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This study aims to provide an in-depth analysis of the mechanical behavior of
deep fascia through a comprehensive multidimensional characterization,
including uniaxial, biaxial, and planar tension tests. To determine material
parameters via test fitting, both a newly developed coupled exponential
energy function and a previously proposed uncoupled exponential
model—both considering two perpendicular fiber directions—are evaluated.
For the uniaxial response, the mean stress measured was 3.96 MPa in the
longitudinal direction and 0.6 MPa in the transverse direction at a stretch (λ)
of 1.055. In planar tension tests, stress values of 0.43 MPa and 0.11 MPa were
recorded for the longitudinal and transverse directions, respectively, at λ = 1.72.
Under equibiaxial loading conditions, the mean stresses were 3.16 MPa and
1.2 MPa for the longitudinal and transverse directions when λ reached 1.037,
respectively. The fitting results indicate that while the uncoupled exponential
model effectively captures the uniaxial and equibiaxial experimental data, it fails to
predict other mechanical responses accurately. In contrast, the coupled
exponential strain energy function (SEF) demonstrates robust performance in
both fitting and prediction. Additionally, an analysis was conducted to assess how
the number and combination of tests influence the determination of material
parameters. Findings suggest that a single biaxial test incorporating three loading
ratios is sufficient to accurately capture and predict uniaxial, planar tension, and
other biaxial strain states.
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1 Introduction

The medical field is evolving due to computational technologies such as artificial
intelligence, computational simulations, and extended reality. These technologies have the
potential to guide processes and improve biomedical outcomes (Samant et al., 2023).
Ramachandra et al. (2016) demonstrate how computational simulation can be used to study
surgical procedures. It provides a powerful tool for simulating the hemodynamics and wall
mechanics of grafts in patient-specific coronary artery bypass procedures. Additionally, it
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enables the characterization of variations in mechanical stimulus
indices between arterial and venous surgeries (Ramachandra et al.,
2016). Pavan et al. (2015) focus their study on fascia simulation
using finite element analysis, which facilitates the interpretation of
the correlation between alterations in the volume and pressure of
muscle compartments and the deformation of the crural fascia.

Fascia is a tissue of great importance, yet it remains largely
unexplored. It consists of collagenous connective tissue that
surrounds and interpenetrates skeletal muscles, joints, organs,
nerves, and vascular structures. Fascial tissue forms a whole-
body, three-dimensional viscoelastic matrix that provides
structural support (Klingler et al., 2014). According to Langevin
and Huijing (2009), it is composed of three main structures: the
superficial fascia, located directly beneath the skin, consisting of
dense and areolar connective tissue along with fat; the deep fascia, a
continuous sheet primarily made of dense, irregularly arranged
connective tissue that restricts changes in the shape of underlying
tissues; and muscle-related layers, characterized by irregularly
arranged collagen fiber sheets that envelop muscles and may
include both dense and areolar connective tissue layers.

Fascia forms a continuous network throughout the body and
plays a crucial role in transmitting mechanical forces between
muscles (Findley et al., 2012). Under basal tension from muscle
insertions, the fascia maintains an inherent state of tension. When
muscles contract, their insertions transmit a portion of the traction
to the fascia, activating nerve endings embedded within its structure
(Stecco et al., 2007), which provide essential sensory feedback to the
brain about the body’s state. However, fascia is not merely a passive
force transmitter. Schleip et al. (2019) found that fascial tissue
exhibits a contractile response to different pharmacological
agents, suggesting active behavior. Another key function of fascia
is elastic energy storage, where energy accumulated during the
stance phase is later released to propel the limb forward during
the swing phase (Eng et al., 2014). Additionally, fascia helps regulate
mechanical stress by absorbing, storing, and releasing kinetic energy
(Zullo et al., 2017).

Concerning the mechanical behavior and biomechanics of
fascia, it is known that fascia is an incompressible tissue; thus,
the application of large displacement theory for incompressible,
non-linear, and anisotropic materials should be employed (Findley
et al., 2012). Its anisotropic behavior is attributed to the spatial
orientation of collagen fibers, which vary along the sheet to ensure
an appropriate response to mechanical demands. Like other soft
tissues, fascia also exhibits viscoelastic properties, partly due to fluid
movement within its solid matrix and the friction between its fluid
and solid components (Peña et al., 2008).

To better understand fascia behavior under both normal and
pathological conditions, as well as the relationship between structure
and function, a numerical formulation capable of describing its
mechanical properties is highly useful (Stecco et al., 2009). Several
studies have been conducted to characterize these mechanical
properties, including constitutive models that associate material
properties with microstructure and parameters. Because different
strain states exist, various testing protocols have been developed,
such as uniaxial, biaxial, pure shear, and planar tension tests. Pavan
et al. (2015) performed uniaxial tests and proposed a constitutive
model for the crural fascia. Eng et al. (2014) and Pancheri et al.
(2014) carried out biaxial and planar tests, respectively, proposing

constitutive models based on the microstructure. However, these
studies only considered a single strain state. Ruiz-Alejos et al. (2016)
examined both uniaxial and pure shear properties, proposing a
constitutive model that incorporates two strain states. However, this
study did not include biaxial testing, and according to Sednieva et al.
(2020), biaxial testing provides a more accurate representation of
fascia loading than uniaxial or pure shear testing.

The present work aims to investigate in depth the mechanical
behavior of the deep fascia through a multidimensional
characterization, incorporating uniaxial (UT), biaxial (BxT), and
planar tension (PT) tests. Although constitutive models for
connective tissues, such as tendons and ligaments, already exist,
the unique anatomical and histological characteristics of the fascia
require adaptations to these models (Stecco et al., 2009). To
determine material parameters through test fitting, we analyze a
previously proposed uncoupled exponential-type strain energy
function (SEF) (Pancheri et al., 2014) and introduce a newly
proposed coupled SEF that accounts for two perpendicular fiber
directions, following Stecco et al. (2009). Uncoupled structural
models are unable to provide accurate fits when considering
perpendicular anisotropic directions; therefore, a new coupled
SEF is proposed based on Costa et al. (2001) and modified using
invariants (Laita et al., 2024). In addition, we conducted a test
combination study to identify the optimal set of experiments that
yield parameters capable of both fitting and predicting different
deformation states. The fitting process provides a parameter set that
ensures that computational simulations can be performed with
confidence, regardless of the deformation state being simulated.

2 Materials and methods

We propose three mechanical tests (UT, BxT, and PT) to
reproduce the strain states in which the fascia primarily
functions. Both selected constitutive models are structural
models, which means that the model parameters are associated
with the structural components of the tissue. Therefore, a
relationship must exist between the parameter values and the
physiological function of the corresponding tissue component.
The two different SEFs are analyzed using the mean curves
obtained from experimental tests. Finally, an analysis is
performed to determine the number of tests needed for proper
fitting and prediction.

2.1 Multidimensional characterization

The uniaxial tensile test is the most widely used method for
material characterization (Calvo et al., 2010; Martins et al., 2010;
Stecco et al., 2013). It provides stiffness measurements through
Young’s modulus, and if the sample undergoes loading and
unloading cycles, it also offers insights into viscoelastic properties
(Peña et al., 2010). Soft biological tissues such as the arteries, heart,
and fascia contain fibers oriented in different directions, forming
their internal structure. As a result, their mechanical response varies
depending on the loading direction (Guo et al., 2023; Ren et al., 2022;
Eng et al., 2014). Biaxial tensile tests are commonly used to evaluate
the mechanical anisotropy of these tissues (Takada et al., 2023).
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However, uniaxial or biaxial tests do not always fully characterize
deformation states. In certain cases, tissue behavior cannot be solely
described as uniaxial or biaxial, making it necessary to include
planar tension tests. For example, Acosta Santamaría et al. (2015)
investigated the mechanical behavior of the linea alba in the context
of laparotomy closure using planar tension tests. For these reasons,
in this work, a multidimensional characterization was conducted
using UT, PT, and BxT to replicate the strain states in which the
fascia primarily functions.

2.1.1 Sample preparation
The fascia tissues were obtained from male sheep aged 1 year and

harvested by veterinarians at the University of Zaragoza. The animals
were sacrificed in a slaughterhouse for another study, which does not
affect the results or the purpose of this work. After euthanasia
(pentobarbital sodium, 8 mL), the fascia lata, attached to the
aponeurosis of the tensor fasciae latae muscle, was removed. Once
the fascia sheets were dissected, they were frozen at −20°C until the
testing day. Previous experience from various experimental tests in our
laboratory indicates that cryopreservation helps maintain mechanical
properties. Our findings are supported by Stemper et al. (2007), who
demonstrated that specimens preserved for 3 months using standard
freezing techniques retained their physiological, subfailure, and rupture
mechanical properties. The fascia sheet is thawed on the same day it is
tested. Once it reaches room temperature, muscle and connective tissue
residues are removed using a blade, and samples are cut.

