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Background: In the course of manual reduction of distal radius fractures, many
doctors rely on tactile perception to assess the displacement of the fracture.
However, a more accurate determination of the severity of the fracture and the
success of the reduction requiresmeasurement software to annotate the fracture
images, which is difficult to achieve real-timely in actual procedure of reduction.
Whichmay lead tomisdiagnosis when experienced doctors rely on their intuition.
Therefore, it is necessary to develop an AI-based method for calculating fracture
parameters to provide real-time display, particularly in fracture
reduction machines.

Methods: An AI-based method for automatically calculating of radiographic
parameters in distal radius fractures (DRF) was developed. Initially,
anteroposterior (AP) and lateral (LAT) X-ray images of patients with distal
radius fractures were collected from three hospitals and preprocessed.
Subsequently, several neural network structures, UNet, DeeplabV3+, PSPNet,
and TransUNet, are compared in terms of utility and accuracy, and finally, the
models obtained from the UNet image segmentation algorithm are used for
semantic segmentation of the radius and ulna. Following this, the contours of the
radius and ulna were extracted using OpenCV, key points were detected, and the
principal axes were calculated. Finally, the computed parameters including radial
angle (RA), radial length (RL), ulnar variance (UV), and palmar tilt (PT) were
calculated and displayed on the image.

Results: The advantages and disadvantages of several models were considered,
and finally the UNet neural network model was used as the core algorithm of the
image segmentation model in this study. The segmentation accuracy for the
radius and ulna in the AP and LAT X-ray images reached 91.31% and 88.63%,
respectively. The average errors between the automated calculations of
parameters RA, RL, UV, and PT and the manually annotated results by
physicians were −1.36°, −1.7 mm, 0.66 mm, and −1.06°, respectively. The
system has been initially deployed on the same computer that operates the
radial fracture fracture repositioning robot.

Conclusion: The automated parameter calculation method developed in this
study accurately computes diagnostic parameters for assessing distal radius
fractures and can be utilized in the image-guided reduction process of
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fracture rehabilitation robots. This method has the potential to evolve into an
intelligent diagnostic tool for physicians, thereby enhancing the accuracy of distal
radius fracture diagnosis.

KEYWORDS

distal radius fracture reduction, artificial intelligence, x-ray image-guided, parameters
computation, UNET

1 Introduction

Hospitals worldwide receive a substantial number of patients
with fractures every year, among which distal radius fractures are
one of the most prevalent, accounting for 18% of all fracture
incidents (Court-Brown and Caesar, 2006). The rapid and
accurate assessment of fracture status and the formulation of
appropriate treatment plans is crucial. Currently, most hospitals
primarily rely on the subjective diagnosis of specialized physicians
and manual reduction rehabilitation for the diagnosis and treatment
of DRFs. Given the complexity of the pathology and the shortage of
specialized medical professionals (Hoyler et al., 2014; Zhang et al.,
2020), there has been a growing body of research in recent years
focused on automated fracture detection (Zhao et al., 2020), many
deep learning-based models have shown significant progress in
improving diagnostic accuracy. For instance, researchers such as
Gan et al. (2019) employed the Inception-v4 model to analyze
2,340 wrist X-rays, combined with the Faster R-CNN object
detection algorithm to locate the distal radius region in the
images, achieving an AUC of 96%. Chung et al. (2018) applied a
basic CNN to analyze 1,891 shoulder X-rays, achieving an
impressive 99.6% accuracy in fracture detection. Raisuddin et al.
(2021) introduced the Grad-Cam module (similar to attention
mechanisms) and achieved 95% accuracy in detecting fractures in
the AP view and 98% in the LAT view using a dataset of
3,873 X-rays. On the other hand, Jabbar et al. (2022) augmented
193 original X-rays to 1,554 images and used an RN-21CNN
network for wrist fracture detection, achieving a 97% accuracy,
outperforming four other transfer learning models, including
Inceptionv3, Vgg16, ResNet-50, and Vgg19. Ahmed et al. (2024)
used a one-stage YOLO model for wrist fracture detection, with
YOLOv8 achieving an average detection accuracy of 95%,
outperforming the commonly used two-stage Fast R-CNN
detection algorithm, highlighting the potential of one-stage
models in pediatric wrist imaging analysis. Thian et al. (2019),
based on the Faster R-CNN model, trained on 7,356 X-ray images
and validated on 524 test images, achieved fracture detection
accuracy of 91.2% for AP and 96.3% for LAT views.

These studies highlight the impressive performance of
convolutional neural networks (CNNs) in fracture detection
(Esteva et al., 2019; Gu et al., 2018). Olczak et al. (2017) is the
first to apply deep learning in an orthopedic context, utilizing
various deep learning networks, including CNNs, for fracture
identification. Kim and MacKinnon (2018) adapted a pre-trained
deep convolutional neural network model, originally designed for
non-medical images, to a smaller dataset of X-ray images for
automated fracture detection. Yoon et al. (2021) achieved
detection of occult fractures that are invisible to human observers
through deep convolutional neural networks (DCNNs).

Additionally, Suzuki et al. (2022) applied CNN-based image
classification for the diagnosis of distal radius fractures.

