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Background: Clinically relevant postoperative pancreatic fistula (CR-POPF)
represents a significant complication after pancreaticoduodenectomy (PD).
Therefore, the early prediction of CR-POPF is of paramount importance.
Based on above, this study sought to develop a CR-POPF prediction model
that amalgamates radiomics and clinical features to predict CR-POPF, utilizing
Shapley Additive explanations (SHAP) for visualization.

Methods: Extensive radiomics features were extracted from preoperative
enhanced Computed Tomography (CT) images of patients scheduled for PD.
Subsequently, feature selection was performed using Least Absolute Shrinkage
and Selection Operator (Lasso) regression and random forest (RF) algorithm to
select pertinent radiomics and clinical features. Last, 15 CR-POPF prediction
models were developed using five distinct machine learning (ML) predictors,
based on selected radiomics features, selected clinical features, and a
combination of both. Model performance was compared using DeLong’s test
for the area under the receiver operating characteristic curve (AUC) differences.

Results: The CR-POPF prediction model based on the XGBoost predictor with
the combination of the radiomics and clinical features selected by Lasso
regression and RF exhibited superior performance among these 15 CR-POPF
prediction models, achieving an accuracy of 0.85, an AUC of 0.93. DeLong’s test
showed statistically significant differences (P < 0.05) when compared to the
radiomics-only and clinical-only models, with recall of 0.63, precision of 0.65,
and F1 score of 0.64.

Conclusion: The proposed CR-POPF prediction model based on the XGBoost
predictor with the combination of the radiomics and clinical features selected by
Lasso regression and RF can effectively predicting the CR-POPF andmay provide
strong support for early clinical management of CR-POPF.
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1 Introduction

Pancreaticoduodenectomy (PD) represents one of the most
complex procedures within the surgical discipline and remains
the gold standard for treating pancreatic and periampullary
neoplasms (Bergeat et al., 2020). Despite significant
advancements in surgical techniques and perioperative care,
mortality rates in high-volume centers have been reduced to
below 3% (Zureikat et al., 2016; Wu et al., 2023). However, CR-
POPF persists as a major complication, occurring in 10%–20% of
patients, leading to prolonged hospitalization, increased costs, and
elevated morbidity and mortality (Ma et al., 2017; Williamsson et al.,
2017; Hirono et al., 2019; Casciani et al., 2021). Early prediction of
CR-POPF is critical for risk stratification and personalized
management (Mungroop et al., 2019). Existing risk scoring
models (Callery et al., 2013; Kantor et al., 2017; Mungroop et al.,
2019; Mungroop et al., 2021), such as the Fistula Risk Score (FRS),
rely on subjective intraoperative assessments (e.g., pancreatic
texture) or postoperative parameters, limiting their utility for
preoperative decision-making. Consequently, there is an urgent
need for robust preoperative prediction tools that integrate
objective, quantifiable biomarkers to guide clinical interventions.

Computed tomography (CT), widely used for preoperative
evaluation, offers a non-invasive platform for objective risk
stratification. However, conventional CT analysis focuses on
macroscopic features (e.g., ductal morphology), which lack the
granularity to capture subtle parenchymal heterogeneity linked to
CR-POPF pathogenesis. Radiomics, an emerging paradigm, bridges
this gap by converting medical images into high-dimensional
quantitative features that reflect underlying pathophysiological
processes (Gillies et al., 2016; Lambin et al., 2017; Rigiroli et al.,
2021). These features, such as texture and shape parameters,
quantify pancreatic fibrosis, microlobular fat infiltration, and
ductal microcalcifications (Lubner et al., 2017; Chitalia and
Kontos, 2019; Kim et al., 2019; Abunahel et al., 2022)—factors
strongly associated with anastomotic integrity. Nevertheless,
unimodal radiomics models often overlook systemic clinical
variables (Huang et al., 2022; Tan et al., 2022; Mack et al., 2024),
such as inflammatory markers or metabolic indices, which may
synergize with imaging biomarkers to enhance predictive accuracy.

