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Estimating spatiotemporal, kinematic, and kinetic movement variables with little
obtrusion to the user is critical for clinical and sports applications. One possible
approach is using a sparse inertial sensor setup, where sensors are not placed on
all relevant body segments. Here, we investigated if movement variables can be
estimated similarly accurate from sparse sensor setups as from a full lower-body
sensor setup. We estimated the variables by solving optimal control problems
with sagittal plane lower-body musculoskeletal models, in which we minimized
an objective that combined tracking of accelerometer and gyroscope data with
minimizing muscular effort. We created simulations for 10 participants at three
walking and three running speeds, using seven sensor setups with between two
and seven sensors located at the feet, shank, thighs, and/or pelvis. We found that
differences between variables estimated from inertial sensors and those from
optical motion capture were small for all sensor setups. Including all sensors did
not necessarily lead to the smallest root mean square deviations (RMSDs) and
highest coefficients of determination (R2). Setups without a pelvis sensor led to
too much forward trunk lean and inaccurate spatiotemporal variables. Mean
RMSDs were highest for the setup with two foot-worn inertial sensors (largest
error in knee angle during running: 18 deg vs. 11 deg for the full lower-body
setup), and ranged between 4.8–18 deg for the joint angles, between 1.0–5.4 BW
BH% for the joint moments, and between 0.03 BW–0.49 BW for the ground
reaction forces. We found strong or moderate relationships (R2 >0.5) on average
for all kinematic and kinetic variables, except for the hip and kneemoment for five
out of the seven setups. The large range of the coefficient of determination for
most kinetic variables indicated individual differences in simulation quality.
Therefore, we conclude that we can perform a comprehensive sagittal-plane
motion analysis with sparse sensor setups as accurately as with a full sensor setup
with sensors on the feet and on either the pelvis or the thighs. Such a sparse
sensor setup enables comprehensive movement analysis outside the laboratory,
by increasing usability of inertial sensors.

KEYWORDS

gait analysis, gait simulations, inertial measurement units, optimal control, trajectory
optimization

OPEN ACCESS

EDITED BY

Nicola Francesco Lopomo,
Polytechnic University of Milan, Italy

REVIEWED BY

Emilia Scalona,
University of Brescia, Italy
Ezio Preatoni,
University of Bath, United Kingdom

*CORRESPONDENCE

Anne D. Koelewijn,
anne.koelewijn@fau.de

†These authors have contributed equally to this
work and share first authorship

RECEIVED 07 October 2024
ACCEPTED 14 January 2025
PUBLISHED 19 February 2025

CITATION

Dorschky E, Nitschke M, Mayer M, Weygers I,
Gassner H, Seel T, Eskofier BM and Koelewijn AD
(2025) Comparing sparse inertial sensor setups
for sagittal-plane walking and
running reconstructions.
Front. Bioeng. Biotechnol. 13:1507162.
doi: 10.3389/fbioe.2025.1507162

COPYRIGHT

© 2025 Dorschky, Nitschke, Mayer, Weygers,
Gassner, Seel, Eskofier and Koelewijn. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 19 February 2025
DOI 10.3389/fbioe.2025.1507162

https://www.frontiersin.org/articles/10.3389/fbioe.2025.1507162/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1507162/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1507162/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2025.1507162&domain=pdf&date_stamp=2025-02-19
mailto:anne.koelewijn@fau.de
mailto:anne.koelewijn@fau.de
https://doi.org/10.3389/fbioe.2025.1507162
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2025.1507162


1 Introduction

Gait analysis is a fundamental tool for understanding human
locomotion, but is currently limited to laboratory environments.
Gait analysis can include spatiotemporal, kinematic, and kinetic
variables. Spatiotemporal variables provide information about the
movement quality and can be used for clinical diagnoses (e.g., Jakob
et al., 2021). Kinematic, i.e., joint angles, and kinetic information,
i.e., ground reaction forces (GRFs), joint moments, muscle forces, as
well as variables calculated from those, such as joint reaction forces,
are required to understand the mechanical and physiological
mechanisms of human movement. Therefore, a comprehensive
analysis, including spatiotemporal, kinematic, and kinetic
variables, is important in sports performance assessments (e.g.,
Dorschky et al., 2019a; Mohr et al., 2024) and for rehabilitation
(e.g., Kim, 2017). A measurement method that is cost-effective and
allows for recordings “in the wild,” or outside the laboratory
environment, could enable widespread use of gait analysis in
different clinical and sports applications. Such methods could for
example be markerless motion capture, based on video images, or
motion capture using inertial measurement units (IMUs), and
possibly other wearable sensors. Video-based motion capture
(Uhlrich et al., 2023; Nakano et al., 2020) still requires the
person to be in the camera’s field of view. Moreover, lighting
conditions, camera placement, and occlusion can affect the
accuracy, limiting the flexibility of the system. IMUs are small,
low cost, wearable sensors that contain an accelerometer and a
gyroscope, and sometimes a magnetometer (Zhang et al., 2013),
which can also be combined with other wearable sensors, such as
pressure insoles (Carter et al., 2024). However, combining different
sensor systems requires time synchronization, which is challenging
(Kugler et al., 2012). IMUs are attached to different body segments
to measure their linear accelerations and angular velocities, as well as
possible other signals. Thus, IMU-based motion capture can be used
to measure movement outside the lab in any environment (Fleron
et al., 2019).