A specific punch was designed for each test: for UT, a dog-bone
punch with a central region of interest measuring 25 mm × 5mm (5:
1 aspect ratio), with 25 mm between clamps, was used. For PT, a
rectangular punch with a 5 mm × 35 mm region of interest (1:
7 aspect ratio) and a distance of 5 mm between the clamps was used.
Finally, for BxT, a cruciform punch was chosen, with a central region
of interest measuring 15 mm × 15 mm.

After cutting the samples, a black paint spray was applied to
create randomized markers for tracking points and measuring the
strain map. To prevent slippage between the fascia and clamps,
sandpaper was fixed to the ends of the samples using cyanoacrylate
glue (Loctite 401), as shown in Figure 1.

To avoid dehydration effects, UT and BxT tests were conducted
while submerged in PBS solution (sodium chloride physiological
solution, BioUltra tablet, Sigma-Aldrich GmbH). For PT, pneumatic
clamps were required, so a humidifier was used to maintain proper
hydration conditions, as the sample size prevented using a
submerged testing chamber.

Following Stecco et al. (2009), the collagen fibers in adjacent
fascia layers are oriented in two preferred directions, forming an
angle between 80° and 90°. For our model, we assume a 90°

orientation between anisotropy directions, referring to them as
the longitudinal and transverse directions. When collecting
samples, the longitudinal direction corresponds to the primary
fiber alignment within the tissue. To ensure proper orientation,
the punch’s longitudinal axis was aligned parallel to these
macroscopically distinguishable fibers. We obtained samples in
the transverse direction by rotating the punch 90° from this position.

2.1.2 Histological analysis
Histological sections were analyzed using Masson’s trichrome

(Figure 2A), where collagen appears in blue, and Picrosirius Red

(Figures 2B, C), which, under polarized light, reveals collagen fibers
in red-orange against a black background.

2.1.3 Mechanical testing and protocols
Fourteen uniaxial tests were considered, seven for each

direction, from a total of 15 longitudinal and 13 transverse
samples to obtain the mean curve. In addition, 20 biaxial tests
and 17 planar tension tests were performed—nine in the
longitudinal direction and eight in the transverse direction, with
six tests used to determine the mean curves for each strain state.

UT and PT followed the same protocol: three strain levels (2.5%,
5%, and 7.5%) with a strain rate of 10%/min were applied, subjecting
the sample to five cycles at each level. After the last cycle was
completed, the sample was stretched to rupture. The sample was first
placed on the upper clamp, and a load balance was performed to
compensate for the weight effect. The other end of the sample was
then attached to the bottom clamp and stretched to achieve a
0 N load. Once at 0 N, the chamber was filled with PBS, and a
second load balance was conducted to compensate for the fluid effect
before stretching the sample to the pre-load level.

UT tests were performed using the Instron MicroTester 5548,
equipped with steel clamps and a 50 N load cell with a sensitivity
of±0.025% of the measured load. The pre-load level was set at
0.08 N, following Pancheri et al. (2014). For PT, the Instron
MicroTester 5848 was used, featuring pneumatic steel clamps
and a 50 N load cell. A pre-load value of 1.5 N was chosen to
ensure a proper initial state.

For the biaxial protocol, a strain level of 10% and a strain rate of
20%/min were applied, along with five loading ratios: 1:1, 0.5:1, 1:0.5,
and 0.75:1, denoted as E1, E2, E3, E4, and E5, respectively. The first
value of each ratio corresponds to the longitudinal direction. Ratios
E1 to E3 were used to fit the material parameters, while E4 and
E5 were employed to evaluate the predictive capability of the
constitutive model. Each ratio was tested over five cycles. Biaxial
tests were conducted using the Instron Planar Biaxial Soft Tissue
Test System, equipped with four 50 N load cells. Steel clamps were
used, with sandpaper glued to the sample using Loctite 401 and
secured with screws to prevent slippage between the sample and the
clamps. According to Vitucci (2024), the sample geometry can lead
to errors. However, this phenomenon was studied by Cilla et al.
(2019), suggesting that our geometry and clamped system leads to
shear stresses in the central region close to zero. A pre-load value of
0.5 N was established.

UT and BxT tests were recorded at a frame rate of 3 Hz using the
LaVision camera system. The acquired images were processed using
the free version of GOMCorrelate, a digital image correlation (DIC)
software for tracking patterns and computing displacements and
deformations. A virtual gauge was defined, as shown in Figure 3B,
and strain values were obtained from this gauge. The initial position
and length of the virtual gauge were kept consistent across all tests to
minimize potential sources of error and variability. In soft tissues,
the displacement between clamps is typically larger than in the
central region. Because the formulation is valid only in the central
region, DIC was necessary to accurately measure deformations in
the region of interest. For PT, the DIC system was not used because
the distance between clamps was small, making it reasonable to
assume that clamp displacement corresponded to the displacement
of the region of interest.
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2.2 Constitutive models

Soft tissues are usually modeled as composite materials
consisting of an isotropic base material reinforced by collagen
fibers aligned in two different directions (Peña et al., 2010).

To ensure an accurate reproduction of the fascia’s mechanical
response, two material models have been considered (Laita et al.,
2024). The first model, based on Holzapfel et al. (2000) and
proposed by Pancheri et al. (2014), assumes exponential
uncoupled volumetric-deviatoric responses and has been widely
used to describe the mechanical behavior of fiber-reinforced soft
tissues (Peña et al., 2010; Calvo et al., 2010; Eng et al., 2014). The
second model, proposed herein, is a modified exponential invariant-
based version of the Costa model (Costa et al., 2001), as introduced
by Laita et al. (2024), which considers a coupled response. Within
the framework of hyperelasticity, both models assume the tissue is
incompressible, undergoes large displacements, and exhibits non-
linear anisotropic behavior.

2.2.1 Fundamental equations
An arbitrary point identified by its position vector, X, belonging to

an undeformed configuration called reference configuration, Br, is
chosen. The external mechanical forces deform Br, therefore, X has a
new position x � χ(X) belonging to the deformed configuration B. The
deformation of the body is described by the vector field χ, which assigns
to points X a particular position x in B and attributes a particular
reference position X in Br to each point x (Holzapfel et al., 2000).

Following the standard notation, we call F the deformation
gradient tensor relative to Br and define it as F � ∇χ(X), with the

Cartesian components FiJ � ∂xi/∂XJ with i, J ∈ {1, 2, 3}. J is the
determinant of the deformation gradient tensor F representing the
local volume ratio. The left and right Cauchy–Green deformation
tensors are defined as B � FFT and C � FTF, respectively.

The theory of hyperelasticity describes the elastic behavior of a
body through a strain energy function, denoted as Ψ, which is
defined per unit volume in the reference configuration Br. This work
assumes an incompressible material, hence J � det F ≡ 1. The first
Piola–Kirchhoff tensor P and the Cauchy stress tensor σ are given by
Equation 1:

P � ∂Ψ
∂F

− pF−1 σ � F
∂Ψ
∂F

− pI, (1)

where p is the hydrostatic pressure. The two directions of anisotropy
are given by the unit vectors M and N in the undeformed
configuration Br. Structural tensors are defined, following
Spencer (1971) and Ogden (2001), as M ⊗ M and N ⊗ N. Then,
the form of Ψ is reduced to the dependence on the principal
invariants I1, I2, I3 of C and I4, I5, I6, I7, I8 of M and N. Based
on the structure of fascia and following the simplification suggested
by Holzapfel et al. (2000), we reduce the number of invariants to
I1, I4, I6. Therefore, the expression of the Cauchy stress tensor is
reduced to Equation 2:

σ � 2Ψ1B + 2Ψ4m ⊗ m + 2Ψ6n ⊗ n − pI, (2)
where Ψi � ∂Ψ/∂Ii with i ∈ {1, 4, 6}, m � FM, n � FN, and
invariants are defined as follows: I1 � trC, I4 � M · (CM),
and I6 � N · (CN).

FIGURE 1
Preparation of a PT sample: (A) sample on a sandpaper frame, (B) sandpaper frame glued to the fascia, and (C) sample placed in the testing machine
with pneumatic clamps and screws. The frame sides are cut prior to testing.
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Following experimental observations in Section 2.1.1, this work
considers a 90° angle between anisotropy directions; thus, unit
vectors are defined as

M � 1, 0, 0{ } N � 0, 1, 0{ }.
For planar tissue, components of the deformation gradient F can

be expressed by Equation 3:

F �
F11 F12 0
F21 F22 0
0 0 F33

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (3)

Finally, for each deformation state, and assuming incompressibility
(λ1λ2λ3 � 1), the deformation gradient tensor is given by Equation 4:

FUT �
λi 0 0

0 1/ 		
λi

√
0

0 0 1/ 		
λi

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ FPT �
λi 0 0

0 1 0

0 0 1/λi
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FBxT �
λ1 0 0

0 λ2 0

0 0 1/λ1λ2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(4)

where i � 1, 2 1 refers to the longitudinal direction, while 2 refers to
the transversal direction.