These findings demonstrate the powerful potential of CNNs for
automated fracture detection and provide strong support for clinical
applications. However, most studies focus solely on the detection of
fractures, i.e., determining whether a fracture is present, without
delving into the analysis of fracture severity. Therefore, while CNNs
have made significant progress in fracture detection, further high-
quality data and research are needed to support more
comprehensive analysis of fracture complexity and the
development of fracture reduction guidance technologies.
Traditional treatment for distal radius fractures begins with the
evaluation of radiological images to assess the fracture, followed by
classification. For stable fractures, physicians typically rely on their
clinical experience to compute key fracture parameters before
performing manual reduction after local anesthesia, ultimately
stabilizing the fracture site. Fracture reduction is a critical step in
fracture management, as it involves repositioning the fracture ends
to facilitate healing. During this process, image-guided technology is
increasingly applied to improve procedural accuracy (Kraus et al.,
2012). Leung et al. (2010) demonstrate a navigation function for
fracture surgeries utilizing real-time fluoroscopic images and optical
tracking systems. Furthermore, preoperative calculations of certain
skeletal parameters (Kordon et al., 2020) can aid physicians in
formulating more precise surgical plans, which is an important
adjunct in orthopedic procedures, as anatomical parameters of the
distal radius are significant in treatment selection (Bilgin et al.,
2023). Currently, physicians typically rely on manual outlining of
fracture parameters fromX-ray images (Watanabe, 2019), combined
with their experience to determine reduction techniques. This
process is not only cumbersome but also highly dependent on
the physician’s expertise. Therefore, automating the calculation of
fracture parameters from imaging data and selecting the most
suitable reduction technique has become an urgent issue. Suna
et al. (2023) designed a pipeline capable of automatically
calculating six fracture parameters from X-ray images; however,
not all parameters are essential for fracture reduction in practical
applications.

To address these issues, we propose a method for the automatic
calculation of distal radius fracture parameters based on the UNet
architecture. Due to its unique network structure, UNet can achieve
detailed feature extraction from relatively small annotated datasets
(Azad et al., 2024), and it has been widely applied in medical image
segmentation, such as cardiac segmentation in magnetic resonance
imaging (MRI) (Yu et al., 2017) and organ segmentation in
computed tomography (CT) scans (Yu et al., 2018). The
proposed pipeline consists of two main steps: first, the separation
of the radius and ulna in the AP and LAT X-ray images using UNet,
followed by the calculation of key fracture parameters based on the
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segmented images. These parameters provide crucial data support
for fracture reduction robots. By integrating robotic-assisted
reduction, the goal is to advance the technology used in fracture
treatment, enabling a more effective and precise reduction process.

2 Materials and methods

2.1 Dataset construction

In this study, we evaluated our method using a dataset of
441 X-ray image sets (each set includes one AP and one LAT
image) from Suzhou Hospital of Traditional Chinese Medicine
and Jiangsu Province Hospital of Chinese Medicine. The dataset
comprises 371 fracture cases and 70 normal instances, all of which
have been approved by the local ethics committee. After preliminary
screening, some images are excluded due to issues such as poor
imaging quality or incorrect wrist positioning, which will affect
diagnostic accuracy. While the hospital-provided images facilitate
fracture assessment for clinicians and specialists, consistent image
processing is required for image recognition systems, including
standardizing image size, wrist proportion, and rotation angle to
ensure accurate automated identification and analysis. Before
constructing the dataset, preprocessing image and augmentation
is absolutely necessary, as depicted in the figure. Four images are
shown that have been pre-processed and histograms are equalized in
Figure 1. Histogram equalization is a straightforward and effective
image enhancement technique, usually used to improve image
quality and contrast by adjusting histogram shapes, which could
help to reduce grayscale level differences between images, thereby
simplifying the annotation and segmentation process. Subsequent
testing demonstrated that the dataset processed with histogram
equalization significantly improved model training success rates.

The preprocessed images were used to create the dataset, which is
annotated using the conventional tool Labelme (version 3.16.7). The
annotations are saved as JSON files and then converted into mask
images in the VOCdevkit format, facilitating subsequent
model training.

2.2 Image segmentation

In the field of medical image segmentation, UNet has proven to
be an extremely efficient model. Skeletal image segmentation
provides material for subsequent parameter computation, and the
specific segmentation model is as follows:

(1) Amodel for image segmentation of the distal radius, proximal
radius, and entire ulna in orthopantomograms of the wrist
joints (referred to as AP bone segmentation model).

(2) A model for image segmentation of the distal and proximal
radius in lateral radiographs of the wrist joints (referred to as
the LAT bone segmentation model).

The data preprocessing steps used for the dataset used in this
step are as described above, and the final image input to the deep
learning network should be a single channel image of (512, 512, 1)
and the radial segmentation annotation is generated using Labelme.
The specific composition of the UNet neural network used in this
article is as follows:

(1) Backbone Feature Extraction Network: The part of the
backbone feature extraction network is VGG16, which
consists of convolution and maximum pooling, the
convolution process uses (3*3) convolution kernel and sets
the padding to 1, which is designed to ensure that the

FIGURE 1
Histogram equalization of image.
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convolution process maintains the dimensionality of the
image and reduces the loss of the edge information, and
the specific backbone extraction network is shown in Figure 2.
Five preliminary effective feature layers can be obtained by
this backbone feature extraction network. The feature layer
generated after the last convolution pooling operation in the
backbone feature extraction network is (32, 32, 512).