While many different methods have been developed to estimate
spatiotemporal variables (see Kobsar et al., 2020 for a review) and
kinematics (see Weygers et al., 2020 for a review) of movements
from inertial sensor data, estimation of kinetics is more challenging.
Joint moments are commonly computed using inverse dynamics
when both kinematics and ground reaction forces (GRFs) are
estimated from the IMU data (Ancillao et al., 2018; Karatsidis
et al., 2019; Muller et al., 2020; Diraneyya et al., 2021). However,
this step-wise approach leads to error propagation. Errors in
kinematic estimates can arise from factors such as soft tissue
artifacts and the drift that occurs due to the numerical
integration of IMU signals over time. Errors can also exist in
GRF estimates, e.g. due to load sharing assumptions between the
feet. These errors directly affect the results of the inverse dynamics
calculations. Therefore, we aim to simultaneously estimate
spatiotemporal, kinematic and kinetic variables from raw IMU
data, which can be done using machine learning (e.g., Mundt
et al., 2020; Yi et al., 2021; Conte Alcaraz et al., 2021; Mundt
et al., 2021; Dorschky et al., 2020) or using optimal control (e.g.,
Dorschky et al., 2019a; Nitschke et al., 2024). Machine learning
models can be trained to directly map IMU data to biomechanical
variables (e.g., Dorschky et al., 2020; Mundt et al., 2020; Yi et al.,

2021; Conte Alcaraz et al., 2021; Mundt et al., 2021; Bicer et al.,
2022). However, an important limitation of machine learning
models is that it cannot be proven that the resulting machine
learning models outputs dynamically consistent results, meaning
that the kinematic and kinetic variables might not follow the laws of
physics. Furthermore, machine learning models are typically trained
and tested using lab-based optical motion capture (OMC) and IMU
data, which means that there is no proof that such a model will
perform well “in the wild.” Another major challenge when applying
machine learning to estimate biomechanical variables is the
availability of training data, since the machine learning model
accuracy has been shown to improve with the size of the training
dataset (Rapp et al., 2021).

In order to obtain interpretable and dynamically consistent
motions, we have developed an optimal control approach to
simultaneously estimate the kinetics and kinematics of walking
and running based on raw accelerometer and gyroscope
measurements (Dorschky et al., 2019b). With this approach, we
find a dynamics simulation for a musculoskeletal model, such that
virtual inertial sensor data of the simulation match the recorded
inertial sensor data as closely as possible. This approach does not
require a training dataset, inherently overcomes the aforementioned
drift problems, and can mitigate soft-tissue artifacts (Dorschky et al.,
2019b). An optimal control problem is solved to find a simulation
for a sagittal plane musculoskeletal model that minimizes effort
while also minimizing a tracking error between virtual and
measured inertial sensor data, specifically angular velocities and
linear accelerations. The resulting simulation contains
spatiotemporal, kinetic, and kinematic variables that are
dynamically consistent (Nitschke et al., 2023), meaning that the
simulation follows the laws of physics as they are described in the
optimal control problem. The musculoskeletal model used in the
optimal control problem represents the human who was measured.
Therefore, we know that the resulting motion is close to that of this
person, although there are differences due to modeling assumptions.
Since we use a musculoskeletal model, the kinetic variables are the
GRFs, joint moments and muscle forces. We include muscle
dynamics to constrain torques to be physiologically realistic.
Furthermore, the tracking approach avoids integration of the
inertial sensor measurements and thus the related integration
drift. We previously showed that with this approach, we could
estimate joint angles and joint moments similar (joint angles:
mean Pearson’s correlation at least 0.96, mean root mean square
deviation (RMSD) between 4.3–8.7 deg, joint moments: mean
Pearson’s correlation at least 0.76, mean RMSD between
1.5–3.4 BW BH%, GRF: mean Pearson’s correlation at least 0.94,
RMSD between 4.1–32.0 BW %) to those obtained through inverse
kinematics and inverse dynamics based on OMC and GRF
measurements (Dorschky et al., 2019b).

However, estimating both kinetics and kinematics from inertial
sensor data commonly requires a sensor on each body segment of
interest. For example, to estimate leg kinematics and kinetics using
optimal control, we used 7 inertial sensors (Dorschky et al., 2019b).
Others used 8 sensors to include the trunk (Al Borno et al., 2022), or
17 sensors for a full-body analysis (Karatsidis et al., 2019). When
more sensors are placed on the body, the wearer, and thus their
motion, can be increasingly affected (Schlachetzki et al., 2017).
Furthermore, using more sensors increases cost, reduces
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practicality, and increases the chance of errors in IMU placement
(Gholami et al., 2020). Therefore, our aim is to create an IMU-based
motion analysis approach that is as unobtrusive as possible by
reducing the number of necessary sensors. Sparse sensor sets
have been developed to estimate individual gait variables, such as
spatiotemporal (e.g., Jakob et al., 2021), kinematic (Li et al., 2020;
Gholami et al., 2020; Hossain et al., 2022; Von Marcard et al., 2017),
three dimensional kinematic (Von Marcard et al., 2017), or kinetic
(Li et al., 2021) variables. Furthermore, neural networks have been
investigated to estimate specific quantities of interest using only two
IMUs on the shanks (Gholami et al., 2020) or the feet (Jakob et al.,
2021; Hossain et al., 2022). Others have proposed physics-based
optimization to track the sensor orientation with a torque-driven
model (Li et al., 2021) or a human body shape model (Von Marcard
et al., 2017). However, these approaches do not provide a
comprehensive analysis including various biomechanical
variables, or neglect physical correctness or muscle dynamics.
Furthermore, to our knowledge, no systematic comparison has
been performed to evaluate different sensor configurations for
estimating spatiotemporal variables, kinematics, and kinetics
during walking and running.

In this work, we performed such a systematic comparison to
evaluate how well spatiotemporal variables, joint moments, GRFs,
and joint angles can be estimated from sparse sensor setups using an
optimal control approach. Previously, we developed an optimal
control approach for a full lower-body sensor setup (Dorschky
et al., 2019b). Since realistic walking simulations of
musculoskeletal models can also be created by solving optimal
control problems with no data tracking (Falisse et al., 2019), we
expect that we can also apply the approach developed by Dorschky
et al. (2019b) to sparse sensor setups as well. Here, we therefore
investigated the accuracy of reconstructive simulations created by
solving optimal control problems for six sparse sensor setups and the
full lower-body setup. We created the six sparse sensor setups by
varying the number of IMUs included, as well as the body segments
on which they were attached. All sensor setups included sensors at

the most distal segment (the feet) to ensure that measurements are
available for all leg segments. We used a minimal setup of two IMUs
placed on the feet, three setups with sensors on two locations: feet
and shanks, feet and thighs, and feet and pelvis, and two setups with
sensors at three locations: feet, shanks and pelvis and feet, thighs and
pelvis, and compared those to a full lower-body setup with sensors
on the feet, shanks, thighs and pelvis. We then created optimal
control simulations of walking and running for each sensor setup
and investigated the difference between the resulting spatiotemporal
variables, gait kinematics, and gait kinetics for each sparse sensor
setup with those obtained using OMC and using the full lower-body
lower-body sensor setup as used by Dorschky et al. (2019b).