2.2.2 Uncoupled strain energy function
The uncoupled SEF based on Pancheri et al. (2014) is expressed

as a combination of two parts: one related to the homogeneous
properties of the substrate material and the other to the anisotropy
resulting from the included fibers. It follows Equation 5:

Ψ � Ψiso + Ψaniso � Ψiso I1( ) + Ψfib4 I4( ) + Ψfib6 I6( ). (5)

The isotropic contribution of the matrix, Ψiso, is modeled
following the Demiray exponential strain energy function
(Demiray, 1972) expressed by Equation 6:

Ψiso � μiso
2α

exp α I1 − 3( )[ ] − 1{ }, (6)

where μiso is a positive stress-like parameter and α is a dimensionless
material parameter.

The anisotropic part of the model, Ψaniso, also follows an
exponential strain form; it has two uncoupled terms, one related
to the longitudinal direction (l) and the other to the transverse
direction (t) and is expressed by Equation 7:

Ψfib � μl
2kl

exp kl I4 − 1( )2[ ] − 1{ } + μt
2kt

exp kt I6 − 1( )2[ ] − 1{ }. (7)

The parameters μiso, μl, and μt are positive stress-like
parameters; α, kl, and kt are dimensionless parameters. μl and μt
quantify the level of anisotropy, while kl and kt are associated with
the respective directions.

According to Equation 2 and following the definition for Ψi, we
obtain Equation 8:

Ψ1 � μiso
2

exp α I1 − 3( )[ ]
Ψ4 � μl exp kl I4 − 1( )2[ ] I4 − 1( )
Ψ6 � μt exp kt I6 − 1( )2[ ] I6 − 1( ).

(8)

We denote this model as uncoupled because the derivatives ofΨ
with respect to Ii, Ψi, depend only on Ii, Equation 8.

FIGURE 2
Histological sections of fascia: (a, b), stained with Masson’s trichrome and Picrosirius Red, respectively, show the different collagen fiber densities in
the longitudinal (L) and transverse (T) layers. (c), stained with Picrosirius Red, reveals collagen fibers under polarized light.
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2.2.3 Coupled strain energy function
The proposed coupled SEF is based on the one proposed by

Costa et al. (2001) and Laita et al. (2024) for myocardial tissue and is
given by Equation 9:

Ψ � C0 eQ − 1( ), (9)
where C0 is a positive stress-like parameter, andQ is the exponent of
the exponential function that includes the isotropic and anisotropic
character. This work proposes Q as the sum of three terms: a linear
term for the isotropic matrix contribution and two quadratic terms
related to the anisotropy directions. Thus, Q is defined as
Equation 10:

Q � C1 I1 − 3( ) + C2 I4 − 1( )2 + C3 I6 − 1( )2, (10)
with C1, C2, C3 being dimensionless parameters. The quadratic term
dependent on I4 represents the longitudinal fiber direction, while the
term dependent on I6 is associated to the transverse direction.
Following Equation 2 shown before, the terms Ψ1, Ψ4, and Ψ6

are given by Equation 11:

Ψ1 � C0 C1 e
Q Ψ4 � C0 C2 e

Q 2I4 − 2( )
Ψ6 � C0 C3 e

Q 2I6 − 2( ). (11)

We denote our proposed SEF as coupled due to the terms Ψi

depending on all invariants that are associated with the isotropic and
anisotropic contributions through eQ.

2.3 Fitting procedure, combination of tests,
and model comparison

A MATLAB script was developed to analyze the optimal
combination of tests and optimize the fitting process. Five types

of tests were available for fitting (UT, PT, E1, E2, and E3). The
number of tests to combine could be chosen while leaving the rest for
prediction, in addition to E4 and E5 biaxial ratios. In this way,
combinations of three tests were conducted for both uncoupled and
coupled models to study the structural parameters obtained by
fitting. The model that provides the best fitting and prediction
was chosen to study the combinations with different numbers of
tests involved.

Given p, a vector of the q unknown parameters of the SEF, the
referred minimization problem can be stated as Equation 12:

min
p

‖χ p( )‖22 � min
p

Σ
N

i�1
σ i − σΨ1( )2[ ]( ), (12)

where N is the number of considered points, σ is the stress
computed from the experimentally measured force, σΨ is the
analytical stress, q is the number of parameters of the SEF, and
the overlined symbols refer to the mean.

For choosing the proper combination p*, we analyze the
R-square error, R2, the root mean square error (RMSE), ε, and
the relative error err* (Destrade et al., 2017) of the fit and predictive
processes for all possible combinations, as described in Equation 13:

R2 � 1 − ∑N
i�1 σ i − σΨi( )2∑N
i�1 σΨi − σΨ( )2 ε �

									∑N

i�1 σ i−σΨi( )2
N−q

√
�σ

err* � max
i

σ i − σΨ p*( )
σ i

( )∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣.

(13)

Following the incompressibility hypothesis (λ1λ2λ3 � 1), the
analytical expressions for the non-null Cauchy stress terms
obtained from our proposed coupled exponential SEF for the
biaxial strain state are described by Equations 14, 15:

FIGURE 3
Biaxial testing setup: (A) Instron Planar Biaxial Soft Tissue Test System during a test and (B) image from DIC analysis. Note that the region of interest
for strain calculation is defined by the area corresponding to the width of the clamps.
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σ l � −2 C0 eC1 I1−3( )+C2 I4−1( )2+C3 I6−1( )2 C1 − C1 λ4l λ2t + 2 C2 λ4l λ2t − 2 C2 I4 λ4l λ2t( )
λ2l λ2t

,

(14)
σt � −2 C0 eC1 I1−3( )+C2 I4−1( )2+C3 I6−1( )2 C1 − C1 λ2l λ4t + 2 C3 λ2l λ4t − 2 C3 I6 λ2l λ4t( )

λ2l λ2t
.

(15)
In the case of a uniaxial strain state, the analytical expressions

are given by Equations 16, 17:

σ l � −2 C0 eC1 I1−3( )+C2 I4−1( )2+C3 I6−1( )2 C1 − C1 λ3l + 2 C2 λ3l − 2 C2 I4 λ3l( )
λl

,

(16)
σt � −2 C0 eC1 I1−3( )+C2 I4−1( )2+C3 I6−1( )2 C1 − C1 λ3t + 2 C3 λ3t − 2 C3 I6 λ3t( )

λt
.

(17)
Finally, for the planar tension strain state, the expressions are

given by Equations 18, 19:

σ l � −2 C0 eC1 I1−3( )+C2 I4−1( )2+C3 I6−1( )2 C1 − C1 λ4l + 2 C2 λ4l − 2 C2 I4 λ4l( )
λ2l

,

(18)
σt � −2 C0 eC1 I1−3( )+C2 I4−1( )2+C3 I6−1( )2 C1 − C1 λ4t + 2 C3 λ4t − 2 C3 I6 λ4t( )

λ2t
.

(19)

3 Results

3.1 Histological results

The longitudinal layer is characterized by a high density of collagen
fibers forming fascicles, whereas the transverse layer is thinner, as
illustrated in Figure 2A. The results demonstrate that fascia is a highly
organized tissue with a clearly defined bilayered structure, as shown in
Figure 2B. These layers intersect at an angle of approximately 90°. It can
be observed that the transverse layer contains only a single row of

collagen fibers, a finding consistent with Pancheri et al. (2014).
Figure 2C, stained with Picrosirius Red and observed under
polarized light, highlights the nearly 90-degree angle between the layers.

3.2 Mechanical experiments

Fascia lata, which surrounds the principal muscles of limbs, works
preferentially along one direction, with most of the collagen fibers
following this preferred direction, which we denoted as longitudinal;
hence, thematrix and fiber transversal directionwill play a secondary role
in themechanics and functionality of the fascia. Proof of this is the curves
for the uniaxial tests shown in Figure 4. For a stretch of λ � 1.055, the
longitudinal behavior is totally different from transverse, while σ1 has an
average stress value of 3.96 ± 1.15MPa (mean ± STD), σ2 only achieves a
value of 0.60 ± 0.50 MPa. Following the mechanical behavior that soft
tissues usually exhibit, the test begins with an initial zone with no stress
increment, and then a strain increment appears (toe region). This is
because the unfolding fibers are being stretched; when a value of λ �
1.020 is reached, an exponential increase in stress values is experienced.