Machine learning (ML) provides a powerful framework to
integrate radiomics with clinical data, enabling the development
of multimodal predictive models. Prior studies demonstrate that
combined models outperform unimodal approaches by capturing
both microenvironmental heterogeneity and systemic physiological
states (Capretti et al., 2022; Shen et al., 2022; Verma et al., 2024). For
instance, texture features derived from gray-level matrices quantify
pancreatic stiffness, while clinical variables like main pancreatic duct
(MPD) diameter and platelet-to-albumin ratio (PAR) reflect
anatomical risk and systemic inflammation, respectively.
However, the clinical adoption of ML models has been hindered
by their “black-box” nature, which obscures the interpretability of
feature contributions (Azodi et al., 2020).

To address these challenges, we propose an interpretable ML
framework that synergizes preoperative CT radiomics with clinical
features for CR-POPF prediction. Our approach achieves superior
predictive performance (AUC: 0.93) while addressing key
limitations of existing methods—namely, their reliance on

subjective intraoperative assessments, dependence on
intraoperative or postoperative parameters, isolated use of
unimodal data (radiomics or clinical features), and the opacity of
traditional machine learning algorithms. By employing SHAP to
elucidate feature contributions (Lundberg et al., 2020), we transform
the model into a clinically interpretable tool. This integration not
only enhances predictive accuracy but also provides mechanistic
insights into how specific variables collectively influence fistula risk,
bridging the gap between algorithmic performance and clinical trust.

2 Materials and methods

2.1 Study cohort

This retrospective cohort study was approved by the Ethics
Committee of the First Affiliated Hospital of Chongqing Medical
University (Ethics Approval Number: 2024-087-01). Informed
consent was waived due to the retrospective design. We reviewed
336 patients who underwent PD between October 2018 and June
2023. Inclusion criteria were: (1) complete clinical and pathological
data, (2) preoperative contrast-enhanced CT within 1 month before
surgery. Exclusion criteria included: (1) non-curative resection, (2)
prior neoadjuvant therapy, (3) poor CT image quality. After
screening (Figure 1), 241 patients were included and stratified
into CR-POPF (N = 55, 22.8%) and non-CR-POPF (N = 186,
77.2%) groups based on ISGPS 2016 criteria (Bassi et al., 2017).

Demographic and clinical comparisons between groups are
summarized in Table 1. Age, gender, diabetes, hypertension,
cardiovascular/pulmonary diseases, smoking history, and prior
abdominal surgery showed no significant differences (P > 0.05).
However, CR-POPF patients exhibited higher BMI (23.2 vs. 22.2 kg/
m2, P = 0.035), increased alcohol consumption (43.6% vs. 28.0%, P =
0.042), and smaller MPD diameter (2.77 mm vs. 4.25 mm, P <
0.001). Preoperative laboratory tests revealed elevated platelet-to-
albumin ratio (PAR: 6.55 vs. 5.53, P = 0.012) and bilirubin levels
(129 vs. 78.2 μmol/L, P = 0.004) in the CR-POPF group. Pancreatic
head lesions were more frequent in CR-POPF patients (67.3% vs.
32.7%, P = 0.006). No differences were observed in preoperative
biliary drainage, ASA classification, or surgical approach (P > 0.05).

The cohort was randomly split into training (n = 193, 80%) and
test sets (n = 48, 20%) using an 8:2 ratio. Reporting followed
TRIPOD guidelines (Collins et al., 2015).

2.2 CT technique

Contrast-enhanced abdominal CT scans were performed using
Siemens SOMATOM Force, GE Discovery CT750 HD, or GE
LightSpeed VCT. Scanning parameters: 120 kV, 200 mA, 5 mm
slice thickness. All images were reconstructed using a standard
reconstruction kernel with the following parameters: pitch of 1,
rotation time of 0.5 s, field of view of 350 mm × 350 mm, matrix size
of 512 × 512, slice thickness of 5 mm, interval of 5 mm, and
reconstruction slice thickness of 1 mm. Patients were required to fast
and avoid drinking for at least 3 h prior to the examination. A non-
ionic iodinated contrast agent (300–400 mgI/ml) was administered
intravenously at a dose of 1–1.5 mL/kg with an injection rate of
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3 mL/s. Arterial phase scanning was delayed by 15–18 s. Portal
venous and delayed phase scans were performed with delays of
33–36 s and 180 s, respectively. Enhanced CT images were exported
from the Picture Archiving and Communication System (PACS) in
DICOM format for further analysis.