2 Methods

We reconstructed walking and running motions of a sagittal-
plane musculoskeletal model using raw inertial sensor
measurements, i.e., raw gyroscope and accelerometer data, from
six different sparse sensor setups and one full lower-body sensor
setup (see Figure 1). Sensors were placed symmetrically for all
setups, and each setup included sensors at the feet. We included
feet sensors in all setups, since these sensors can be attached to the
shoe, and are therefore unobtrusive, while they have also provided
reliable information in past studies (Jakob et al., 2021). For each
sensor setup, we created musculoskeletal model simulations by
solving optimal control problems that minimized the difference
between measured and virtual sensor data. To evaluate the different
sensor setups and their respective simulations, we compared the
difference between these simulations and an OMC analysis.

2.1 Experimental data

We used measured data previously recorded with seven custom-
built IMUs (Portabiles HealthCare Technologies GmbH, Erlangen,

FIGURE 1
Seven sensor setups. The blue rectangles indicate the approximate location of the inertial measurement units (IMUs). The sensor setups are
abbreviated using the first letter of the segments equipped with a sensor: F-feet, S-shanks, T-thighs, P-pelvis. The setup FSTP corresponds to a full lower-
body sensor setup with seven IMUs.
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Germany) placed on the pelvis, legs and feet (Figure 1, setup FSTP)
and an OMC system including one force plate. Dorschky et al.
(2019b) described the data recording and data pre-processing and
used this dataset to evaluate optimal control simulations from the
full lower-body sensor setup (setup FSTP). In this work, we
evaluated six sensor setups with sparser sensor placement
(Figure 1, setup F, FP, FS, FT, FSP, and FTP), and compared
those to the full lower-body sensor setup as used by Dorschky
et al. (2019b) and OMC data. The raw and pre-processed data (mean
and standard deviation over 10 trials) are available in Dorschky
et al. (2024).

This dataset contained recordings of 10 healthy male
participants (age: 27.1 ± 2.6 years, height: 181.9 ± 5.3 cm,
weight: 76.9 ± 8.6 kg) at six different speeds (slow walking:
0.9–1.0 m s−1; normal walking: 1.3–1.4 m s−1; fast walking:
1.7–1.8 m s−1; slow running: 3.1–3.3 m s−1; normal running:
3.9–4.1 m s−1; fast running: 4.7–4.9 m s−1). Participant
recruitment and data collection took place from June to
August 2016. All participants gave their informed written
consent prior to participation. The study was conducted in
line with the ethical principles of the Declaration of Helsinki
and it was approved by the ethics committee of the Medical
Faculty at the FAU Erlangen-Nürnberg, Germany (Ref.-No.:
106_13 B).

As described by Dorschky et al. (2019b), IMU axes were aligned
with the body segment axes using functional calibration movements.
From the OMC-data, sagittal plane joint angles and joint moments
were calculated using the GaitAnalysisToolkit [see Moore et al.,
2014) according to Winter (2009)]. IMU and OMC measurements

were synchronized using a custom flash trigger system. In addition,
we corrected for a small time offset (approx. 20 ms) between IMU
and OMC measurements, which was determined by calculating the
cross-correlation between the time derivative of the hip, knee, and
ankle joint angles obtained from the OMC analysis and the angular
velocity measured by the adjacent gyroscopes.

2.2 Musculoskeletal model and dynamics

We used a sagittal-plane musculoskeletal model to create our gait
simulations (Dorschky et al., 2019b; Van den Bogert et al., 2012). The
skeleton consisted of seven segments: head-arms-trunk (HAT), two
upper legs, two lower legs, and two feet. It was described by nine
generalized coordinates q: the position and orientation of the trunk, two
hip angles, two knee angles, and two ankle angles (Figure 2). We
personalized the musculoskeletal model’s segment masses, lengths,
center of mass locations and moments of inertia based on the study
participants’ full-body height and weight (Winter, 2009). We modeled
16 lower-leg muscles as three-element Hill-type muscles (Van den
Bogert et al., 2011) (Figure 2). Overall the model’s state, x(t), was
described by the nine generalized coordinates q(t), the corresponding
nine velocities v(t), 16 contractile element lengths lCE(t), and
16 muscle activations a(t): x(t) ≔ [q(t) v(t) lCE(t) a(t)]T for
0≤ t≤T with movement duration T.

We modelled contact between the musculoskeletal model and
the ground using two contact points at each foot (heel and toe)
(Dorschky et al., 2019b). We used a penetration-based contact
model to describe the vertical GRF, and a friction model for the
horizontal GRF. The contact model equations are further described
in (Todorov, 2010). Each contact point was described by its global
(x, y) position, and the anterior-posterior (Fx) and vertical
(Fy) force.

We defined the dynamics by combining the musculoskeletal model
and the contact model. The model was controlled through the
16 muscle excitations, u(t) for 0≤ t≤T (Dorschky et al., 2019b).
The system dynamics were fully described by implicit differential
equations as a function of x(t), _x(t) and u(t):
f(x(t), _x(t), u(t)) � 0. The system dynamics, including multibody
dynamics, muscle-tendon equilibrium, activation dynamics, and
contact model, f(), were twice differentiable with respect to all x, _x
and u (Van den Bogert et al., 2011), such that the optimal control
problems can be solved using a gradient-based optimization algorithm.

We calculated virtual IMU data using a virtual sensor model that
was added to the musculoskeletal model (Dorschky et al., 2019b).
We placed virtual sensors in their respective position, as measured
during the experiment, on the musculoskeletal model, and
calculated the virtual sagittal plane accelerometer and gyroscope
data from the model state and its derivative (Dorschky et al., 2019b).
The gyroscope signal represented the angular velocity of the
respective body segment relative to the global coordinate system
and was derived from the generalized velocities. The acceleration
signal represented the linear acceleration at the respective sensor
position on the body segment relative to the global coordinate
system and was a combination of the acceleration of the body
segment origin and the acceleration caused by the segment
rotation. The used equations can be found in (Dorschky
et al., 2019b).