(2) Enhanced Feature Extraction Network: The feature map
obtained from the last convolutional pooling layer is
doubly up-sampled. The doubly up-sampled feature map is
then fused with the initial valid feature map obtained from the
backbone feature extraction network, with both feature maps
being stacked.

The self-constructed dataset will be inputted into the above
feature extraction network for training; due to the limited size of
the dataset of self-constructed skeletal X-ray images, if the
training is started from 0, it may trigger the randomness of the
parameter weights to be too large, which in turn negatively affects
the model’s stability and convergence, therefore, we will use the
same network as the feature extraction network, and use the
publicly available dataset and the other self-constructed
medicine class grayscale mapping dataset as the training set
Therefore, the same network will be used as the feature
extraction network, and the public dataset and other self-built
pharmaceutical gray map datasets will be used as the training set
to generate the pre-training weights, which will be used for
migration learning in this study. The loss function of the
model in this paper chooses the loss function system composed
of Cross-Entropy Loss combined with Dice coefficients or Focal_
Loss combined with Dice coefficients.

The above deep learning models were trained on different
datasets for AP bone segmentation model and LAT bone
segmentation model respectively. When training the LAT bone
segmentation model, a loss function combining Cross-Entropy
Loss and Dice coefficients is used; the pre-processed X-ray
images are already normalized, and there is no positive or
negative sample imbalance in each part, and for the focal loss
function, the Cross-Entropy function does not require additional
hyper-parameter adjustment, which reduces the model training. The
complexity of model training is reduced.

Cross-Entropy Loss:

CE p, y( ) � −∑n
i�1
yi log pi( )

where pi denotes the probability that the prediction is for class i and
yi denotes whether class i is a true label.

While training the distal radius, proximal radius and ulna
segmentation models, a fusion loss function composed of a focal
loss function (Focal_Loss) combined with Dice coefficients is used.
The dataset labels used to train this model have a large disparity in
the number of pixels in each target category and a low sample
balance, and the moderating factor added to the focal loss function
solves the sample imbalance problem.

Focal_Loss:

FL pt( ) � −αt 1 − pt( )ylog pt( )
where pt is the predictive probability of the model for the sample
(for positive samples, pt � p; for negative samples, pt � 1 − p ) and
αt is the category weight.

Dice_Coefficient:

FIGURE 2
Feature extraction network.
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Dice Coefficient � 2 X ∩ Y| | + ε

X| | + Y| | + ε

Dice Coefficient � 1 −Dice Loss

Dice Loss � 1 − 2 X ∩ Y| | + ε

X| | + Y| | + ε

where X denotes the pixel label of the true segmented image, Y
denotes the pixel category of the model’s predicted segmented
image, |X ∩ Y| is approximated as the dot product between the
pixels of the predicted image and the pixels of the really labeled
image, and |X| and |Y| are the summation of the pixels in their
respective corresponding images, respectively.

Dice Loss � 1 − 1 + δ2( )TP + ε

1 + δ2( )TP + δ2FN + FP + ε

X| | � TP + FN

Y| | � TP + FP

where TP (True Positives) means that the prediction is positive
and actually positive; FP (False Positives) means that the
prediction is positive but actually negative; FN (False
Negatives) means that the prediction is negative but actually
positive; TN (True Negatives) means that the prediction is
negative and is actually negative; δ is a parameter used to
adjust the trade-off between precision and recall; ε denotes a
smoothing term that avoids the denominator being zero.

The changes in the loss function as well as the MIoU values
during the training iterations of the above two models are shown in

Figure 3. The figure shows that the loss function decreases with the
number of iterations, and the MIoU value becomes larger with the
number of iterations, which proves that the two models for this
dataset should have converged, and after the number of iterations
reaches 60 rounds, the curves of the loss function and the MIoU
value tend to flatten, and there is a risk of overfitting if the training
continues. In the process of two training iterations, the optimal one
of each evaluation parameter that appeared during the model
iteration was selected as the final model and predicted, and the
segmentation was successfully completed as shown in Figure 4.

Although the UNet neural network is currently considered by
many to be very suitable for medical image segmentation, in order to
make our study more convincing, we used the PSPNet architecture
model, which is also used for image segmentation, the DeeplabV3+
architecture model, as well as the TransUNet architecture neural
network, which is also suitable for the field of medical image
segmentation, to conduct comparative experiments.

The PSPNet network for the control experiments uses
Mobilenetv2 as the backbone feature extraction network, and the
backbone feature extraction network in this paper uses four
downsamplings. The enhanced feature extraction structure uses
the conventional PSP module, which divides the acquired feature
layer into regions of different sizes, each of which is individually
average pooled. The loss function of the PSPNet model chooses the
loss function system composed of Cross- Entropy Loss combined
with Dice coefficients or Focal_Loss combined with Dice
coefficients. To serve as an experimental control group, the
dataset used to train the model is the same as the one used to

FIGURE 3
Line graphs of loss function values and changes in MIoU values.
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train the model for the UNet neural network and the training
process is the same as the one used for the UNet neural network.