The planar tension test uses a large aspect ratio between width and
length to measure shear properties. According to Moreira and Nunes
(2013), for small deformations, the stress–stretch response for planar
tension and simple shear is the same. Nevertheless, a divergence
between planar tension and simple shear occurs for stretch values
greater than 1.30. As we are far from λ values of 1.30, we consider planar
tension valid for measuring simple shear properties. Curves for planar
tension shown in Figure 5 describe a mechanical behavior with a
longitudinal direction that exhibits greater stiffness in contrast to the
transversal direction of fibers, as we observed in the uniaxial test.
Longitudinal stress values are 4.77 ± 2.45 MPa (mean ± STD), whereas
in the transversal direction, we observed 1.13 ± 0.51MPa for a λ value of
1.072. A less pronounced non-linear behavior is observed compared to
uniaxial curves. Regarding the deviation of the longitudinal curves from
the mean, it has been noted that planar tension exhibits greater
dispersion.

FIGURE 4
Mean and STD (shaded) for Cauchy stress σ [kPa] and stretch λ [−]
curves for the longitudinal (red) and transverse (blue) fibers subjected
to a uniaxial test.

FIGURE 5
Mean and STD (shaded) for Cauchy stress σ [kPa] and stretch λ [−]
curves for the longitudinal (red) and transverse (blue) fibers subjected
to a planar tension test.
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The mean curves depicted in Figure 6 correspond to the last load
cycle at each ratio for biaxial tests. The equibiaxial ratio (1:1) exhibits
greater stiffness in both the longitudinal and transverse directions than
in uniaxial and planar tension tests. Stretching one fiber family implies
an increase in the stiffness of the other. Evidence of this effect is clearly
observed by comparing the E1 and E4 ratios: Using the equibiaxial as a
reference and considering the described effect of the ratios, a greater

stretch in one direction leads to a stiffer curve in the opposite direction
than the equivalent curve in the equibiaxial ratio, ensuring the proper
performance of the biaxial test. This can be observed in Figure 6F, where
the mean curves for each direction and ratio are presented.

Table 1 compiles the meanmaximum stress and strain values for
each direction and ratio obtained. We include the anisotropy ratio
(η � σ l/σt), defined as the ratio between the longitudinal stress value
and the transverse stress value for a specific λ value. In order to
compare η across the equibiaxial, uniaxial, and planar strain states, a
stretch value of 1.037 has been chosen as a reference.

The η for the uniaxial test exhibits the highest value, of 6.08,
followed by the η of the planar tension test, which reaches 3.21 and
finally, the equibiaxial, where we found a η value of 2.12. The obtained
values for η are reasonable given the characteristics of the different
strain states, as the equibiaxial test involves both directions. As observed
in Figure 6, increased stretching in one direction results in a stiffer curve

FIGURE 6
Mean and STD (shaded) Cauchy stress σ [kPa] and stretch λ [−] curves for the longitudinal (red) and transverse (blue) fibers subjected to different ratios
in the biaxial test. (A) corresponds to the equibiaxial (1:1) ratio, while the curves in (B) show the ratio 0.5:1; (C), (D), and (E) correspond to the ratios 1:0.5,
0.75:1, and 1:0.75, respectively. (F) represents the mean Cauchy stress and stretch curves for both longitudinal and transverse fibers across all ratios.

TABLE 1 Mean value for σ (mean ± STD) and η for equibiaxial, uniaxial, and
planar tension strain states at a stretch value of 1.037.

Test σ1 [MPa] σ2 [MPa] η [−]

Equibiaxial 2.92 ± 1.17 1.38 ± 0.49 2.12

Uniaxial 1.58 ± 0.92 0.26 ± 0.27 6.08

Planar tension 1.22 ± 0.59 0.38 ± 0.19 3.21
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in the opposite direction. Evidence of this is that the maximum
transversal stress, σ2, for λ equal to 1.037 is obtained with the
equibiaxial test.

A common point observed in all tests is the significant deviation
found in the experiments. Two factors contributing to this could be the
extraction area, as regions closer to the tendon or bone may exhibit
greater stiffness, and the local mechanical demands the tissue must
withstand. If one area supportsmore stress than another, the fiber density
must be higher.

3.3 Constitutive modeling

Fitting is used to determine the parameters that define the model. It
is based on a minimization problem where successive iterations of the
parameters are performed until reaching a minimum in Equation 12.
The objective of this step is to compare whether the uncoupled or

coupledmodel is more appropriate based on their fitting and prediction
capabilities. Figure 7 represents the average experimental curve for the
fifth loading cycle (dashed lines) for each direction and the curves
obtained from the fitting (solid lines) through theminimization process.
Fitting accounts for the entire range of deformation reached in the
different biaxial tests. However, for both the uniaxial and planar tension
tests, the maximum values ofλ only reach 1.04. Thus, all tests are fitted
within the same range of deformation.

We derive the parameters for the fitting process by combining three
tests. When the uncoupled model (based on Pancheri et al., 2014) was
applied, the optimal combination of test with no constraints in the value
of parameters was E1, E3 and PT (Figure 7A) with R2

fit � 0.964 and
R2
pred � 0.879. Regarding the structural parameters, the following values

were obtained: μiso � 1470 kPa, α � 113.47, μl � 2442
kPa, kl � 167.19, μt � 0.00 kPa, kt � 0.01. We observe that
the parameters associated with the family of transverse fibers are equal
to zero, which is not physiologically plausible. If we consider the model

FIGURE 7
Fitting of the uncoupled model (A) and the coupledmodel (B) for the optimal combination of tests. Solid lines refer to the Cauchy stress from fitting,
while the dash-dotted lines represent the mean Cauchy stress from experiments. Red lines indicate the longitudinal direction, and blue lines indicate the
transversal.
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as structural, there must be a relationship between the parameter
and the tissue’s physiology. On the other hand, for the
coupled model proposed in this work, the optimal
combination was the ratios E1, E2, and E3 (Figure 7b) with R2

fit �
0.972 and R2

pred � 0.878, the values of the structural parameters
were C0 � 13.88 kPa, C1 � 28.78, C2 � 124.62, C3 � 49.07.
Unlike the uncoupled model, the parameter values in this case
align with the expected structural function. The parameter

associated with the longitudinal direction is greater than that of
the transverse direction, and the latter is greater than that of the
matrix. Comparing err* (see Equation 13) in both models for the
maximum R2

fit obtained with the uncoupled model (E1, E3, and PT),
the coupled model exhibits lower relative errors, especially when the
transversal direction is fitted, as shown in Figure 8. The longitudinal
direction has a similar relative error in both models along λ, but it is
slightly lower in the coupled model. The fitting for the uncoupled

FIGURE 8
Comparison of the err* for the coupled and uncoupled models for the test combination with the best R2

fit . The uncoupled model fitting was
performed with constraints to ensure the parameters have physical meaning.
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model was performed while considering constraints to ensure the
physical meaning of the parameters. The relative error indicates that
the proposed model achieves better results when different strain states
are evaluated for soft-fibered tissues with fiber orientations close to
90°. The graphs show that the model better fits stress values for
λ> 1.005. Note that err* � 0 means the model perfectly matches the
experimental stress.

Observing the better fitting, improved prediction, and
the physiological relevance of the parameters, the coupled

model was chosen to study how the combination of tests
affects the model’s predictive capability, considering its
structural nature.

3.4 Constitutive model predictions

In this section, the combination of one to five tests is analyzed. It
is essential to strike a balance between fitting and prediction. When

TABLE 2 Material structural parameters from fitting for the different combinations of tests using the proposed coupled strain energy function.