FIGURE 2
Musculoskeletal model with seven rigid segments and 16 Hill-
type-muscles, eight per leg: 1 – iliopsoas, 2 – glutei, 3 – hamstrings,
4 – rectus femoris, 5 – vasti, 6 –gastrocnemius, 7 – soleus, and
8 – tibialis anterior (Dorschky et al., 2019b; Van den Bogert et al.,
2012). The blue rectangles indicate the approximate location of the
inertial measurement units (IMUs).
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2.3 Optimal control problems

We created gait simulations from inertial sensor data by solving
optimal control problems. In these optimal control problems, a
multi-objective optimization was solved to find a periodic walking or
running cycle that minimized muscular effort, while also tracking
the measured inertial sensor data. We constructed the tracking
objective to minimize the squared difference between the
measured accelerations and angular velocities from the IMUs and
the corresponding simulated accelerations and angular velocities
from the virtual sensor model, averaged over the gait cycle
duration T

Jtrack x t( ), u t( )( ) � 1
T 3nIMU( )∫

T

t�0
∑nIMU

j�1

aj,x x t( )( ) − μaj,x t( )
σaj,x t( )( )2⎛⎝

+ aj,y x t( )( ) − μaj,y t( )
σaj,y t( )( )2

+ ωj,z x t( )( ) − μωj,z
t( )

σωj,z t( )( )2⎞⎠dt,

where the number of IMUs nIMU ranged between two and seven
depending on the setup in Figure 1. Since we used a two-dimensional
musculoskeletal model defined in the x-y-plane, we calculated the
virtual accelerations in x- and y-direction aj,x and aj,y, and the
angular velocity ωj,z around the z-axis for each IMU
j ∈ {1, . . . , nIMU} (Dorschky et al., 2019b). We tracked
experimental IMU data μ averaged over ten gait cycles. The
squared difference between simulated and measured signals was
divided by the variance of the measured data σ2. This approach leads
to a smaller weight being applied when there is a large variance, e.g.,
due to soft tissue artefacts, and automatically provides an
appropriate weighting between different sensor modalities. In our
case, the duration of a gait cycle T was equal to the average duration
of the ten gait cycles.

We computed muscular effort as squared muscle excitations
averaged over the duration T and normalized to the squared walking
or running speed v

Jeffort x t( ),u t( )( ) � 1
Tv2nmus

∫T

t�0
∑nmus

i�1
u2
i t( )dt.

These objective terms yielded the following optimal control
problem (Van den Bogert et al., 2011; Dorschky et al., 2019b)

minimize
x 0( ),u t( ),v

J x t( ), u t( )( ) � Jtrack ·( ) +WeffortJeffort ·( ) +WregJreg ·( )
subject to f x t( ), _x t( ), u t( )( ) � 0 for 0≤ t≤T system dynamics( )

xL ≤ x t( )≤ xU for 0≤ t≤T bounds on states( )
uL ≤ u t( )≤uU for 0≤ t≤T bounds on controls( )

x T( ) � x 0( ) + vTxhor periodicity( ), (1)
whereWeffort � 300 andWreg � 10−5 are the weightings of the effort
term and regularization term, respectively. These weights were the
same as those used in Dorschky et al. (2019a). In Equation 1, we
enforced a periodic forward motion, where xhor is a vector of states
to which a horizontal displacement applies, which are the horizontal
pelvis position and the horizontal contact point positions.

To solve the optimal control problems, we transcribed them
(objectives and constraints) using direct collocation with a backward
Euler discretization andN � 100 time nodes (Dorschky et al., 2019b;

Van den Bogert et al., 2011). We added an extra collocation node
N + 1 to evaluate our periodicity constraint (Equation 1), such that
the state at node N + 1 should be the same as at node 1 with a
horizontal translation. Our decision variables consist of the model’s
state, x, and input, u at each time node, as well as the global contact
point locations and forces. We chose to include these, since
preliminary work showed that this approach speeds up the
optimization. We added constraints to ensure that the location
and forces match those calculated from the contact model using
the model’s state. Furthermore, our decision variables also included
the motions’s speed and duration. In total, 8,284 variables (101 time
nodes x (18 multibody states + 32 muscle states + 16 muscle
stimulations + 4x4 contact point decision variables) + speed +
duration = 8,284) were optimized with 6,682 constraints
(100 time nodes x (18 multibody dynamics equations +
32 muscle dynamics equations + 4x4 contact model equations) +
82 periodicity constraints = 6,682). We used the same initial guess
and the same objective weights as (Dorschky et al., 2019b). We
solved the resulting large scale nonlinear optimization problems
with IPOPT with MUMPS (Wächter and Biegler, 2006). We solved
420 optimal control problems, i.e., simulations for seven setups for
10 participants at six speeds, on a computer cluster using one Intel
Xeon E3-1240 v6 for each simulation.

2.4 Data analysis

We analyzed the convergence and computation time of the
optimal control problems, followed by a comparison of the
spatiotemporal variables (walking speed, stance time, stride
length), the kinematic variables (sagittal plane joint angles), and
the kinetic variables (sagittal plane joint moments and GRFs) as
calculated with the OMC measurements and the IMU
measurements. First, we determined the speed as the translation
of the right heel divided by the duration of the gait cycle, the stance
time as the ratio of the duration of the stance phase (Maiwald et al.,
2009) and the duration of the gait cycle, and the stride length as the
translation of the right heel.

We quantified the similarity of the spatiotemporal variables
between the different IMU setups and the OMC setup using the Root
mean square deviation (RMSD). For each walking and running
speed, we calculated the RMSD between the results calculated with
the different IMU setups and the results of the OMC analysis using
the data of all participants. In addition, we generated scatter plots
comparing the spatiotemporal variables obtained from the OMC
measurements with those obtained from the different IMU setups in
order to observe systematic differences between the setups.