2.3 Image preprocessing and segmentation

Image preprocessing included artifact removal, grayscale
normalization (0–255), and enhancement via contrast
adjustment, sharpening, and noise reduction.

Two radiologists (>5 years of experience) manually delineated
pancreatic parenchyma (body and tail) as regions of interest (ROIs)
on portal venous phase images using ITK-SNAP (v3.6.0). The portal
vein served as the anatomical landmark to differentiate the
pancreatic head from the body. Segmentation masks were saved
in Nifti format. A senior radiologist (>10 years of experience)
validated 50 randomly selected samples. Intraclass and interclass
correlation coefficients (ICCs) were calculated, with
ICC >0.8 indicating satisfactory reproducibility.

2.4 Feature extraction and selection

Radiomics feature extraction was performed using the
PyRadiomics library (v3.0.1) in Python, based on original CT
images and their preprocessed variants, including those filtered
with Laplacian of Gaussian (LoG) and wavelet transforms. The
extracted features encompassed first-order statistics (e.g., mean,

variance, skewness), shape features (e.g., volume, sphericity,
maximum diameter), and texture features derived from matrices
such as the gray-level co-occurrence matrix (GLCM), gray-level run-
length matrix (GLRLM), gray-level size zone matrix (GLSZM), and
neighborhood gray-tone difference matrix (NGTDM).

To optimize feature selection and reduce dimensionality, the
Lasso regression combined with cross-validation (Lasso-CV) was
applied. Regularization parameters were optimized using grid
search, and features with non-zero coefficients were retained.
Additionally, the Random Forest (RF) algorithm was employed
to rank the importance of clinical variables and identify the most
relevant features for model development.

2.5 Model construction and validation

In the training cohort, five machine learning
predictors—XGBoost, Random Forest (RF), Extra Trees (ET),
Gradient Boosting (GB), and AdaBoost—were employed to
develop 15 CR-POPF prediction models (the model
parameters are presented in Table 2). These models were
trained on three datasets: radiomics-only, clinical-only, and a
combined radiomics-clinical dataset. Feature selection and
model training were performed exclusively on the training set.
The test set remained entirely independent and was only used for
final model evaluation to prevent data leakage. Hyperparameters,
including learning rate, maximum tree depth, subsampling rate,
and regularization terms, were optimized via 5-fold cross-
validated grid search to balance model complexity and
generalizability. To mitigate overfitting, early stopping

FIGURE 1
Flowchart of inclusion and exclusion criteria for eligible patients in the study. PD, pancreaticoduodenectomy; CT, computed tomography; CR-
POPF, clinically relevant postoperative pancreatic fistula.
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mechanisms and maximum iteration limits (10,000 iterations) were
enforced during training. Model performance was rigorously evaluated
using accuracy, AUC, precision, recall, and F1 score.

Pairwise comparisons of AUC values between models were
conducted using DeLong’s test, with results visualized as a heatmap
(Supplementary Material S1) to highlight statistically significant

differences (P < 0.05). Calibration curves quantified the
agreement between predicted probabilities and observed
outcomes, while decision curve analysis (DCA) assessed
clinical utility by quantifying net benefits across threshold
probabilities (Supplementary Material S2). Model
interpretability was enhanced via SHAP analysis, elucidating

TABLE 1 Clinical baseline characteristics of patients.

Characteristic

Without CR-POPF CR-POPF

P-valueN = 186 N = 55

Age (years) 61.4 (9.82) 60.7 (11.9) 0.685

Gender 0.186

Male 115 (61.8%) 40 (72.7%)

Female 71 (38.2%) 15 (27.3%)