Combination C0 [kPa] C1 [−] C2 [−] C3 [−] R2
fit εfit R2

pred εpred

E1 13.02 32.13 129.28 40.00 0.994 0.087 0.882 0,406

E2 7.88 1.13.10−5 230.96 155.52 0.999 0.032 0.719 0.686

E3 4.29 135.68 149.29 1.17.10−5 0.995 0.089 0.620 1,084

UT 13.66 1.00.10−5 147.36 36.72 0.990 0.128 0.499 0.951

PT 13.80 1.26.10−5 129.99 61.49 0.995 0.071 0.442 0.843

E1, E2 16.42 1.00.10−5 152.17 78.89 0.986 0.147 0.803 0.494

E1, E3 12.35 60.41 97.06 2.95 0.986 0.149 0.873 0.423

E1, UT 12.57 40.87 124.76 24.09 0.989 0.126 0.854 0.471

E1, PT 11.98 67.93 82.81 1.00.10−5 0.992 0.106 0.846 0.452

E2, E3 4.89 67.96 203.04 120.29 0.988 0.125 0.576 0.971

E2, UT 9.03 86.77 124.90 11.69 0.945 0.270 0.740 0.688

E2, PT 9.36 90.82 78.25 12.47 0.958 0.199 0.856 0.472

E3, UT 7.74 73.24 148.30 11.56 0.978 0.191 0.830 0.590

E3, PT 9.41 94.38 81.30 1.00.10−5 0.967 0.193 0.858 0.486

UT, PT 12.75 1.00.10−5 144.51 52.57 0.968 0.206 0.364 0.994

E1, E2, E3 13.88 28.78 124.62 49.07 0.972 0.211 0,878 0.371

E1, E2, UT 14.08 37.39 116.67 29.28 0.973 0.202 0.870 0.412

E1, E2, PT 13.21 62.27 80.05 7.94 0.976 0.185 0.860 0.408

E1, E3, UT 11.59 62.27 129.16 24.98 0.983 0.166 0.844 0.492

E1, E3, PT 12.42 66.20 84.01 1.00.10−5 0.983 0.157 0.846 0.454

E1, UT, PT 11.11 44.82 122.59 29.37 0.972 0.198 0.859 0.461

E2, E3, UT 7.00 90.18 142.75 26.59 0.953 0.258 0.710 0.739

E2, E3, PT 8.06 111.86 142.75 0.84 0.950 0.228 0.747 0.631

E2, UT, PT 13.25 30.94 116.83 39.75 0.917 0.317 0.894 0.369

E3, UT, PT 11.63 34.20 127.28 33.08 0.942 0.284 0.868 0.442

E1, E2, E3, UT 13.02 39.60 120.63 30.52 0.969 0.222 0.861 0,417

E1, E2, E3, PT 13.46 61.16 81.82 7.78 0.969 0.210 0.858 0.404

E1, E2, UT, PT 12.38 43.22 114.24 30.98 0.960 0.238 0.877 0.403

E1, E3, UT, PT 11.41 46.85 119.01 25.49 0.969 0.215 0.848 0.475

E2, E3, UT, PT 10.86 52.84 117.21 32.45 0.921 0.313 0.918 0.325

E1, E2, E3, UT, PT 12.42 44.79 112.95 25.75 0.958 0.247 0.862 0,406

Bold rows represent the best result of each combination.
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parameters are obtained based on a single strain state, the fitting
error is minimal, but the predictive capability is lost as the
parameters become specific to that strain state.

Table 2 summarizes the material parameters and errors for each
combination. Structural material parameters exhibit similar values,
all within the same order of magnitude, except for the first fitting
using only one test. As shown in Table 2, fitting becomes more
challenging as the number of tests increases and the strain states
become more diverse.

Fitting with two strain states (R2
pred � 0.854; ε � 0.471) implies

losing precision when predicting tissue behavior for other strain
states compared to fitting with three strain states (R2

pred � 0.878;
ε � 0.371). It should be noted that an excessive increase in the
number of tests used for fitting does not necessarily result in an
improvement in prediction error. While increasing from a single
strain state to the combination of two may enhance prediction,
fitting with four tests (R2

pred � 0.861; ε � 0.417) does not yield a
better prediction than fitting with three. In this sense, fitting with
one strain state and with five strain states simultaneously was tested
to corroborate the previous idea. Using only a single test, the E1 ratio
yielded the best results in terms of the physiological meaning of the
parameters and the prediction error R2

pred that was equal to
0.882 with a ε = 0.406; however, the adjustment error R2

fit was
0.994 with ε = 0.087. Using five tests, the fitting error R2

fit is
0.958 with ε = 0.247, and the prediction error worsens with
respect to the combination of three tests (R2

pred � 0, 878;
ε � 0, 371) with R2

pred = 0.862 and ε = 0.406.
Figure 9 illustrates the effect of the number of fitting tests on the

errors in fitting and prediction. For each number of tests combined,
the optimal prediction has been selected; that is, for the combination
of three tests, the R2 and ε values for the E1, E2, and E3 case
are depicted.

Figure 10 depicts the prediction curve for the tests that are not
included when fitting with the three strain states (E1, E2, and E3).

For low strain values, the prediction curve more accurately follows
the real behavior experienced in the test. However, it is also observed
that the biaxial ratio E5 proves challenging to predict because it
represents a strain state that forces greater stiffness in the softer
direction of anisotropy, which contradicts the tests used for fitting.

4 Discussion

Computational simulation is a powerful tool for studying and
analyzing pathologies, treatments, and surgeries in the context of
biomechanics. To achieve accurate results, an exhaustive
characterization and the use of an adequate constitutive model
capable of predicting tissue behavior are necessary. The fascia
forms a continuous structure that can store approximately 20%
of the total force produced by muscles (Blottner et al., 2019). Its
stiffness is associated with plantar fasciopathy (Barreto Rabelo et al.,
2023) and biomechanical responses (Cheung et al., 2004), among
other functions. Computational simulation could help improve the
understanding of its behavior and related pathologies. Despite its
importance, the fascia remains an understudied tissue. For this
reason, we have chosen fascia as the focus of our study.

4.1 Experimental remarks

Throughout this work, a multidimensional characterization has
been presented, including three different tests that reproduce a wide
range of strain states. The results show that fascia is a highly stiff tissue
due to its structure, which consists of layers of collagen fibers spatially
oriented in two directions. The highest deformation observed in our
tests occurs in the plane tension test, reaching a maximum value of
7.5%. In the other tests, the maximum deformation reached is 5%.
These elongation values are consistent with those reported in previous
studies (Eng et al., 2014; Pancheri et al., 2014; Ruiz-Alejos et al., 2016).
Fascia’s mechanical behavior is characterized by high stiffness,
especially when compared to other soft tissues such as the
myocardium and arteries. This stiffness allows the fascia to sustain
high levels of stress with minimal strain, a characteristic typical of
collagenous fibrous tissues like tendons. If tension increases by 8%–
10%, it leads to visible tearing of tendon fibers, ultimately resulting in
tendon rupture (Wang et al., 2012). The difference in stiffness between
the longitudinal and transverse directions is related to the thickness and
number of collagen fibers in each direction, which are greater in the
longitudinal direction than in the transverse direction, as shown in the
histological images in Figure 2A). Similar results were reported by
Pancheri et al. (2014).

Eng et al. (2014) obtained 3.5 MPa in biaxial tests for a strain of
4%, while in our study, we measured 3 MPa for the same strain
range. Pancheri et al. (2014) reported a maximum strain of 6% in
biaxial tests and 8% in uniaxial tests. Regarding maximum stress
values in uniaxial tests, they obtained 7 MPa for a strain level of
5.5%, whereas in our study, we reached 4 MPa at the same strain
level. Comparing stress in biaxial tests, Pancheri et al. (2014)
reported 3 MPa for a 4% strain, which matches our results.
Additionally, Ruiz-Alejos et al. (2016) found that deep fascia
exhibited a stress of 2.5 MPa at 5.5% elongation in uniaxial tests.
Both results are within the same order of magnitude, with the

FIGURE 9
Sensitivity of the fitting and prediction errors as the number of
tests used to obtain the structural parameters increases. R2 and ε
values correspond to the best result of each test combination.
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difference accounted for by deviation. As observed by Pancheri et al.
(2014), the data illustrate that specimens stretched along the
longitudinally oriented fibers exhibit higher stiffness than those
stretched in the transverse direction. Despite the different origins
of the fascia samples, we observed similar values in sheep fascia lata
to those reported by Stecco et al. (2013) for human crural fascia
under the same stretch range. As seen in the literature and
confirmed by our experimental results across different strain
states, fascia exhibits high variability. The stress–strain curves
presented in this work show that this deviation is consistent with
that reported in other experimental studies.

4.2 Constitutive model remarks

In this study, we evaluated the accuracy of the model proposed
by Pancheri et al. (2014). As they described, a generic angle φ is used

despite histological sections showing that collagen fibers form an
angle between 80° and 90° (Stecco et al., 2009). We proposed a
constitutive model based on a coupled strain energy function,
assuming a 90° angle between the anisotropy directions
representing the fiber orientations in the tissue. This assumption
affects the choice of the constitutive model. Referring back to the
formulation in Section 2.2, the unit vectors are defined as M �
{1, 0, 0} and N � {0, 1, 0}, which, in turn, impacts the expressions
used for stress calculation. In the model by Pancheri et al. (2014), the
stress value in one direction does not depend on the other, as seen in
the expressions forΨ1,Ψ4, andΨ6 (Equation 8). Although the model
can fit the experimental data (Figure 11A), issues arise with the
obtained parameters, as they lack structural meaning. Specifically,
the parameters related to the transverse fiber direction are reduced
to 0, effectively neglecting one fiber direction. When we impose
constraints in the minimization problem to ensure that the
transverse parameters remain nonzero and greater than those

FIGURE 10
Prediction results when fitting is performed using three tests (E1, E2, and E3) with the proposed coupled SEF.
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associated with the matrix, the model is no longer able to fit the
experimental data properly, as shown in Figure 11B.