DeeplabV3+ architectural model as a control in this
paper uses Mobilenetv2 as the backbone feature extraction
network, to strengthen the feature extraction network focuses
on Encoder species, the initial effective feature layer compressed
four times using parallel Atrous Convolution, respectively,
with different rates of Atrous Convolution for feature
extraction, and then merge and convolution; in Decoder kind
of the effective feature layer compressed twice using convolution
to adjust the number of channels, and then stacked with the
effective feature layer upsampling results after hollow
convolution, and then two depth separable convolution blocks
to obtain the final effective feature layer, the loss function is
similar to the previous.

The TransUNet architecture neural network in this study serves
as a control group, and its structure does not change, consisting of
CNN, Transformer, and Decoder of UNet. The datasets used for
training are also all the same as before.

2.3 Contour extraction

The calculation of key parameters for distal radius fractures
involves using AP and LAT segmented images as input and
producing corresponding fracture parameters as output. The
pipeline consists of the following four steps: (1) Extract contour
lines from the segmented images; (2) Determine the axis lines of the
corresponding components; (3) Locate anatomical landmarks of the
radial fracture; (4) Calculate radiographic parameters based on the
identified key points and the axis lines of the radius and ulna, and
subsequently assess the severity of the fracture.

In the contour line extraction step, we first process the
segmented AP and LAT images. The detailed procedure is as follows:

(1) Mask Creation and Image Binarization: Create a mask based
on different color information to separate the different parts
of the radius and ulna. Perform flood filling from the
coordinate origin outward to fill each part of the image.

Then, apply bitwise operations to invert the image and
convert it to a binary format.

(2) Image Denoising: Due to inherent errors in the image
segmentation module, apply a 3 × 3 Gaussian kernel
for denoising.

G x, y( ) � 1
2πσ2

exp −x
2 + y2

2σ2
( )

where σ represents the standard deviation of the Gaussian kernel.
This step smooths the boundaries of the segmented regions and
enhances the accuracy of contour extraction.

(3) Edge Detection and Contour Extraction: Use the Sobel edge
detection algorithm to extract edges from the binary image,
which helps reduce computation and eliminate irrelevant
information.

Gx �
−1 0 1
−2 0 2
−1 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
Gy �

−1 −2 −1
0 0 0
1 2 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
The gradients in the horizontalGx and vertical Gy directions are

calculated using convolution with the denoised image to
approximate the intensity differences, thereby locating the edges
and mitigating the impact of segmentation errors on contour
extraction.

(4) Contour Fitting and Optimization: Extract contours from the
edge-detected image. Given that segmentation modules may
have errors and even after hole filling, some mis-segmented
regions may remain, sort all extracted contours and select the
one with the largest area as the final contour. Use a
triangulation-based contour fitting method to divide the
contour into a series of triangles. Record the coordinates of
each triangle’s vertices and their boundaries as follows:

V � x1, y1( ),{ x2, y2( ), . . . , xn, yn( )}

FIGURE 4
Segmentation results of AP image (left) and LAT image (right).
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where (xi, yi) represent the coordinates of the ith vertex. Simplify
the contour data by recording the direction and distance of
movement from one vertex to the next, reducing the amount of
data for subsequent calculations and improving image processing
efficiency. Finally, a matrix composed of the coordinates of the
contour points is obtained. Figure 5 shows the pipeline of extracting
the contour lines of bones.

2.4 Calculation of central axis

To begin with, a set number of random points (xi, yi) (where i =
1, . . . ,n)are selected within the contour. For a given line equation
y � mx + b, the distance di from each point to this line is computed.

di�|yi − (mxi+b)|
where di represents the Manhattan distance from the point (xi, yi)
to the line. To smooth these distances, we use the following formula:

distance � 2

�����
1 + d2

2

√
− 1( )

where d is the Manhattan distance:

d � di

Substitute d into the formula, we obtain the adjusted distance
from each point to the line:

adjusted distancei � 2

������
1 + di

2

2

√
− 1⎛⎝ ⎞⎠

This method of distance calculation preserves the robustness of
the Manhattan distance while incorporating the smoothness of the
Euclidean distance. This results in a better distribution of weights
among the random points, and the fitted line more closely aligns
with the central axis of the radius. The fitted line y � mx + b with
the following losses:

Axis Loss � ∑n
i�1
distance xi, yi, m, b( )

where (xi, yi) are the coordinates of the random points within the
radius contour.

To find the line parameters m and b that minimize the loss
function, we use gradient descent optimization. We start with initial
values (m0, b0) for the line parameters, typical 0. Then updatem and
b by calculating the gradient values:

mnew � m − α
∂Axis Loss

∂m

bnew � b − α
∂Axis Loss

∂b

Where α is the learning rate that determines the size of each
update step.

By repeatedly calculating the loss function, computing gradients,
and updating the parameters using gradient descent, we adjust the
parameters until the loss function is sufficiently minimized. This
yields the axis lines for the radius and ulna in the AP and LAT images,
respectively. The axis line from the frontal image of the ulna is used as
a reference axis for further calculation of fracture parameters.