BMI (kg/m2) 22.2 (3.20) 23.2 (2.86) 0.035

Diabetes mellitus 35 (18.8%) 6 (10.9%) 0.243

Hypertension 36 (19.4%) 14 (25.5%) 0.491

Heart disease 7 (3.76%) 5 (9.09%) 0.152

Lung disease 8 (4.30%) 4 (7.27%) 0.478

Drink 52 (28.0%) 24 (43.6%) 0.042

Smoke 72 (38.7%) 29 (52.7%) 0.090

Abdominal operation history 32 (17.2%) 11 (20.0%) 0.783

NLR 3.23 (2.34; 4.34) 3.45 (2.17; 4.97) 0.568

PLR 188 (141; 252) 181 (145; 272) 0.874

SII 688 (460; 1077) 820 (505; 1227) 0.136

PAR 5.53 (4.33; 7.26) 6.55 (5.27; 7.48) 0.012

Albumin (g/L) 39.0 (36.0; 42.8) 38.0 (35.0; 42.0) 0.509

Bilirubin (ummol/L) 78.2 (5.32; 149) 129 (33.7; 208) 0.004

ALT (U/L) 137 (41.5; 240) 95.0 (53.0; 197) 0.370

AST (U/L) 87.0 (33.5; 189) 82.0 (48.0; 136) 0.634

PBD 64 (34.4%) 26 (47.3%) 0.115

MPD (mm) 4.25 (3.06; 5.97) 2.77 (2.25; 3.94) <0.001

Lesion location 0.006

Pancreas head 75 (40.3%) 37 (67.3%)

Common bile duct 44 (23.7%) 8 (14.6%)

Ampulla of Vater 42 (22.6%) 7 (12.7%)

Duodenum 25 (13.4%) 3 (5.5%)

ASA 0.196

I 0 (0.00%) 1 (1.82%)

II 67 (36.0%) 17 (30.9%)

III 116 (62.4%) 35 (63.6%)

IV 3 (1.61%) 2 (3.64%)

Approach 0.513

OPD 60 (32.3%) 21 (38.2%)

LPD 126 (67.7%) 34 (61.8%)

CR-POPF, clinically relevant postoperative pancreatic fistula; BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-

inflammation index; PAR, platelet-to-albumin ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; PBD, preoperative biliary drainage; MPD, main pancreatic duct diameter;

ASA, american society of anesthesiologists; OPD, open pancreaticoduodenectomy; LPD, laparoscopic pancreaticoduodenectomy.
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feature contributions globally and locally. The workflow is
summarized in Figure 2.

2.6 Evaluation metrics

To comprehensively evaluate the performance of the predictive
models, five standard metrics were employed: accuracy, precision,
recall, F1-score, and AUC. The definitions and corresponding
formulas are as follows:

• Accuracy: The proportion of correctly classified instances
relative to the total instances (Sokolova and Lapalme, 2009).

Accuracy � TP + TN

TP + TN + FP + FN

• Precision: The proportion of true positive predictions among
all positive predictions (Sokolova and Lapalme, 2009).

Precision � TP

TP + FP

• Recall: The proportion of true positive predictions among all
actual positive instances (Sokolova and Lapalme, 2009).

Recall � TP

TP + FN

• F1-score: The harmonic mean of precision and recall
(Sokolova and Lapalme, 2009).

F1 − score � 2 ×
Precision × Recall

Precision + Recall

• AUC: The area under the receiver operating characteristic
(ROC) curve, calculated as the probability that a randomly
chosen positive instance is ranked higher than a negative
instance. For M positive and N negative instances
(Fawcett, 2006):

AUC � ∑M
i�1∑

N
j�1I Pi >Pj( )
M × N

where Pi and Pj denote the predicted probabilities of the i-th positive
and j-th negative instance, respectively, and I (·) is an indicator
function equal to 1 if Pi > Pj.

2.7 statistical analysis

The statistical evaluations were executed employing Python
software (version 3.7; https://www.python.org/). Quantitative
data, conforming to a normal distribution, are articulated as the
mean ± standard deviation (SD), while quantitative data that do
not follow a normal distribution are represented as the median,
along with the interquartile range. Categorical data are denoted
as numbers and percentages (N, %). To assess the efficacy of the
constructed models, several widely utilized metrics were
chosen, encompassing accuracy, precision, recall, F1 score,
and the area under the Receiver Operating Characteristic
(ROC) curve (AUC). Pairwise comparisons of AUC values
between models were conducted using DeLong’s test to
assess statistical significance. The threshold for statistical
significance was established at P < 0.05.

3 Results

3.1 Feature selection outcomes

In the course of this study, the Pyradiomics library was utilized
to derive 1719 radiomics features from CT images. To guarantee the
performance and interpretability of the model, Lasso regression was
implemented for the selection of these high-dimensional features.
The alterations in the model’s performance with varying parameter
α iterations were depicted in Figures 3A, B, thereby determining the
optimal parameter values and the corresponding number of features.
The Lasso regression model was then used to pinpoint features with
non-zero coefficients, which were subsequently ranked based on the
absolute values of these coefficients, as illustrated in Figure 3C,
including texture features (e.g., wavelet HHL_glszm_
GrayLevelNonUniformity, original_glcm_ClusterProminence) and
shape features (e.g., original_shape_Maximum2DDiameterRow,
original_shape_Sphericity).