To use an uncoupled constitutivemodel, it is necessary to not assume
that the angle between the anisotropy directions is 90°. Instead, this angle
becomes an additional parameter in the problem, defining the unit
vectors as M � {cos(φ),−sin(φ), 0} and N � {cos(φ′), sin(φ′), 0},
where φ represents the fiber angle relative to the 1-axis, and thus
φ′ = 90°-φ. As stated in Pancheri et al. (2014), φ is a
phenomenological parameter that they compare to the angle formed
by fascia collagen fibers, despite describing a structural strain energy
function (SEF).With the unit vectors defined in terms of sine and cosine,
the analytical expression for stress calculation in one direction depends on
the other. The model we propose in this work effectively fits the
experimental data while assuming that the fibers form a 90° angle
between them. This is because it incorporates both longitudinal and
transverse contributions within the same exponential term, allowing
stress in one direction to depend on the other. Even if the angle were
treated as a parameter, our model could still accommodate it by
incorporating it into the vector definitions, providing flexibility in
considering different anisotropy angles.

Considering these aspects, the parameter fitting process was
optimized using the coupled model proposed in this work. The
main objective is to determine the minimal set of deformation states
required for fitting in order to obtain accurate parameters that enable
reliable predictions of fascia behavior with the fewest possible
experiments.

Regarding the optimal combination of tests among the options
studied and listed in Table 2, greater emphasis was placed on
minimizing prediction error and reducing the number of test types

required, as this directly impacts the number of samples and overall
testing effort. As shown in Figure 9, which illustrates the variation of
fitting and prediction errors with an increasing number of tests, both
R2
fit and R2

pred stabilize and remain constant beyond three tests. This
indicates that including more than three tests in the fitting process does
not enhance prediction accuracy. Additionally, the three necessary
tests—biaxial ratios E1, E2, and E3—belong to the same test type,
reducing the number of specimens required and the overall testing time
by eliminating the need for multiple testing machines.

The aim of a computational model is to enable simulations,
making predictability a crucial factor. Our proposed coupled SEF
demonstrates excellent predictability with only four parameters,
considering that it accounts for three strain states. The material
parameters we propose for characterizing fascia and predicting
various strain states are listed in Table 3.

Throughout this work, we have emphasized the importance of the
obtained parameter values in relation to the structural nature of the
model used for fitting. There must be coherence between these values
and the structural components they represent. In this regard, it is
possible to establish similarities with parameters from other studies. The
parameters determined in this study represent a solution to a problem
that does not have a unique solution. Therefore, direct comparisons of
individual values to establish, for example, a stiffness criterion are not
meaningful. Moreover, even if the two models are structural, their
defining SEFs may differ. In fact, this work presents an SEF distinct
from those proposed by Pancheri et al. (2014) and Ruiz-Alejos et al.
(2016). Regardless of the absolute parameter values, a clear pattern
emerges: parameters associated with the primary fiber direction are
greater than those in the transverse direction. In turn, transverse
parameters exceed those related to the isotropic component, which
corresponds to the tissue matrix and lacks a mechanical function.

4.3 Limitations

This work has some limitations, one of which is that we tested
samples from an animal model rather than human fascia. Although

FIGURE 11
Comparison of the fit for the Pancheri et al. (2014) model: (A) without constraints and (B) with the constraint that the transverse parameters are
greater than those associated with the matrix.

TABLE 3Material parameters proposed for fascia characterization based on
our SEF.

Combination C0 C1 C2 C3

E1, E2, E3 13.88 28.78 124.62 49.07
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our results are similar to those obtained by Stecco et al. (2013), they
cannot be directly extrapolated to the human model. Therefore, the
parameters we propose should be used with caution in simulations
for human studies.

Regarding the coupled SEF proposed in this study, as discussed
by Anssari-Benam et al. (2024), the selection of classical invariants
for the isotropic component may be suboptimal if I2 is excluded, and
similarly for the anisotropic component if I5 and I7 are not
considered. The goal of this study is to develop a model that not
only achieves a good fit but also enhances predictive accuracy across
different deformation states while maintaining a straightforward
formulation. To this end, we have chosen to use models that
incorporate a simple exponential function and standard
invariants commonly referenced in the literature.

Additionally, our model does not account for viscoelastic
properties, which play a significant role in the behavior of soft
tissues. The viscoelastic properties of fascia are typically analyzed
through stress relaxation and dynamic mechanical analysis (DMA),
both of which are widely documented in the literature (Bonifasi-
Lista et al., 2005; Prevost et al., 2011; García et al., 2012; Calvo et al.,
2014). These properties will be the subject of future studies. The
perpendicularity of the fibers is considered; however, soft tissues
exhibit fiber dispersion relative to the main direction. The next step
to enhance the proposed model would be to incorporate a new
parameter for dispersion using techniques such as polarized
microscopy (Sáez et al., 2016). The mechanical behavior of soft
tissues is governed by their underlying microstructure, particularly
the extracellular matrix with embedded collagen fibers. Therefore,
studying the micromechanical behavior of individual fibers can
provide valuable insights into the macroscopic mechanical
response. This approach is commonly used in microstructural
models, where the behavior of individual fibers is represented
and then homogenized by integrating over the surface of a
sphere (Alastrué et al., 2009; Gasser, 2011; Weisbecker et al.,
2015; Sáez et al., 2016). This work focuses on the macroscopic
response and does not account for the micromechanical behavior of
collagen fibers.

5 Conclusion

Characterizing soft biological tissues is challenging due to the
many factors influencing accurate results. Tissue-related
characteristics, such as heterogeneity, harvesting area, and inter-
individual differences within the same species, as well as handling
and testing protocols, can lead to variations across studies. Despite
these considerations, our multidimensional characterization has
yielded stress values that closely match those reported in the
literature for the same strain levels.

This study highlights the importance of considering tissue
characteristics and modeling assumptions when selecting an
appropriate constitutive model. We assumed that fiber directions
form an approximately 90° angle, which necessitates the use of a
coupled constitutive model. An uncoupled model fails to properly fit
the parameters under the condition that transverse parameters are
neither 0 nor lower than the isotropic ones, as we consider the model
to be structural. Furthermore, the uncoupled model lacks
predictability, making it unsuitable for future simulations. These

limitations motivated the development of the coupled SEF proposed
in this work. Using this coupled model, we can accurately predict
uniaxial, biaxial, and planar tension strain states with a single set of
parameters.

Beyond proposing a new SEF that addresses the challenge of
modeling anisotropic directions at 90°, we also analyzed the impact
of the number of tests on fitting and prediction. Our results
demonstrate that increasing the number of fitting tests does not
improve the prediction of other strain states. Specifically, the biaxial
ratios E1, E2, and E3 are sufficient to predict uniaxial, planar tension,
and biaxial strain states.

The diversity of tests, the well-defined testing protocols, the
experimental stress-strain curves, and their comparison with
literature values, combined with the proposal of a new SEF and
material parameters capable of predicting different strain states,
provide a comprehensive and accurate understanding of the
mechanical behavior of fascia. In addition to introducing a study
on test combinations, this work offers valuable insights that
contribute to a deeper understanding of fascia mechanics.

6 Statement of significance

Fascia is a collagen-rich soft tissue that has recently gained
increasing importance in human physiology. Understanding its
mechanical behavior is essential for comprehending its functions.
To achieve this, we conduct a multidimensional characterization
that includes different strain states. Additionally, we analyze two
constitutive models: one widely used and another proposed in
this study. Our findings highlight the importance of tissue
structure when selecting an appropriate constitutive model.
The primary goal of a constitutive model is to accurately
predict strain states, which depends on the material
parameters obtained through fitting. Therefore, this study also
explores the combination of mechanical tests to optimize the
fitting process.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

Ethical approval was not required for the study involving
animals in accordance with the local legislation and institutional
requirements because animals were sacrificed in the slaughterhouse
for another study that does not affect the results or purposes
of this work.

Author contributions

AA-G: investigation, methodology, writing – original draft, and
writing – review and editing. EP: conceptualization, funding
acquisition, supervision, and writing – review and editing. MP:

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Aparici-Gil et al. 10.3389/fbioe.2025.1494793

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1494793


conceptualization, investigation, methodology, and writing – review
and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the research project PID2022-140219OB-I00 and T24-
20R funding.

Acknowledgments

The authors gratefully acknowledge research support from the
ICTS “NANBIOSIS,” specifically, from the Tissue & Scaffold
Characterization Unit (U13) of the CIBER in Bioengineering,
Biomaterials & Nanomedicne (CIBER BBN at the University of

Zaragoza). Special thanks to laboratory technician C. Marzo for his
valuable assistance and support during the experimental testing.