2.5 Key point extraction

Distal radius fractures often cause significant damage to the
structure of the ulna and radius. To accurately characterize the
severity of these fractures, we need to define a set of parameters. Key
parameters include ulnar variance, radial height, volar angulation,
and ulnar variance. Based on the unique anatomy of the radius and
the required parameters, we identify the following five key points:

(1) Styloid Tip (ST): In the AP image, the highest point of the
radial styloid is commonly used to assess the relative height,
angle, and rotation of the radius. After segmenting the radius
using deep learning methods, we create a color mask to obtain
an array of pixel coordinates for the radius’s contour.
Considering the differences in image reading directions by
the computer, we locate the ST by finding the pixel with the
smallest vertical coordinate among these points, which is
identified based on the vertical coordinate of the contour
pixel points.

FIGURE 5
Pipeline of ulnar and radius contour line extraction.
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(2) Ulna Border of Radius (UBR): Located at the intersection of the
distal radial ulnar joint surface and the ulnar joint surface in the
anteroposterior image. The relative position of this point to the
ST helps determine the radius’s relative height and
deformation. We create a line through the ST, starting with
a slope of 0. Using ST as the rotation center and rotating
clockwise by 0.01° increments, we continue until the line
intersects the radius contour at the first point. If this
intersection is significantly distant from ST, it is considered
the UBR, if not, we adjust the line until an appropriate UBR
point is found and obtain its position coordinates.

(3) Ulnar Height (UH): Located on the flat joint surface of the
distal ulna in the AP image. This point is used to evaluate the
relative height of the ulna to the radius joint surface. First,
determine the highest point on the ulna contour and use it as
the rotation center. Rotate a line counterclockwise until it
intersects the ulna contour at the first point, denoted as ul_
UBR (the ulnar border of the radius on the ulna). Next, find
the intersection of the ulna axis with the ulna contour,
ensuring that all contour points between this intersection
and ul_UBR lie on the flat joint surface of the distal ulna. The
midpoint of these contour points is UH.

(4) Dorsal Joint (DJ): Located at the highest point of the dorsal
joint surface of the distal radius in the lateral image. Using the
lateral image segmented by deep learning, the highest point of
the radius is identified as DJ.

(5) Volar Joint Border (VJB): Located at the highest point of the
volar joint surface of the distal radius in the LAT image. After

finding DJ, determine whether the fracture end has shifted
volarly or dorsally. If volar, rotate a line through DJ
counterclockwise with DJ as the rotation center until it
intersects the radius contour at the first point. If dorsal,
rotate the line clockwise until it intersects the radius
contour at the first point. This intersection point is
identified as the VJB.

2.6 Calculation of fracture radiographic
parameters

Parameters related to distal radius fractures are crucial for
diagnosing the fracture, selecting treatment options, assessing
prognosis, and guiding rehabilitation. Figure 6 shows the results
of auto-scribing for different images.

2.6.1 Radial Angle
This parameter describes the angle between the distal radius, the

wrist bones, and the metacarpals. It is an important indicator for
assessing the type of distal radius fracture (e.g., Colles or Barton), as
different fracture types can lead to significant changes in RA. The
calculation process for RA is as follows:

(1) parameter identification: First, identify two key points: the ST
and the UBR. The ST is the highest point of the radial styloid,
while the UBR is located at the intersection of the distal radial
ulnar joint surface and the ulnar joint surface.

FIGURE 6
Auto-scribing results of AP image (left) and LAT image (right).
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(2) Reference axis line: Establish a reference axis line
perpendicular to the baseline axis through the UBR point.

(3) Angle calculation: Calculate the angle between the line
connecting ST and UBR and the reference axis line. This
angle is RA. The specific calculation formula is:

RA � tan−1yST − yUBR

xST − xUBR
− Reference angle

where (xST, yST) and (xUBR, yUBR) are the coordinates of ST and
UBR, and Reference angle represents the angle of the
reference axis.

2.6.2 Radial Length (RL)
This is an important parameter for describing the relative

height of the radial styloid. The normal range is between 8 and
14 mm. Variations in radial height are significant for fracture
classification and treatment planning. The calculation process for
RL is as follows:

(1) Parallel lines establishment: Draw two parallel lines
perpendicular to the baseline axis: one through ST and the
other through UBR.

(2) Distance calculation: The distance between these two parallel
lines represents RL. Since ST and UBR correspond to the
highest point of the radial styloid and the ulnar border of
the radius, respectively, this distance accurately reflects
the relative height of the radius and helps determine the
degree of radial shortening. The formula for this
calculation is:

RL � distance LineST, LineUBR( )
where distance(LineST, LineUBR) represents the vertical distance
between the parallel lines drawn through ST and UBR.

2.6.3 Ulnar Variance
Malunion of distal radius fractures can lead to positive

ulnar variance, increasing contact between the ulna and the
lunate and triquetrum bones. This can result in wrist pain and
adversely affect the recovery process. The calculation of UV is
as follows:

(1) Establishment of parallel lines Draw two perpendicular lines
to the baseline axis at the distal end of the ulnar joint surface
and at the ulnar notch of the radius, passing through the UH
and UBR points, respectively.

(2) Distance calculation: The distance between these two
perpendicular lines represents UV. The formula for
calculating UV is:

UV � distance LineUV, LineUBR( )
where distance(LineUV, LineUBR) represents the vertical distance
between the parallel lines drawn through UV and UBR.