TABLE 2 Hyperparameters of machine learning models.

Model Parameter Value

XGBoost n_estimators 100

learning_rate 0.3

max_depth 6

subsample 1

colsample_bytree 1

Random Forest n_estimators 100

max_depth None

min_samples_split 2

min_samples_leaf 1

Extra Trees n_estimators 100

max_depth None

min_samples_split 2

bootstrap False

Gradient Boosting n_estimators 100

learning_rate 0.1

max_depth 3

subsample 1.0

AdaBoost n_estimators 50

learning_rate 1.0

estimator DecisionTreeClassifier (max_depth = 1)

All models were implemented using Python’s scikit-learn (v1.2.2) and XGBoost (v1.7.6)

libraries. Unspecified parameters retained their default values.
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For clinical features, RF analysis ranked eight predictors by
importance (Figure 4): MPD diameter (2.77 mm vs. 4.25 mm in CR-
POPF vs non-CR-POPF), lesion location (67.3% vs. 32.7%
pancreatic head involvement), bilirubin (129 vs. 78.2 μmol/L),
PAR (6.55 vs. 5.53), ALT (95.0 vs. 137 U/L), BMI (mean: 23.2 vs.
22.2 kg/m2), systemic immune-inflammation index (SII) (820 vs.
688), and AST (82.0 vs. 87.0 U/L).Combining radiomics and clinical
features, we established a multimodal feature set encompassing
28 variables for subsequent training and validation of ML models.

3.2 Model performance comparison

A total of fifteen CR-POPF prediction models were developed
using five distinct ML predictors, incorporating selected radiomics
features, selected clinical features, and a combination of both.
Among the radiomics-based models, the AdaBoost model
demonstrated the highest predictive performance, achieving the
highest AUC of 0.87 (Figure 5A), along with the best recall
(0.76) and precision (0.71). In contrast, the RF and Extra Trees
models exhibited the highest accuracy (0.83); however, the RFmodel
showed lower robustness, with an AUC of 0.74. Regarding clinical
models, the Extra Trees model achieved the highest AUC (0.85,
Figure 5B) while maintaining a balanced performance in terms of
precision (0.75) and recall (0.75).

The CR-POPF prediction model based on the XGBoost
predictor with the combination of the selected radiomics and
clinical features demonstrated superior performance among all
15 CR-POPF prediction models, achieving an accuracy of
0.85 and an AUC of 0.93 (Figure 5C). Compared to unimodal

models, the combined model exhibited statistically significant
improvements. Specifically, when compared to the radiomics-
only model using the Extra Trees predictor, the AUC difference
was 0.17 (p = 0.041), and when compared to the clinical-only model
using the Random Forest predictor, the AUC difference was 0.11
(p = 0.041). These results, validated by DeLong’s test
(Supplementary Material S1, where red cells denote p < 0.05),
highlight the synergistic value of multimodal integration.

Detailed performance metrics are summarized in Table 3, while
calibration and decision curve analysis (DCA) curves
(Supplementary Material S2) further validated the clinical utility
of the combined model across threshold probabilities. These results
highlight that the integration of CT radiomics and clinical data
significantly enhances preoperative CR-POPF risk stratification.

3.3 XGBoost combined model for SHAP

In the implementation of the XGBoost ensemble model, the
SHAPmethod is utilized to elucidate the final model output through
the computation of each variable’s contribution to the prediction.
This interpretive strategy yields two categories of explanations:
global explanations at the feature level and local explanations at
the individual level. Global explanations elucidate the
comprehensive behavior of the model and the significance of its
features. This is illustrated in the SHAP bar chart and the SHAP
summary plots (Figures 6A, C), where the influence of features on
the model is assessed via mean SHAP values and presented in a
descending sequence, thereby highlighting the top 20 variables that
contribute most significantly to the model. The three variables with

FIGURE 2
Workflow of model development. PD, pancreaticoduodenectomy; CT, computed tomography; Lasso, Lasso regression; SHAP, Shapley Additive
explanation.
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FIGURE 3
Feature screening results and their visualization. (A) and (B) are the results of different α parameters in the Lasso algorithm; (C) is the radiomics
features with contribution values not equal to 0.