Next, we compared kinetic and kinematic trajectories of the
right leg between the results calculated with the different inertial
sensor setups and the results of the OMC analyis using the
coefficient of determination (R2) and RMSD. We calculated the
coefficient of determination between the IMU data and the linear
transform of the OMC data, which we determined using the linear fit
method (LFM) (Iosa et al., 2014), and the RMSD for each walking or
running cycle of each participant individually. Then, we determined
the mean (using Fisher’s Z-transform for the square root of the
coefficient of determination) over all walking and running cycles
and participants. We computed the coefficient of determination and
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RMSD for the entire gait cycle for the joint angles and for the stance
phase for the joint moments and GRFs.

3 Results

We solved 420 optimizations, which required a mean ± standard
deviation CPU time of 48 ± 3 min (Table 1, Supplementary
Material). 418 of the 420 simulations converged, while no
optimal solution was found for two simulations. For one
participant, the restoration phase failed for setup FP in the slow
walking trial, while for another participant, the same happened for
setup F in the fast walking trial. We removed these two simulations
from the analysis. CPU times for walking simulations were higher
than for running simulations, but similar for the different setups
except for setup F for walking. We added the measured IMU
trajectories and those calculated from the optimal control
simulations in the Supplementary Material: Supplementary Figure
S1 shows the averaged results for walking, Supplementary Figure S2
for running, and the other files show the individual results for each
trial, participant, and sensor setup.

We found that the RMSDs of the spatiotemporal variables were
similar between all sensor setups, though setup F performed worst
(Figure 3). The RMSDs for speed and stride length were highest for

setup F (speed1.: [0.15; 0.55]m/s; stride length: [0.16; 0.42]m) for
most walking and running conditions. When adding a pelvis sensor
(setup FP), RMSDs of speed and stride length decreased (speed:
[0.03; 0.36]m/s; stride length: [0.04; 0.24]m). The RMSDs for
speed and stride length were lower for the setups with a thigh
sensor (setups FP, FS, and FSP), since speed and stride length were
systematically underestimated when a thigh sensor was added
(Figure 3). For the setups with sensors only on the lower leg
segments (setups F and FS), the stance time RMSD was worst,
up to 27.2 ms higher than the full lower-body sensor setup
(setup FSTP).

When visualizing the mean of our simulations for each setup
with stick figures, we found that the simulations without a pelvis
sensor had more forward trunk lean than the full lower-body sensor
setup (Figure 4). During walking, the mean forward trunk lean over
all participants and over time was at least 7 deg for setups F, FS, and
FT, while it was below 2 deg for all setups with a pelvis sensor.
Similarly, for running, the mean forward trunk lean for setups F, FS,
and FT was at least 16 deg, while it remained below 9 deg for the

TABLE 1 CPU time in minutes for converged optimizations of the different inertial sensor setups (mean ± standard deviation).

Setup F FP FS FT FSP FTP FSTP

Walking 110 ± 85 77 ± 33 61 ± 28 54 ± 20 63 ± 28 63 ± 22 68 ± 30

Running 27 ± 10 26 ± 9 27 ± 9 31 ± 11 28 ± 9 29 ± 10 34 ± 10

FIGURE 3
Root mean square deviation (RMSD) for speed, stance time, and stride length between the different inertial measurement unit (IMU) setups and the
optical motion capture (OMC) for walking (top row) and running (bottom row). We calculated the RMSDs over all participants for each walking and
running speed and each setup.

1 We use the notation [minimumvalue;maximumvalue] to show the range

of the root mean square deviation over all simulations of all participants.
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setups with a pelvis sensor. We also observed that the step length for
setup F is larger than the step length of all other setups for walking
and running, supporting the larger RMSDs shown in Figure 3 for the
stride length.

Our simulations showed that joint angle, joint moment, and
GRF estimates generally benefitted from having sensors placed at the
pelvis or thighs in addition to those at the feet, meaning that setups
FP, FT, FSP, FTP and FSTP generally led to more accurate estimates
than setup F (especially) and setup FS (Figure 5, Supplementary
Material for individual results). For setup F, the mean peak knee
flexion angle during stance wasmuch higher than for all other setups
for walking (47 deg for setup F vs. 22–30 deg for all other setups and
25 deg for the OMC result) and, to a lesser extent, for running
(68 deg for setup F vs. 58–62 deg for all other setups and 49 deg for
the OMC result), and so was the mean peak knee extension moment
(walking: 12 BW BH% for setup F vs. 2.8–5.3 BW BH% for all other
setups and 3.9 BW BH% for the OMC result, running: 26 BW BH%
for setup F vs. 14–17 BW BH% for all other setups and 16 BW BH%
for the OMC result). The mean peak ankle dorsiflexion angle was
higher as well during running (30 deg for setup F) compared to the
other setups (24–27 deg) and the OMC result (24 deg). For setups
without thigh sensors (F, FP, FS, and FSP), we also observed that the
mean hip range of motion was larger than in the OMC result for the
walking simulations. For setups F, FP, FS, and FSP, the mean hip
range of motion was at least 47 deg, while it was between 37–40 deg
for the other setups and 32 deg for the OMC result. Similarly, we
observed a larger mean peak flexion moment in the knee, which was
equal to at least 2.7 BW BH% for setups F, FP, FS, and FSP, while it
was between 1.2–2.0 BWBH% for the other setups and 1.3 BWBH%
for the OMC result. The mean forward progression of the ankle
dorsiflexion was faster than the OMC result for all setups except
setup FS for the walking simulations (e.g., on average 5 deg
dorsiflexion was reached at 21% of the gait cycle in the OMC
result and at 23% for setup FS, but between 12% for setup F and
19% for all other setups), while a similar fast progression was
observed in the ankle plantarflexion moment for setups F, FP,

FT, and FS, both for walking and running. The mean peak hip
flexion moment during walking occurred earlier in the gait cycle
than in the OMC result for all setups except setup FT (62% of the gait
cycle for setup FT and the OMC result vs. 50%–54% for all other
setups), while for running, it occurred earlier for setups FT and FTP
(59% of the gait cycle for setups FT and FTP vs. 65% for the OMC
result and 67% for all other setups). During running, the mean peak
hip extension moment was larger for the setups without a pelvis
sensor (12–13 BW BH% for setups F, FS, and FT) than the other
setups (7–8 BW BH%) and the OMC result (9 BW BH%).
Furthermore, the mean anterior-posterior GRF displayed larger
braking and push-off forces for all IMU setups, most
prominently for setup F (e.g., mean peak braking force during
walking: 0.2 BW for the OMC result vs. 0.32 BW for setup F and
0.22–0.28 BW for all other setups), while the mean peak vertical GRF
was larger during walking for setup F (1.6 BW) than all other setups
and the OMC result (1.1–1.2 BW) and larger during running for
setups F and FS (F: 3.0 BW and FS: 2.8 BW) than for all other setups
and the OMC result (2.3–2.5 BW).