2.6.4 Palmar Tilt (PT)
The angle between the line connecting the volar and dorsal

extremes of the radius in the lateral image and the perpendicular to
the baseline axis in the LAT image.

(1) Parameter identification: First, identify the two key points: the
VJB and DJ.

(2) Reference axis establishment: Establish the reference axis as
the perpendicular line to the long axis of the radius at its distal
end in the LAT image.

(3) Angle calculation: Calculate the angle between the line
connecting VJB and DJ and the reference axis. This angle
is referred to as the volar angulation.

2.6.5 Volar Joint Border (VJB)
Located at the highest point of the volar joint surface of the distal

radius in the LAT image. After finding DJ, determine whether the
fracture end has shifted volarly or dorsally. If volar, rotate a line
through DJ counterclockwise with DJ as the rotation center until it
intersects the radius contour at the first point. If dorsal, rotate the
line clockwise until it intersects the radius contour at the first point.
This intersection point is identified as the VJB.

3 Results

3.1 Segmentation accuracy of ulna and
radius images

Skeletal segmentation modeling is the first step in this study, and
this step has a huge impact on the accuracy of the subsequent steps
such as parameter computation, and the previous chapters have
described in detail the steps of dataset production, feature network
selection, loss function selection, and model training in the training
of the model in this study. In this study, the quality of the bone
segmentation model is evaluated by the four parameters mIoU
(mean Intersection over Union), mPA (mean Pixel Accuracy),
mPrecision, and mRecall, which are calculated by running the
trained model on the test set and calculated. Table 1 shows the
values of each parameter used to assess the model quality calculated
by calling the models after running on the test set, from the
parameter values we can see that the AP bone segmentation is of
higher quality, and each parameter used to assess the model quality
of the AP bone segmentation model is better than that of the LAT
bone segmentation model, and the AP bone segmentation model is
more accurate than the LAT bone segmentation, which is supposed
to be the result of the overlap of radius-ulnar in the LAT view and
the approximation of various features of the ulna. It is supposed that
the overlap of the radius-ulna in the LAT view and the
approximation of the radius characteristics lead to the larger
error of the LAT bone segmentation model.

From the longitudinal comparison of the model evaluation data
in Table 1, it can be seen that the models trained based on UNet or
TransUNet are significantly better than the other two, while the
evaluation indexes of UNet and TransUNet are superior and the
difference is very small. However, two problems were encountered
in the implementation process, firstly, the neural network of
TransUNet architecture requires a large amount of computation
during the model training process, which is more demanding on the
hardware equipment, and the training models in this study were all
trained on a computer equipped with a 12th Gen Intel(R) Core(TM)
i7-12700k processor and an NVDIA GeForce RTX3090 chip, and
the length of training a single UNet-based network architecture and
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TransUNet-based network architecture is 55 min and 72 min,
respectively, using the same number of iterations and datasets.
The system studied in this paper is not only adapted to the
corresponding surgical robots, but also may need to be adapted
to different x-ray machines under many conditions, which means
that in order to adapt to different x-ray machines, the system needs
to be modified. This means that in order to adapt to different x-ray
machines, the model needs to be trained specifically, and the huge
amount of computation is not conducive to the practical application
of the system and the surgical robot; and when the system is
mounted on the surgical robot, it needs to display the progress of
the surgery and the various parameters in real time, which requires
the model to be lightweight, and the parameters of the model
obtained through the TransUNet architecture are large. In the
test set of this study, the average time for the model trained on
TransUNet neural network to predict a single AP and LAT angle
image is 1.12s and 0.85s, respectively, while the average time for the
model trained on UNet neural network to predict a AP and LAT
image is 0.45s and 0.36s, respectively, and the delay in the display of
parameter computation caused by the larger delay in the
segmentation of the image is not favorable to timely help doctors
to obtain the condition information.

In summary, at this stage of the study, the UNet neural network
is still the optimal solution.

3.2 Comparison of fracture parameter
calculations

By comparing the fracture parameters calculated by physicians
with those obtained using the automated landmarking system,
statistical analysis indicates that the differences between the two
sets of measurements are not statistically significant. This suggests
that the proposed pipeline does not exhibit systematic errors in
parameter computation, demonstrating its high reliability and
potential for clinical adoption.

Specifically, we conducted a detailed statistical analysis of the
differences in four major fracture parameters. For the RA parameter,
the mean difference was −1.36° (SD = 0.267), indicating a slight
negative bias in the angles calculated by the automated system
compared to those computed by physicians. However, the small
standard deviation (0.267°) and lack of statistical significance suggest
that this bias is minimal and unlikely to affect clinical decision-
making. For the RL parameter, the mean difference was −1.7 mm
(SD = 0.489), which, while slightly negative, remained within the
clinically acceptable range of variation, with a small standard
deviation indicating minimal variability. The UV parameter

showed a mean difference of 0.66 mm (SD = 0.120), reflecting a
minimal and stable error, with high consistency across multiple test
samples. For the PT parameter, the mean difference was −1.06°

(SD = 0.148), also indicating a slight negative bias but with minimal
fluctuation.