FIGURE 4
Contribution ranking of key clinical features selected using Random Forest analysis.
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the highest contribution are wavelet-HHL_glszm_
GrayLevelNonUniformity, original_shape_
Maximum2DDiameterRow, and lesion location. The SHAP
heatmap (Figure 6B) visually represents the direction and
magnitude of the effect of each feature across all instances within
themodel. Additionally, SHAP dependence plots (Figure 7) facilitate
comprehension of the manner in which a singular feature influences
the output of the XGBoost predictive model. The y-axis denotes the
SHAP value of the feature, in contrast to the x-axis, which signifies
the value of the feature. The plot provides a visual representation of
the fluctuating importance of the feature in relation to its value. A
SHAP value exceeding zero corresponds to positive class predictions
within the model, signifying an elevated risk of CR-POPF. Local
explanations scrutinize the methods by which specific predictions
for individual cases are formulated through the amalgamation of
personalized input data. Figure 8 delineates instances of four
standard positive and negative CR-POPF forecasts. The SHAP
Waterfall plot elucidates the contributions of each attribute to the
prediction outcome for a singular case. The baseline value
symbolizes the model’s fundamental prediction probability, while
each feature’s contribution value (also known as the SHAP value)

signifies the direction and magnitude of that particular feature’s
influence on the prediction. Positive values imply that the feature
escalates the likelihood of predicting positive CR-POPF. The final
prediction probability, denoted as f(x), is the cumulative sum of the
baseline value and all feature contributions.

4 Discussion

4.1 Synergistic feature selection strategy

The integration of radiomics and clinical features through ML
offers a transformative approach for preoperative prediction of CR-
POPF. In this study, we extracted 1,719 radiomics features from
preoperative portal venous phase CT images of 241 PD patients and
combined them with clinical variables to develop a multimodal
predictive model. The dual application of Lasso regression and RF
algorithm for feature selection proved instrumental in balancing
dimensionality reduction with biological relevance. Lasso’s
regularization properties efficiently distilled 1,719 radiomics
features to 20 non-redundant predictors, mitigating overfitting

FIGURE 5
ROC curves and AUC values of each model. (A–C) represent the prediction model results based on radiomics, clinical, and radiomics-clinical,
respectively.
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while preserving texture and shape parameters critical for
quantifying pancreatic heterogeneity—a strategy validated in
pancreatic cancer studies by Kim et al. (2019). Meanwhile, RF’s
inherent ability to rank nonlinear interactions among clinical
variables identified MPD, lesion location, PAR, and other
important features as key contributors, reflecting anatomical risk
and systemic inflammation, respectively (Huang et al., 2022; Tan
et al., 2022). This hybrid approach harmonizes the strengths of both
methods: Lasso’s sparsity induction for dimensionality reduction
and RF’s robustness in handling multicollinearity, aligning with
methodological frameworks advocating combined techniques for
high-dimensional biomedical data (Azodi et al., 2020; Kumarasamy
et al., 2021).

4.2 Performance comparison between
unimodal models

The experimental results underscore the differential
performance of ML predictors when utilizing single-modal versus
multimodal features. Models trained solely on selected radiomics
features achieved moderate predictive accuracy (AUC: 0.74–0.87),
with texture parameters such as GLSZM and Gray Level
Dependence Matrix (GLDM) emerging as pivotal predictors,
consistent with studies emphasizing their utility in quantifying
tissue heterogeneity and fibrosis—key determinants of pancreatic
anastomotic integrity (Lubner et al., 2017; Chitalia and Kontos,
2019; Kim et al., 2019). For instance, Abunahel et al. linked GLSZM
features to pancreatic stiffness, a surrogate for soft pancreatic texture
widely associated with CR-POPF (Abunahel et al., 2022). Similarly,
Capretti et al. reported comparable AUCs (0.75–0.81) using CT
texture analysis, underscoring the reproducibility of radiomics in
pancreatic risk stratification (Capretti et al., 2022). However, the