Using the LFM, we found strong relationships (R2 > 0.7) on
average for the joint angles (except for setup F), the ankle moment,
and the vertical GRF, and weak (0.3< R2 < 0.5) to no (R2 < 0.3)
relationships for the hip moment and knee moment during walking,
while the variation between participants was high in the kinetic
variables (Figure 6). For running, most relationships were strong on
average, but we found moderate relationships (0.5< R2 < 0.7) on
average for the hip moment (setup FP and FSP) and horizontal GRF
(setup FP, FSP, FTP, and FSTP). For walking, most relationships for
the joint angles were strong on average, except for the joint angles for
setup F, where the relationship was moderate on average. The
relationship for the hip moment for walking was strong on
average only for setup F and setup FS, while it was weak for
setups FTP and FSTP, and moderate otherwise. The relationship
for the knee moment for walking was strong on average only for
setup FT, moderate on average for setup FS, FTP, and FSTP, weak on
average for setup FSP, and no relationship was found for setup F and

FIGURE 4
Stick figure representing the mean kinematics at the first time point of the different inertial measurement unit (IMU) setups for walking (top) and
running (bottom) over all participants. The stick figures show that without a pelvis sensor (setups F, FS, and FT), forward trunk lean is too large.
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FIGURE 5
Sagittal-plane joint angles, joint moments, and ground reaction forces (GRFs) of the right lower limb for walking (top three rows, right heel strike to
right heel strike) and running (bottom 3 row, left toe off to left toe off) at all speeds, from the different inertial measurement unit (IMU) setups (colored
lines) and the references values from optical motion capture system and force plate data (mean: black line, standard deviation: grey fill). All lines represent
themean over all participants. Joint moments were scaled to bodyweight bodyheight percent (BW BH%) and GRFs were scaled to bodyweight (BW).
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FIGURE 6
Coefficient of determination (R2) for the sagittal-plane joint angles, joint moments, and ground reaction forces (GRFs) between the different inertial
measurement unit (IMU) setups and references values from optical motion capture system and force plate data for walking (top three rows) and running
(bottom three rows), determined using the linear fit method. The circles show the coefficient of determination for each walking and running cycle of each
participant. The bar shows themean value over all cycles and participants computed using Fisher’s Z-transformon the square root of the coefficient.
The horizontal lines categorize the relationship as strong (R2 >0.7), moderate (0.5< R2 <0.7), weak (0.3< R2 <0.5), and no (R2 <0.3).
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FIGURE 7
Root mean square deviation (RMSD) for the sagittal-plane joint angles, joint moments, and ground reaction forces (GRFs) between the different
inertial measurement unit (IMU) setups and references values from optical motion capture system and force plate data for walking (top three rows) and
running (bottom three rows). The circles show the RMSD for each walking and running cycle of each participant. The bar shows the mean value over all
cycles and participants. Joint moments were scaled to bodyweight bodyheight percent (BW BH%) and GRFs were scaled to bodyweight (BW).
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FP. The largest range of coefficients of determination for the joint
angles was 0.45 (setup F, knee angle, running, 0.53–0.98), while the
highest range for any other setup was 0.35 for setup FP (ankle angle,
running), and the highest range for setup FSTP 0.27 (ankle angle,
walking). The range for the hip moment was large for all setups (at
least 0.79 for setup FTP, walking), as well as for the knee moment
during walking (at least 0.69, setup F), while for the ankle moment, it
was between 0.08 (setup FT, running) and 0.61 (setup FSP, running).
The vertical GRF had the smallest range for setup F during running
(0.04) and the largest range for setup F during walking (0.60), while
the horizontal GRF had a larger range for running (at least 0.43 for
setup FT) than for walking (at most 0.59 for setup F).

Our RMSDs showed similar trends as the coefficient of
determination, with setup F generally showing the largest error,
while the setups with sensors on the thighs or on the pelvis were
most accurate for all variables (Figure 7). The RMSD was highest for
setup F for most variables, except for the hip moment for running,
where setup FS yielded the highest RMSD. The joint angle RMSD
was up to 11 deg higher (running, knee) for setup F than setup FSTP,
while the GRF RMSD was up to 0.37 BW higher (running, vertical)
and the joint moment RMSD up to 5.5 BW BH% higher (running,
ankle). The differences between setup FSTP and the other sparse
setups were smaller than those between setup FSTP and setup F.
Compared to setup FSTP, setups FP and FSP had the largest increase
in joint angle RMSD with 3 deg (hip, walking), while the largest
increase was 2.6 deg (walking, knee) for setup FS and 0.8 deg for the
setups FT and FTP (running, knee). The joint angle RMSD was even
lower than for setup FSTP for setups FS (walking, ankle), FSP
(walking and running, ankle), FT (walking, hip and knee, and
running, ankle), and FTP (walking, all joints). The GRF RMSD
for setup FSTP was up to 0.035 BW lower (running, anterior-
posterior) than for setup FP, up to 0.051 BW lower (running,
vertical) than for setup FT, up to 0.13 BW lower (running,
vertical) than for setup FS, and up to 0.015 BW lower (running,
vertical) than setups FSP and FTP. The GRF RMSD was even lower
for setups FP (walking, vertical), FT (walking, anterior-posterior),
and FTP (running, vertical) than for setup FSTP. The joint moment
RMSD was consistently highest in the ankle for running. Compared
to setup FSTP, it was up to 2.6 BW BH% higher for setups FP and
FT, up to 3 BW BH% higher for setup FS, up to 1.2 BW BH% higher
for setup FTP, and up to 0.8 BW BH% higher for setup FSP. The
joint moment RMSD for setup FT (walking, hip and knee) was even
lower than for setup FSTP. The range of the hip and knee moment
RMSD of were similar to those of the ankle moment, while for the
coefficient of determination, the difference in range between the hip
and knee moment and the ankle moment was larger.