To evaluate the robustness of the system, the analysis was repeated
on an independent dataset, showing consistent results with a similar
range of differences. Overall, the automated fracture parameter
calculation system demonstrates high accuracy and consistency,
with errors that are statistically insignificant when compared to
manual measurements by physicians. The observed mean
differences in RA, RL, and PT parameters fall within the clinically
accepted thresholds for fracture assessment, suggesting that the
automated system could be used in clinical practice without
significant risk of misdiagnosis. The results indicate that our
system offers a reliable alternative to manual annotation, with
minimal impact on clinical outcomes. Figure 7 presents the
differences between manually annotated calculations (a) and
automatically computed parameters (b). It can be observed that
the discrepancies in RA, RL, and UV are minimal, while the
difference in PT is 3.11°. This discrepancy may arise from
subjective factors during manual annotation, calibration errors, or
limitations in the precision of the measuring instruments. However,
the difference remains within an acceptable range, demonstrating the
system’s reliability and consistency across different test cases.

3.3 Image-guided system field test

In order to evaluate the performance of this systemwhen applied
with the radius fracture reduction robot, we combined the image
guidance system with the radius fracture reduction robot, firstly, we
took pictures of the volunteers through the special x-ray machine on
the robot, and then imported them into the image guidance system
for the image segmentation and parameter calculation, and then
finally, we specified the corresponding auxiliary treatment plan
through each parameter, and manipulated the robotic arm to
complete the treatment, the results and the software operation
interface are shown in Figure 6. The calculation results and the
software operation interface of the robotic arm are shown in
Figure 6. Finally, the degree of goodness of the test results is
positively correlated with the accuracy of the parameters;
compared with the radius fracture repositioning robot without
the image guidance system, it is more preferable to refer to the
parameters calculated by the system and then carry out the assisted
treatment, which greatly reduces the workload of medical personnel
while improving the accuracy.

TABLE 1 Evaluation of image segmentation models based on different neural network training (UNet, PSPUNet, DeeplabV3+, TransUNet).

Models mIoU (%) mPA (%) mPrecision (%) mRecall (%)

UNet (AP/LAT) 91.31/88.63 96.27/95.47 94.56/92.42 96.27/95.47

PSPNet (AP/LAT) 85.96/82.55 89.14/88.33 90.95/89.27 89.04/86.33

DeeplabV3+(AP/LAT) 86.99/83.38 91.94/89.17 92.11/90.86 92.23/89.18

TransUNet (AP/LAT) 94.84/88.31 95.63/94.05 96.28/93.22 95.83/93.78
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4 Discussion

The manual calculation of fracture parameters by physicians is
highly dependent on the experience and energy of the physician, and
is therefore susceptible to the influence of the physician’s personal
experience and subjective factors, which may lead to inconsistencies
in the calculation results, thus affecting the diagnostic accuracy of
the fracture and the selection of the subsequent treatment plan. In
contrast, automated fracture parameter calculation methods can
significantly improve the ease and accuracy of calculation, providing
physicians with more objective and consistent fracture assessment
results. Therefore, in this paper, we employ deep learning, computer
vision and other methods to realize the auxiliary recognition of distal
radius fracture, the automation of parameter calculation, and to
provide image guidance for the fracture reduction robot’s distal
radius fracture reduction surgery, when we apply the model in our
fracture reduction robot’s accompanying software, and we can carry
out the status of the fracture reduction in the surgical process
through the image guide real-time observation, avoiding the bad
results caused by delayed fracture information in conventional
reduction surgery or in robotic reduction surgery.

A feature extraction network based on the UNet architecture
was used for the image segmentation of AP and LAT wrist X-ray
images. This network utilizes the UNet deep learning architecture,
which is combined with a VGG16 encoder for feature extraction.
The parameter calculation and image guidance modules are based
on the results of image segmentation, and employ computer vision
techniques in conjunction with geometric methods for precise
parameter extraction. High precision was achieved in both image
segmentation and parameter calculation, as evidenced by the
Intersection over Union (IoU) scores and parameter accuracy
metrics. The IoU values for the models segmenting AP and LAT
X-ray images were 91.31% and 88.63% on the test set. And in the
above has been through the image segmentation accuracy, model
training time and model prediction time multiple perspectives will
UNet network and the other three neural network architecture
comparison, DeeplabV3 + and PSPUNet neural network
corresponding to the model is not only in the accuracy of the

lower, in the training time has no advantage, respectively, need to be
60 + min and nearly 50 min of training, the accuracy of the higher
The training of the model based on the TransUNet architecture
neural network takes much longer. The difference between the
prediction time of nearly 1s for the model based on the
TransUNet architecture neural network and less than 0.5s for the
model trained on the UNet neural network architecture is huge,
which determines the validity of the information obtained by the
physician in clinical use. In this study, in the process of combining
image segmentation and parameter calculation, the whole system is
compressed to less than 0.6s for a single single image
calculation process.

The calculation of four fracture parameters in this study relies on
the accurate fitting of a reference axis, making it crucial to enhance
the accuracy of axis fitting to improve overall computational
precision. We optimized the contour before fitting the axis and
minimized the loss function through iterative computation and
updating of the axis parameters to improve axis fitting accuracy.
In AP images, the ulnar diaphysis was selected as the reference axis
due to its relative stability and lower impact from distal radial
fractures, providing a more consistent and reliable reference. In LAT
images, we used deep learning methods to separate the fractured
radial end from the radial diaphysis, with the latter being less
affected by the fracture and thus offering a higher reference
value. This automated calculation method, which involves
automatically locating anatomical landmarks to compute fracture
parameters, significantly reduces subjective interference while
maintaining computational accuracy. Additionally, the automated
approach provides precise data support for fracture reduction
robots, which is critical for achieving accurate fracture
realignment. The robots can utilize these fracture parameters to
determine optimal reduction paths and force applications,
improving the effectiveness and accuracy of the reduction process.