inherent limitations of unimodal radiomics models—such as their
inability to incorporate systemic physiological variables—highlight
the necessity of integrating clinical data to enhance generalizability.
Our clinical-only model, incorporating variables such as MPD
diameter, lesion location, and PAR, achieved an AUC of
0.82–0.85. While this performance aligns with the predictive
capacity of established risk scores like the FRS and updated
alternative FRS (ua-FRS) (Mungroop et al., 2019; Mungroop
et al., 2021), it demonstrates a moderate improvement over their
external validation results (AUC: 0.74–0.82), highlighting the
potential advantages of integrating modern ML frameworks with
preoperative clinical indices. Notably, the significantly smaller MPD
diameter in CR-POPF patients (2.77 vs 4.25 mm, P < 0.001) reflects
multifactorial pathophysiology involving impaired drainage,
reduced fibrosis-mediated anastomotic stability, and elevated
duct-to-mucosa tension, synergistically increasing fistula risk
(Casciani et al., 2021; Lee et al., 2023). Despite these strengths,
clinical models struggle to capture subvisual parenchymal changes,
such as microlobular fat infiltration or ductal microcalcifications,
which radiomics excels in detecting (Chitalia and Kontos, 2019;
Abunahel et al., 2022). This limitation highlights the necessity of
integrating multimodal data to address the multifactorial nature of
CR-POPF pathogenesis.

4.3 Superiority and interpretability of the
combined model

The multimodal XGBoost model (AUC: 0.93) outperformed all
unimodal approaches, underscoring the synergistic value of
combining radiomics and clinical data. This aligns with emerging
paradigms in precision oncology, where combined models
consistently outperform unimodal approaches by encapsulating

TABLE 3 Performance comparison of each model.