4 Discussion

We evaluated optimal control simulations from six different
sparse IMU setups by comparing their accuracy against a full lower-
body sensor setup and a OMC-based motion analysis. We showed
that it is possible to reconstruct sagittal-plane walking and running
biomechanics, including spatiotemporal, kinematic and kinetic
variables, from sparse inertial sensor setups. We found a good fit
between the IMU-based analysis and the OMC-based analysis for
most sensor setups with the coefficient of determination showing

moderate to strong relationships for all variables and setups except
the knee moment for setups F, FP, and FSP, and the hip moment for
setups FTP and FSTP, although individual variation was large for
most kinetic variables. Furthermore, we found that the sensor setups
that included sensors on either the thighs or the pelvis only had
small performance drops compared to FSTP, while the differences
were larger for setup F for all tested spatiotemporal, kinematic, and
kinetic variables and for setup FS in stance time and kinetics, though
the results depended on the variable type.

When comparing different sparse IMU setups, we found that in
general it is beneficial to place sensors on at least one additional body
segment in addition to sensors on the feet, since RMSD improved or
remained similar for the spatiotemporal variables, and so did the
RMSD and coefficient of determination for most kinetic and
kinematic variables (Figures 3, 6, 7). We also found that the
optimal sensor setup depends on the application variables of
interest and that a full lower-body sensor setup does not always
produce the best results. For the spatiotemporal variables, especially
for walking, adding sensors to the thighs reduced prediction
accuracy (Figure 3), while adding thigh sensors improved
similarity of the kinetic and kinematic patterns (Figure 5).
Adding a sensor to the pelvis also improved the accuracy of
kinematics and kinetics, but not as much as when using thigh
sensors. Omitting shank sensors seems reasonable when sensors
at the feet and the pelvis or thighs are used since estimation accuracy
either only slightly improved or even decreased when adding
shank sensors.

We compared different sparse sensor setups to previous work
and found higher or similar RMSDs in our work. Previously, we
compared the results of the full lower-body setup (Dorschky et al.,
2019a), and showed that kinematics and kinetics were comparable to
Karatsidis et al. (2019). Weygers et al. (2020) reviewed kinematics
estimates from inertial sensors of gait and other movements. We
found that our kinematic estimates for all setups are similar to other
gait estimates (e.g., Tadano et al., 2013). Similar to our work, RMSD
was generally highest for the hip joint angle than and lowest for the
ankle joint angle (Tadano et al., 2013; Weygers et al., 2020).
Furthermore, the mean RMSD for the knee angle and vertical
GRF of setup FP (11 ± 4 deg and 0.3 ± 0.1 BW, respectively) are
comparable to those of a similar setup reported by Wouda et al.
(2018) (5 − 20 deg for the peak knee extension angle and 0.2 −
1.3 BW for the peak vertical GRF, who trained several neural
networks to output specific kinematic and kinetic variables. We
also compared the relative RMSDs of our GRFs estimations to those
of Carter et al. (2024), who combined IMUs and pressure sensors to
estimate only GRFs. We found slightly higher relative RMSDs,
ranging from 3.5% to 23% for the anterior-posterior GRF,
compared to 0.8%–8.8%, and from 2.0% to 25% for the vertical
direction, compared to 1.3%–17.3%. These comparisons highlight
that our approach using optimal control is as accurate as other
commonly used approaches, while it allows for different
biomechanical variables to be estimated simultaneously. However,
inference of machine learning models is generally fast, while our
simulations require half an hour to 2 h to solve.

The estimated joint moments of the reconstruction were
surprising, specifically the large range in coefficient of
determination for the hip and knee moment. This large range
can be explained by the differences between the processing of the
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OMC and IMU data. The processing of the OMC data included
filtering, followed by inverse kinematics and inverse dynamics
(Winter, 2009) with a different underlying model. It might be
that the low-pass cut-off frequency in our filter was too high,
allowing for more high frequency signal to pass than feasible in
the optimal control simulation. This would especially affect the
coefficient of determination but not the RMSD, as we observed in
our results. Furthermore, the general differences in processing yield
that the kinetics and kinematics of the OMC result cannot be
reproduced exactly in an optimal control simulation. This
comparison is therefore challenging, since the exact ground truth
is unknown, as joint moments and joint angles cannot be measured
directly. To remove most differences between the IMU- and OMC-
based analysis, and make the comparison as direct as possible, the
optimal control simulations tracking IMU data could be compared
against optimal control simulations tracking marker and GRF
(Nitschke et al., 2023). Furthermore, the large range in the
coefficient of determination could also indicate a difference in
accuracy between individual participants. For example,
personalization of the musculoskeletal model might improve the
results, since the general musculoskeletal model that was used might
represent some individuals better than others. Therefore, it is
important to further analyse differences between individuals as
well to gain insights into the causes of the large range in the
coefficient of determination.

Furthermore, the setup of the optimal control problem used for
the biomechanical gait reconstructions could also affect the accuracy
of the simulations. For example, contact between the ground and our
musculoskeletal model is created by a rigid foot with two
penetration-based contact points, one at the heel and one at the
toe, which is a simplification of foot-ground contact as it happens in
practice. These model simplifications cause different kinetics to be
associated with certain kinematics for the musculoskeletal model
than for the experimental participants, such that the kinetics as
recorded by and estimated from OMC cannot be achieved. The
effect of this foot-ground model on the ankle moment accuracy was
already observed for the full lower-body sensor setup (Dorschky
et al., 2019b). It should be investigated if kinetic estimations,
especially horizontal GRF estimations, can be improved with a
more sophisticated foot-ground contact model.