Conflict of interest

The authors declare that this research was conducted without
any commercial or financial interests that could present a potential
conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Acosta Santamaría, V., Siret, O., Badel, P., Guerin, G., Novacek, V., Turquier, F., et al.
(2015). Material model calibration from planar tension tests on porcine linea alba.
J. Mech. Behav. Biomed. Mater. 43, 26–34. doi:10.1016/j.jmbbm.2014.12.003

Alastrué, V., Martínez, M., Doblaré, M., and Menzel, A. (2009). Anisotropic micro-
sphere-based finite elasticity applied to blood vessel modelling. J. Mech. Phys. Solids 57,
178–203. doi:10.1016/j.jmps.2008.09.005

Anssari-Benam, A., Goriely, A., and Saccomandi, G. (2024). Generalised invariants
and pseudo-universal relationships for hyperelastic materials: a new approach to
constitutive modelling. J. Mech. Phys. Solids 193, 105883. doi:10.1016/j.jmps.2024.
105883

Barreto Rabelo, D., Coelho Figueira Freire, A. P., Colen Milagres Brandão, F., Oliveira
Melo, S., Ocarino, J. M., Saldanha dos Anjos, M. T., et al. (2023). Myofascial stiffness of
plantar fascia and achilles tendon in individuals with plantar fasciopathy: an
observational cross-sectional study. Musculoskelet. Sci. Pract. 66, 102781. doi:10.
1016/j.msksp.2023.102781

Blottner, D., Huang, Y., Trautmann, G., and Sun, L. (2019). The fascia: continuum
linking bone and myofascial bag for global and local body movement control on Earth
and in Space. A scoping review. a scoping Rev. REACH 14–15, 100030. doi:10.1016/j.
reach.2019.100030

Bonifasi-Lista, C., Lakez, S. P., Small, M. S., and Weiss, J. A. (2005). Viscoelastic
properties of the human medial collateral ligament under longitudinal, transverse and
shear loading. J. Orthop. Res. 23, 67–76. doi:10.1016/j.orthres.2004.06.002

Calvo, B., Ramírez, A., Alonso, A., Grasa, J., Soteras, F., Osta, R., et al. (2010). Passive
nonlinear elastic behaviour of skeletal muscle: experimental results and model
formulation. J. Biomechanics 43, 318–325. doi:10.1016/j.jbiomech.2009.08.032

Calvo, B., Sierra, M., Grasa, J., Muñoz, M., and Peña, E. (2014). Determination of
passive viscoelastic response of the abdominal muscle and related constitutive
modeling: stress-relaxation behavior. J. Mech. Behav. Biomed. Mater. 36, 47–58.
doi:10.1016/j.jmbbm.2014.04.006

Cheung, J. T.-M., Zhang, M., and An, K.-N. (2004). Effects of plantar fascia stiffness
on the biomechanical responses of the ankle–foot complex. Clin. Biomech. 19, 839–846.
doi:10.1016/j.clinbiomech.2004.06.002

Cilla, M., Corral, A. V., Peña, J. A., and Peña, E. (2019). Analysis of the accuracy on
computing nominal stress in a biaxial test for arteries. Strain 56. doi:10.1111/str.12331

Costa, K. D., Holmes, J. W., and Mcculloch, A. D. (2001). Modelling cardiac
mechanical properties in three dimensions. Philosophical Trans. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci. 359, 1233–1250. doi:10.1098/rsta.2001.0828

Demiray, H. (1972). A note on the elasticity of soft biological tissues. J. Biomechanics
5, 309–311. doi:10.1016/0021-9290(72)90047-4

Destrade, M., Saccomandi, G., and Sgura, I. (2017). Methodical fitting for
mathematical models of rubber-like materials. Proc. R. Soc. A 473, 20160811. doi:10.
1098/rspa.2016.0811

Eng, C. M., Pancheri, F. Q., Lieberman, D. E., Biewener, A. A., and Dorfmann, L.
(2014). Directional differences in the biaxial material properties of fascia lata and the
implications for fascia function. Ann. Biomed. Eng. 42, 1224–1237. doi:10.1007/s10439-
014-0999-3

Findley, T., Chaudhry, H., Stecco, A., and Roman, M. (2012). Fascia research – a
narrative review. J. Bodyw. Mov. Ther. 16, 67–75. doi:10.1016/j.jbmt.2011.09.004

García, A., Martínez, M. A., and Peña, E. (2012). Viscoelastic properties of the passive
mechanical behavior of the porcine carotid artery: influence of proximal and distal
positions. Biorheology 49, 271–288. doi:10.3233/BIR-2012-0606

Gasser, T. C. (2011). An irreversible constitutive model for fibrous soft biological
tissue: a 3-d microfiber approach with demonstrative application to abdominal aortic
aneurysms. Acta Biom 7, 2457–2466. doi:10.1016/j.actbio.2011.02.015

Guo, X., Gong, C., Zhai, Y., Yu, H., Li, J., Sun, H., et al. (2023). Biomechanical
characterization of normal and pathological human ascending aortic tissues via biaxial
testing experiment, constitutive modeling and finite element analysis. Comput. Biol.
Med. 166, 107561. doi:10.1016/j.compbiomed.2023.107561

Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000). A new constitutive
framework for arterial wall mechanics and a comparative study of material models.
J. Elast. 61, 1–48. doi:10.1023/a:1010835316564

Klingler, W., Velders, M., Hoppe, K., Pedro, M., and Schleip, R. (2014). Clinical
relevance of fascial tissue and dysfunctions. Curr. Pain Headache Rep. 18, 439. doi:10.
1007/s11916-014-0439-y

Laita, N., Rosales, R. M., Wu, M., Claus, P., Janssens, S., Martínez, M. n., et al. (2024).
On modeling the in vivo ventricular passive mechanical behavior from in vitro
experimental properties in porcine hearts. Comput. Struct. 292, 107241. doi:10.1016/
j.compstruc.2023.107241

Langevin, H. M., and Huijing, P. A. (2009). Communicating about fascia: history,
pitfalls, and recommendations. Int. J. Ther. Massage Bodyw. 2, 3–8. doi:10.3822/ijtmb.
v2i4.63

Martins, P., Peña, E., Calvo, B., Doblaré, M., Mascarenhas, T., Natal Jorge, R., et al.
(2010). Prediction of nonlinear elastic behaviour of vaginal tissue: experimental results
and model formulation. Comput. Methods Biomechanics Biomed. Eng. 13, 327–337.
doi:10.1080/10255840903208197

Moreira, D., and Nunes, L. (2013). Comparison of simple and pure shear for an
incompressible isotropic hyperelastic material under large deformation. Polym. Test. 32,
240–248. doi:10.1016/j.polymertesting.2012.11.005

Ogden, R. W. (2001). Elements of the theory of finite elasticity. Cambridge University
Press, 1–57. doi:10.1017/cbo9780511526466.002

Pancheri, F., Eng, C., Lieberman, D., Biewener, A., and Dorfmann, L. (2014). A
constitutive description of the anisotropic response of the fascia lata. J. Mech. Behav.
Biomed. Mater. 30, 306–323. doi:10.1016/j.jmbbm.2013.12.002

Pavan, P. G., Pachera, P., Stecco, C., and Natali, A. N. (2015). Biomechanical behavior
of human crural fascia in anterior and posterior regions of the lower limb. Med. Biol.
Eng. Comput. 53, 951–959. doi:10.1007/s11517-015-1308-5

Peña, E., Alastrué, V., Laborda, A., Martínez, M., and Doblaré, M. (2010). A
constitutive formulation of vascular tissue mechanics including viscoelasticity and
softening behaviour. J. Biomechanics 43, 984–989. doi:10.1016/j.jbiomech.2009.10.046

Peña, E., Peña, J. A., and Doblaré, M. (2008). On modelling nonlinear viscoelastic
effects in ligaments. J. Biomechanics 41, 2659–2666. doi:10.1016/j.jbiomech.2008.06.019