Feature Model Accuracy Recall Precision F1 score

Radiomics XGBoost 0.79 ± 0.06 0.68 ± 0.08 0.68 ± 0.10 0.68 ± 0.08

RF 0.83 ± 0.08 0.55 ± 0.04 0.57 ± 0.06 0.55 ± 0.04

Extra Trees 0.83 ± 0.08 0.55 ± 0.04 0.57 ± 0.07 0.55 ± 0.05

GB 0.79 ± 0.07 0.67 ± 0.09 0.61 ± 0.11 0.63 ± 0.10

AdaBoost 0.79 ± 0.06 0.76 ± 0.11 0.71 ± 0.09 0.72 ± 0.09

Clinical XGBoost 0.77 ± 0.03 0.73 ± 0.06 0.63 ± 0.02 0.64 ± 0.05

RF 0.78 ± 0.06 0.71 ± 0.08 0.72 ± 0.08 0.72 ± 0.08

Extra Trees 0.80 ± 0.06 0.75 ± 0.09 0.75 ± 0.07 0.75 ± 0.08

GB 0.81 ± 0.08 0.75 ± 0.09 0.65 ± 0.08 0.68 ± 0.08

AdaBoost 0.73 ± 0.06 0.77 ± 0.11 0.63 ± 0.08 0.63 ± 0.09

Radiomics-Clinical XGBoost 0.85 ± 0.05 0.63 ± 0.04 0.65 ± 0.06 0.64 ± 0.04

RF 0.85 ± 0.07 0.70 ± 0.08 0.68 ± 0.09 0.69 ± 0.09

Extra Trees 0.76 ± 0.04 0.61 ± 0.08 0.71 ± 0.09 0.62 ± 0.02

GB 0.81 ± 0.04 0.68 ± 0.05 0.63 ± 0.04 0.64 ± 0.04

AdaBoost 0.83 ± 0.07 0.76 ± 0.11 0.67 ± 0.09 0.70 ± 0.09
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FIGURE 6
Global model explanation by the SHAPmethod. (A) The SHAP bar chart. (B) The SHAP heatmap plot shows the direction and intensity of influence for
each feature of all cases in the model. (C) The SHAP beeswarm plot for the top 20 features in the model. Each dot represents a patient for each feature,
with red denoting a higher feature value and blue denoting a lower feature value. The x-axis represents the SHAP values that describe the impact of each
feature on model prediction. Positive SHAP values indicate an increased risk of CR-POPF, whereas negative SHAP values indicate a decreased risk.
The dots are stacked vertically to show density. SHAP, Shapley Additive explanation; CR-POPF, clinically relevant postoperative pancreatic fistula; MPD,
main pancreatic duct diameter; BMI, body mass index; ALT, alanine aminotransferase; PAR, platelet-to-albumin ratio.
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both macroscopic pathophysiology and microenvironmental
heterogeneity (Shen et al., 2022; Verma et al., 2024).
However, ML techniques are frequently characterized as
“black boxes,” with limited studies dedicated to elucidating
the sources of their predictions. This underscores an
additional advantage of our study: following the training and
evaluation of the model, we employed SHAP methods to
interpret the “black box” nature of the ML model. By
presenting the SHAP values, we elucidated the relationship
between critical covariates and the estimated risk of CR-
POPF: wavelet-HHL_glszm_GrayLevelNonUniformity
(reflecting parenchymal disorganization) and MPD diameter
jointly drove predictions, mirroring the interplay between
ductal anatomy and tissue integrity. Such findings resonate
with Lambin et al.’s assertion that radiomics bridges
qualitative imaging and quantitative biology, thereby
advancing clinical decision-making (Lambin et al., 2017).

4.4 Clinical implications for personalized
prevention

Furthermore, case analysis elucidates the contributions of
critical features within individual cases and computes the final
Shapley values to derive the ultimate prediction probabilities,

thereby facilitating personalized predictions. For patients at high
risk of CR-POPF, preoperative preventive strategies, including
nutritional support, optimization of diabetes and exocrine
insufficiency, and respiratory training, may confer substantial
benefits (Ausania et al., 2019; Bundred et al., 2020). Additionally,
prophylactic medications, such as somatostatin analogs or
hydrocortisone, have demonstrated efficacy in reducing
complications associated with pancreatic surgery (Allen et al.,
2014; Laaninen et al., 2016; Tarvainen et al., 2020). Risk
assessment identifies patients best suited for interventions,
cutting unnecessary medication costs. Evaluating the risk of CR-
POPF also facilitates the management of drainage by enabling the
early removal of drains in low-risk patients, consequently
diminishing the risks of infection and erosion (Conlon et al.,
2001; McMillan et al., 2017). Such personalized preventive
measures are essential for mitigating the adverse effects
associated with CR-POPF.

4.5 Limitations and future directions

Undeniably, our study has several limitations. First, the
retrospective study design may introduce selection bias. Second,
due to the model being derived from a single center, the sample size
is relatively small, and external applicability needs further testing.

FIGURE 7
SHAP dependence plot. Each dependence plot shows how a single feature affects the output of the prediction model, and each dot represents a
single patient. SHAP, Shapley Additive explanation; MPD, main pancreatic duct diameter.
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Third, although our ML model can be used to assess the risk of CR-
POPF in precision medicine, too many features limit its clinical
application. Future studies should validate this framework
prospectively and explore streamlined feature sets to facilitate
real-world deployment.

5 Conclusion

This study presents a novel machine learning framework for
preoperative prediction of CR-POPF by integrating CT radiomics
and clinical features. The model leverages radiomic signatures, such

FIGURE 8
Local model explanation by the SHAP method. The SHAP waterfall plots illustrate how each feature contributes to individual predictions [(A, B) are
CR-POPF negative cases; (C, D) are CR-POPF positive cases]. On a waterfall plot, the value at the bottom represents the expected value of the model
output, and each row represents the contribution of each feature to the model output. A red arrow indicates an increased risk of CR-POPF, while a blue
arrow indicates a decreased risk. The gray text before the feature names shows the value of each feature for the case. SHAP, Shapley Additive
explanation; CR-POPF, clinically relevant postoperative pancreatic fistula; MPD, main pancreatic duct diameter; BMI, body mass index.
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as parenchymal heterogeneity, alongside clinical predictors,
including MPD diameter and platelet-to-albumin ratio, achieving
superior predictive performance with an AUC of 0.93. Enhanced
interpretability is provided through SHAP, which identifies critical
feature contributions, such as wavelet-HHL_glszm_
GrayLevelNonUniformity, and enables patient-specific risk
stratification. The framework offers significant clinical
applicability, supporting perioperative interventions like
prophylactic medication and optimized drain management to
reduce morbidity. By combining quantitative imaging with
actionable insights, this work advances precision surgery and
highlights the transformative potential of explainable AI in
pancreatic surgical oncology.
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