Another choice in the optimal control setup is the weighting
between the effort and tracking objective. We chose our weighting
based on Dorschky et al. (2019b) and normalized it to the number of
sensors to ensure that the objective value was similar for all setups.
This weight term could still be tuned individually for each sensor
setup, and could even be tuned for each sensor. For example, a larger
weight on the pelvis or thigh sensors could improve accuracy,
especially in a sparse sensor setup, because we found that its
inclusion in the sensor setup is important. Additional objective
terms could be considered in future work to compensate for missing
information in the IMU data. For example, Falisse et al. (2019)
found that a multi-objective cost function minimizing metabolic
energy rate, muscle activations, and joint accelerations predicted
human-like walking patterns without tracking measured data.

There are also different approaches to track data in the optimal
control problem. Here, we chose to track the mean and variance over
10 gait cycles for each participant. Instead, we could have also
created simulations for each gait cycle individually (Nitschke et al.,

2024). This decision depends on the motivation for creating the
simulations. When the goal is to analyze a longitudinal parameter,
such as repeated loading or fatigue, the benefit of tracking an average
gait cycle is that the simulation does not reflect natural variation.
From a technical perspective, averaging and then simulating is also
faster than first simulating and then averaging. An additional
advantage is that we adjust the weighting to the natural variance
of the movement, since a large variance reduces the objective
weighting and a small variance increases it. Due to this, parts of
the movement with little variance are tracked more closely that parts
with much variance. However, when the goal is to provide
biofeedback, for example during training, it makes more sense to
provide this for each gait cycle individually and therefore simulate
individual gait cycles.

We have shown that it is possible to create sagittal-plane
reconstructions of walking and running, and estimate kinetics
and kinematics from sparse sensor setups. We were able to create
reconstructions with only three sensors (on the feet and the pelvis)
or only four sensors (on the feet and the thighs) that had only a few
noticeable differences to those created with a full lower-body sensor
setup. These results imply that the improved usability of having only
three or four sensors does not lead to a considerable performance
drop of the movement reconstructions. Our results support previous
work that showed that, while such movement reconstructions are
possible using only foot sensors, results are worse in this approach
(Dorschky et al., 2019b). In contrast, deep neural networks that
directly map foot-worn sensor data to lower-leg kinematics have
shown promising results (Hossain et al., 2022). They reported mean
RMSDs for sagittal-plane joint angles of 4 to 5 deg, whereas our
tracking simulations using only foot-worn IMUs resulted in mean
RMSDs of 4 to 13 deg. One interesting direction for future work
would be to combine deep learning and physics-based optimization
to obtain physically correct human motion from deep neural
networks (Yi et al., 2022; Dorschky et al., 2020).

Different sensor setups and processing approaches could be
investigated to further optimize both usability and accuracy. For
example, a sensor setup with three sensors on the shanks and the
pelvis could be considered. We chose the setup with sensors on
the feet to include as many body segments as possible between the
sensors, because no information would be available about the feet
when sensors are placed on the shank. Furthermore, it might be
possible to increase sparsity by placing sensors asymmetrically on
different body segments when symmetric motions are recorded,
to avoid double recording of the same signal, e.g., on the left
shank and right thigh. Such setups could be further investigated
using an observability analysis to investigate the exact working
conditions in which kinematic and kinetic variables can be
inferred from simulated inertial measurement data. So far,
such an analysis has been performed using recurrent neural
networks (RNNs) to estimate the observability of kinematics
on simplified mechanical linkages (Bachhuber et al., 2022), as
well as for sparse inertial motion tracking (Bachhuber et al.,
2023). Nevertheless, in future work such an RNN-based
observability analysis might be used to study the observability
of both kinematic and kinetic variables in sparse IMU setups for
realistic biomechanical kinematic chains, such as we used here.
To further improve usability, our method’s robustness against
uncertainty in the sensor placement and orientation estimation
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should be investigated. In our experiment, the sensor positions
were measured by hand, which might not always be feasible in
practice. These positions could also be estimated as part of an
optimal control problem or neural network output. The
orientation estimation currently requires calibration
movements to be performed to identify the direction of a
vector normal to the sagittal plane. While these movements
would not be necessary in an ideal case, they are easy to
perform by the user. It could be investigated if the orientation
can be estimated from walking and running directly, as both are
also mainly sagittal plane movements.

These results will help those interested in studying motion “in
the wild”, or outside of the lab environment, since we have shown
that using sparse sensor setups will not necessarily reduce accuracy
of the resulting simulations. Sparse sensor setups with high accuracy
enable capturing of real-life data with reduced burden on patients
compared to a full sensor setup. This real-life data can then support
decision-making by providing objective data complementing
subjective clinical scores. In particular, sensor-based recordings of
movement patterns in different patient cohorts are beneficial to
deeply understand intra- and interday variability of motor
impairments of chronic diseases. This understanding is of major
importance to characterize subgroups of patients or develop
personalized approaches in order to evaluate disease progression
and therapy response. The real-life data could also help detect
changes early in the disease course, which is highly relevant for
applying disease-stage-specific therapies. Future studies should
evaluate the accuracy, usability as well as the technical and
clinical validity of a sparse sensor setup in patients with
movement disorders. This would set the basis for robust and
valid sensor-based data recordings in real-life with the long-term
goal to improve daily care and quality of life of patients using digital
technologies.

5 Conclusion

In conclusion, our work shows that we can accurately
perform a comprehensive sagittal-plane motion analysis with
sparse sensor setups. We conclude that a comprehensive analysis
including spatiotemporal, kinematic, and kinetic variables can
best be performed with a sparse sensor setup that include sensors
on the feet, the pelvis, and the thighs. We found that different
setups performed better for different types of variables. A setup
with feet and pelvis sensors was as accurate as the full lower-body
setup for spatiotemporal and kinetic variables, while a setup with
feet and thigh sensors was as accurate as the full lower-body setup
for kinematic and kinetic variables, with a performance drop for
the ankle moment up to 2 BW BH% using both sensor setups
during running. Therefore, when a comprehensive analysis is not
necessary, the sparse sensor setup can be optimized for each
application.

This study serves as a first step towards validating sparse inertial
sensor sets for monitoring movements “in the wild.” Future
validation studies should ensure that the processing between the
IMU-based motion analysis and the ground truth motion analysis is
as similar as possible, to avoid including processing differences in
the results. This way, validity and usability of sparse sensor setups

can be further evaluated for specific applications in order to allow
the use of gait analysis in a wide spectrum of clinical and sports
applications.
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