Frontiers in Bioengineering and Biotechnology frontiersin.org16

Aparici-Gil et al. 10.3389/fbioe.2025.1494793

https://doi.org/10.1016/j.jmbbm.2014.12.003
https://doi.org/10.1016/j.jmps.2008.09.005
https://doi.org/10.1016/j.jmps.2024.105883
https://doi.org/10.1016/j.jmps.2024.105883
https://doi.org/10.1016/j.msksp.2023.102781
https://doi.org/10.1016/j.msksp.2023.102781
https://doi.org/10.1016/j.reach.2019.100030
https://doi.org/10.1016/j.reach.2019.100030
https://doi.org/10.1016/j.orthres.2004.06.002
https://doi.org/10.1016/j.jbiomech.2009.08.032
https://doi.org/10.1016/j.jmbbm.2014.04.006
https://doi.org/10.1016/j.clinbiomech.2004.06.002
https://doi.org/10.1111/str.12331
https://doi.org/10.1098/rsta.2001.0828
https://doi.org/10.1016/0021-9290(72)90047-4
https://doi.org/10.1098/rspa.2016.0811
https://doi.org/10.1098/rspa.2016.0811
https://doi.org/10.1007/s10439-014-0999-3
https://doi.org/10.1007/s10439-014-0999-3
https://doi.org/10.1016/j.jbmt.2011.09.004
https://doi.org/10.3233/BIR-2012-0606
https://doi.org/10.1016/j.actbio.2011.02.015
https://doi.org/10.1016/j.compbiomed.2023.107561
https://doi.org/10.1023/a:1010835316564
https://doi.org/10.1007/s11916-014-0439-y
https://doi.org/10.1007/s11916-014-0439-y
https://doi.org/10.1016/j.compstruc.2023.107241
https://doi.org/10.1016/j.compstruc.2023.107241
https://doi.org/10.3822/ijtmb.v2i4.63
https://doi.org/10.3822/ijtmb.v2i4.63
https://doi.org/10.1080/10255840903208197
https://doi.org/10.1016/j.polymertesting.2012.11.005
https://doi.org/10.1017/cbo9780511526466.002
https://doi.org/10.1016/j.jmbbm.2013.12.002
https://doi.org/10.1007/s11517-015-1308-5
https://doi.org/10.1016/j.jbiomech.2009.10.046
https://doi.org/10.1016/j.jbiomech.2008.06.019
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1494793


Prevost, T. P., Balakrishnan, A., Suresh, S., and Socrate, S. (2011). Biomechanics of
brain tissue. Acta Biomater. 7, 83–95. doi:10.1016/j.actbio.2010.06.035

Ramachandra, A. B., Kahn, A. M., and Marsden, A. L. (2016). Patient-specific simulations
reveal significant differences in mechanical stimuli in venous and arterial coronary grafts.
J. Cardiovasc. Transl. Res. 9, 279–290. doi:10.1007/s12265-016-9706-0

Ren, M., Ong, C. W., Buist, M. L., and Yap, C. H. (2022). Biventricular biaxial mechanical
testing and constitutive modelling of fetal porcine myocardium passive stiffness. J. Mech.
Behav. Biomed. Mater. 134, 105383. doi:10.1016/j.jmbbm.2022.105383

Ruiz-Alejos, D., Peña, J. A., Pérez, M. M., and Peña, E. (2016). Experiments and
constitutive model for deep and superficial fascia: digital image correlation and finite
element validation. Strain 52, 436–445. doi:10.1111/str.12198

Sáez, P., García, A., Peña, E., Gasser, T. C., and Martínez, M. A. (2016).
Microstructural quantification of collagen fiber orientations and its integration in
constitutive modeling of the porcine carotid artery. Acta Biomat 33, 183–193.
doi:10.1016/j.actbio.2016.01.030

Samant, S., Bakhos, J. J., Wu, W., Zhao, S., Kassab, G. S., Khan, B., et al. (2023).
Artificial intelligence, computational simulations, and extended reality in
cardiovascular interventions. JACC Cardiovasc. Interv. 16, 2479–2497. doi:10.1016/j.
jcin.2023.07.022

Schleip, R., Gabbiani, G., Wilke, J., Naylor, I., Hinz, B., Zorn, A., et al. (2019). Fascia is
able to actively contract and may thereby influence musculoskeletal dynamics: a
histochemical and mechanographic investigation. Front. Physiology 10, 336. doi:10.
3389/fphys.2019.00336

Sednieva, Y., Viste, A., Naaim, A., Bruyère-Garnier, K., and Gras, L.-L. (2020). Strain
assessment of deep fascia of the thigh during leg movement: an in situ study. Front.
Bioeng. Biotechnol. 8, 750. doi:10.3389/fbioe.2020.00750

Spencer, A. (1971). Theory of invariants. Elsevier, 239–353. doi:10.1016/b978-0-12-
240801-4.50008-x

Stecco, C., Gagey, O., Belloni, A., Pozzuoli, A., Porzionato, A., Macchi, V., et al.
(2007). Anatomy of the deep fascia of the upper limb. second part: study of innervation.
Morphologie 91, 38–43. doi:10.1016/j.morpho.2007.05.002

Stecco, C., Pavan, P., Pachera, P., De Caro, R., and Natali, A. (2013). Investigation of
the mechanical properties of the human crural fascia and their possible clinical
implications. Surg. Radiologic Anat. 36, 25–32. doi:10.1007/s00276-013-1152-y

Stecco, C., Pavan, P. G., Porzionato, A., Macchi, V., Lancerotto, L., Carniel, E. L., et al.
(2009). Mechanics of crural fascia: from anatomy to constitutive modelling. Surg.
Radiologic Anat. 31, 523–529. doi:10.1007/s00276-009-0474-2

Stemper, B. D., Yoganandan, N., Stineman, M. R., Gennarelli, T. A., Baisden, J. L., and
Pintar, F. A. (2007). Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg.
Res. 139, 236–242. doi:10.1016/j.jss.2006.09.001

Takada, J., Hamada, K., Zhu, X., Tsuboko, Y., and Iwasaki, K. (2023). Biaxial tensile
testing system for measuring mechanical properties of both sides of biological tissues.
J. Mech. Behav. Biomed. Mater. 146, 106028. doi:10.1016/j.jmbbm.2023.106028

Vitucci, G. (2024). Biaxial extension of cruciform specimens: embedding equilibrium
into design and constitutive characterization. Exp. Mech. 64, 539–550. doi:10.1007/
s11340-024-01052-2

Wang, J. H.-C., Guo, Q., and Li, B. (2012). Tendon biomechanics and
mechanobiology—a minireview of basic concepts and recent advancements. J. Hand
Ther. 25, 133–141. doi:10.1016/j.jht.2011.07.004

Weisbecker, H., Unterberger, M. J., and Holzapfel, G. A. (2015). Constitutive
modelling of arteries considering fibre recruitment and three-dimensional fibre
distribution. J. R. Soc. Interface 12, 20150111. doi:10.1098/rsif.2015.0111

Zullo, A., Mancini, F., Schleip, R., Wearing, S., Yahia, L., and Klingler, W. (2017). The
interplay between fascia, skeletal muscle, nerves, adipose tissue, inflammation and
mechanical stress in musculo-fascial regeneration. J. Gerontology Geriatrics
65, 271–283.

Frontiers in Bioengineering and Biotechnology frontiersin.org17

Aparici-Gil et al. 10.3389/fbioe.2025.1494793

https://doi.org/10.1016/j.actbio.2010.06.035
https://doi.org/10.1007/s12265-016-9706-0
https://doi.org/10.1016/j.jmbbm.2022.105383
https://doi.org/10.1111/str.12198
https://doi.org/10.1016/j.actbio.2016.01.030
https://doi.org/10.1016/j.jcin.2023.07.022
https://doi.org/10.1016/j.jcin.2023.07.022
https://doi.org/10.3389/fphys.2019.00336
https://doi.org/10.3389/fphys.2019.00336
https://doi.org/10.3389/fbioe.2020.00750
https://doi.org/10.1016/b978-0-12-240801-4.50008-x
https://doi.org/10.1016/b978-0-12-240801-4.50008-x
https://doi.org/10.1016/j.morpho.2007.05.002
https://doi.org/10.1007/s00276-013-1152-y
https://doi.org/10.1007/s00276-009-0474-2
https://doi.org/10.1016/j.jss.2006.09.001
https://doi.org/10.1016/j.jmbbm.2023.106028
https://doi.org/10.1007/s11340-024-01052-2
https://doi.org/10.1007/s11340-024-01052-2
https://doi.org/10.1016/j.jht.2011.07.004
https://doi.org/10.1098/rsif.2015.0111
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1494793

	Uniaxial, biaxial, and planar tension properties of deep fascia and a constitutive model to simultaneously reproduce these  ...
	1 Introduction
	2 Materials and methods
	2.1 Multidimensional characterization
	2.1.1 Sample preparation
	2.1.2 Histological analysis
	2.1.3 Mechanical testing and protocols

	2.2 Constitutive models
	2.2.1 Fundamental equations
	2.2.2 Uncoupled strain energy function
	2.2.3 Coupled strain energy function

	2.3 Fitting procedure, combination of tests, and model comparison

	3 Results
	3.1 Histological results
	3.2 Mechanical experiments
	3.3 Constitutive modeling
	3.4 Constitutive model predictions

	4 Discussion
	4.1 Experimental remarks
	4.2 Constitutive model remarks
	4.3 Limitations

	5 Conclusion
	6 Statement of significance
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


