of the polymer materials. Researchers have
employed machine learning to enhance their prospective endeavors.

Our study highlights that various pertinent parameters play a
significant role in the production of fibers and drug encapsulation,
each possessing distinct effectiveness factors. We have demonstrated
the impact of each parameter on key outcomes such as the overall
features, average diameter of fibers, encapsulation efficiency, drug
release, and anticancer activity. Furthermore, the optimal values for
each parameter have been identified. According to our model, the
distance, polymer density, and polymer concentration are the three
main factors affecting the diameter of nanofibers; the distance of
15.0380 cm, the polymer density of 1.53 g/cm3, and polymer
concentrations of below 9 wt.% were introduced as optimal
values to fabricate DOX-loaded electrospun nanofibers with the
minimum average fiber diameter.

The polymer concentration, dielectric constant of solvent, and
machine voltage are effective parameters for encapsulation
efficiency. According to our model, to have the highest
encapsulation efficiency, the polymer concentration, dielectric
constant of solvent, and machine voltage should be less than
15 wt.%, more than 30, and more than 20 kV, respectively. On
the other hand, to have the highest release percentage, the polymer
concentration should be at least 6.618 wt.%, the distance should be at
least 14.109 cm, and the flow rate should be less than 5 mL/h.
Optimum conditions of anticancer activity are achieved in a
polymer density of 1.2–1.520 g/cm3, polymer concentration from
1% to 10 wt%, and Dox concentration of more than 3.182 wt.%.
Therefore, to achieve optimal conditions, these values should be
considered.

In this study, we clearly confirmed that the SVM machine
learning model is capable of determining optimal intervals for
fiber production, thereby eliminating the necessity for extensive
trial and error in subsequent research endeavors. The findings
demonstrate the optimal and appropriate values for each
parameter, as well as the impact of each parameter on the output
data. However, this model’s limitations, such as the need for
significant memory to store support vectors, the long time to
train large datasets, its sensitivity to noisy data and outliers, its
sensitivity to kernel selection, the need for special scaling, and its
difficult interpretability, have limited its application, which requires
more extensive studies.
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