Analysis results indicate that the errors produced by the
automated fracture parameter calculation system are not
statistically significant compared to manual calculations by
physicians, further validating the system’s reliability and
accuracy. The four fracture parameters calculated by the

FIGURE 7
Comparison of manual annotation (A) and automatic computation (B) results.
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automated method adequately meet the data requirements for
fracture reduction robots, providing a reliable basis for selecting
appropriate reduction paths and force levels.

Many deep learning applications and studies on fractures were
mentioned above, Gan et al. (2019) used Faster R-CNN to localize
the fracture region, Kunihiro’s team (Oka et al., 2021) accomplished
fracture diagnosis by using CNN neural network with high accuracy,
and Raisuddin et al. (2021) used Grad-Cam module to achieve
fracture detection in dual The dataset required for most of these
studies is very large, which means that the training time required is
long and there is a big resistance in the process of specialization or
popularization of the technique, and the purpose of these studies is
to identify “fracture or not”, which, in practice, can help doctors to
identify fracture injuries to a certain extent. However, it cannot assist
doctors in real-time fracture restoration surgery in practice. The
network structure used in this study is more stable and requires a
smaller dataset, and the system studied in this paper focuses on
practicality, whichmakes it less costly to specialize the system for use
with other surgical robots in the future. In other studies, most image
segmentation requires hundreds or even thousands of images, and
the required data set cost is huge. In this study, in the image
specialization process, only a few dozens of images are needed to
complete, and with a small dataset, for example, with the hardware
configuration used in this study, the training duration of the
specialization model can be compressed to less than 30 min, and
the new model can be adapted to the corresponding x-ray machine.
Compared with previous studies, we divided the distal radius
fracture reduction process into two subtasks: “ulnar radius
segmentation” and “parameter calculation”. This division
effectively improves the accuracy and efficiency of each step,
reduces the calculation time, and improves the precision of
fracture reduction. Moreover, by combining this system with the
robot and semi-following software, the fracture reduction status can
be monitored in real time, avoiding the adverse consequences of
delayed acquisition of fracture information in traditional surgery or
robot-assisted reduction.

However, the image segmentation component of this study has
certain limitations. Although the training set underwent some
preprocessing, its accuracy may decrease slightly when
segmenting X-ray images from other hospitals due to the
predominance of images from the same X-ray machine.

Similarly, using different X-ray machines with integrated fracture
reduction robots may also reveal insufficient model tolerance.
Future improvements should focus on enhancing feature
extraction algorithms to further increase model segmentation
accuracy, or optimizing image preprocessing processes to ensure
consistency in input images. Additionally, designing specific feature
extraction algorithms for different types of X-ray machines could
further enhance segmentation and parameter calculation accuracy.

Overall, automated fracture parameter calculation methods
demonstrate superior performance in improving computational
accuracy and reducing subjective influence. They not only
streamline the fracture assessment process but also enhance the
precision of fracture treatment, providing a solid data foundation for
the advancement of fracture reduction techniques. Future research
should explore the potential of this method in other orthopedic
applications and continue to refine computational algorithms to
enhance their clinical applicability and accuracy.

5 Conclusion

In this study, we developed an automated system for analyzing
distal radius fractures, encompassing both fracture region
identification and key fracture parameters calculation. First, we
construct an image dataset comprising 371 sets of fracture X-ray
images and 70 sets of healthy control images, obtained from the
hospital information platform. Necessary preprocessing steps,
including image adjustment and augmentation, are performed to
enhance the accuracy and reliability of subsequent model training.
We then employ the UNet model for bone image segmentation,
validating the segmentation accuracy of AP and LAT bone models
from different perspectives, and optimize model performance using
appropriate loss functions.

Based on the precise bone segmentation results, we developed an
automated method for calculating fracture parameters, including
RA, RL, UV, and PT, which are crucial for fracture diagnosis,
treatment planning, and prognosis assessment. These parameters
also guide fracture reduction robots in planning reduction
techniques. Compared to manual calculations by physicians, our
automated system demonstrated high precision and consistency
across all parameters. Although minor deviations were observed,

FIGURE 8
Image guidance system channel flow and system applications.
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they were not statistically significant, indicating the system’s
reliability and effectiveness in practical applications.

Overall, the automated system developed in this study not only
improves the efficiency of fracture parameter calculations but also
reduces the impact of subjective factors on diagnostic results,
providing more objective and accurate data for fracture
assessment and treatment. Furthermore, the system holds
significant implications for the application of fracture reduction
robots, offering precise reduction paths and force data, thereby
enhancing reduction outcomes. Figure 8 has shown the flow path of
the system channel and the final scenario of the initial application in
combination with a radial repositioning robot. Future research can
build on this foundation to further optimize model performance and
calculation accuracy, aiming to make a more substantial
contribution to the field of fracture diagnosis and treatment.
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