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Bone tissue engineering has rapidly emerged as an ideal strategy to replace
autologous bone grafts, establishing a comprehensive system centered on
biomaterial scaffolds, seeding cells, bioactive factors, and biophysical
stimulation, thus paving the way for new horizons in surgical bone
regeneration. However, the scarcity of suitable materials poses a
significant challenge in replicating the intricate multi-layered structure of
natural bone tissue. Supramolecular peptide nanofiber hydrogels (SPNHs)
have shown tremendous potential as novel biomaterials due to their
excellent biocompatibility, biodegradability, tunable mechanical
properties, and multifunctionality. Various supramolecular peptides can
assemble into nanofiber hydrogels, while bioactive sequences and factors
can be embedded through physical adsorption or covalent binding,
endowing the hydrogels with diverse biochemical properties. Finally, this
review explored the future challenges and prospects of SPNHs in bone tissue
engineering, with the aim of providing insights for further advancements in
this field.
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1 Introduction

The initiation and regulation of tissue repair processes at the site of bone defects are
critical for effective fracture healing, involving various tissues, cells, and cytokines from the
bone marrow cavity. However, the clinical failure rate of spontaneous bone healing ranges
from 5% to 10% (Zura et al., 2016). Currently, autologous bone grafting is still widely
regarded as the preferred method in orthopedic interventions of bone regeneration (Zhang
J. et al., 2024). It delivers signals that promote osteogenesis, along with osteogenic cells and
scaffolds that support bone growth, while also minimizing immune response (Chen et al.,
2020), however, the limited availability of autologous bone, along with variable resorption
rates, increased morbidity, and the need for additional surgical procedures, resulting in
greater patient discomfort and higher costs (Roseti et al., 2017). Allogeneic bone grafting
and xenografts are alternative materials; however, their uncontrolled immune responses
and infections have emerged as significant concerns that cannot be overlooked (Wang et al.,
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2024). The bone tissue engineering is built upon four fundamental
components: Biomaterial-based scaffolds, stem cells and progenitor
cells, active biological factors, and physical signals (Hao et al., 2021;
Suamte and Babu, 2024). Among these, hydrogels may represent an
ideal scaffold owing to their similar structure to the natural ECM.
These materials possess the ability to be classified into natural
biomaterials, such as alginates (Hernández-González et al., 2020),
collagen (Nabavi et al., 2020), chitosan (Tang et al., 2020) etc., as well
as synthetic biomaterials (Dai et al., 2022). Among synthetic
biomaterials, peptide-based hydrogels exhibit excellent
biocompatibility, biodegradability, high purity, ease of
functionalization, and tunable mechanical properties. These
emerging tissue engineering biomaterials can form nanofibers
and subsequently create a nanonetwork under specific conditions
(such as pH, temperature, and shear stress), resulting in
Supramolecular Peptide Nanofiber Hydrogels (SPNH). Currently,
SPNHs are applied across various medical fields. In this work, we
examined the biocheclude basic roles such as cell adhesion,
recruitment, and matrix degradation, as well as enhanced roles
like osteogenesis, neuroangiogenesis, and immunomodulation,
along with additional functionalities like sterilization and tumor
suppression (Figure 1). Despite significant progress in SPNHs, key
gaps remain in understanding their long-term behavior in vivo,
including degradation rates, stability, and interactions with the
physiological environment. The aims of this review are to
examine the fundamental, improved, and additional biochemical
functions of SPNHs in bone regeneration, identify gaps in current
research, and suggest future directions.

2 Bone-related microenvironment

Bone can be classified targeting the compact and trabecular bone
regions. Compact bone consists of densely arranged bone units,
which are made up of Haversian systems containing vascular and
neural tissues. Surrounding these units are concentric lamellae of
Collagen fibers are supported by hydroxyapatite (HAP). In addition,
non-collagenous proteins, such as laminin and fibronectin, also
contribute to this reinforcement (Linder et al., 2020). Osteocytes
exist within lacunae of bone units and are immersed in a matrix that
contains a high concentration of proteoglycans as well as bioactive
factors (Sui et al., 2023). SPNHs, resembling ECM, possess high

water content and multilayered nanostructures. However, to more
closely mimic the biological functions of ECM, current approaches
focus on integrating bioactive motifs, for example, cell adhesion
peptides (CAPs), as well as biologically active molecules like TGF-β,
which are crucial for various cellular processes (Liu et al., 2020;
Eskandari et al., 2017; Wan et al., 2025). In comparison with
currently utilized biocompatible materials, SPNHs can be
endowed with a variety of biochemical works via integrating
active biological sites as well as adsorbing biological activators,
significantly accelerating the repair of bone defects (Hao et al.,
2022). A summary of multiple biofunctional motifs and agents is
provided (Table 1).

3 Fundamental biochemical functions

3.1 Cell adhesion

Cell adhesion is a fundamental function of biomaterials,
typically mediated by CAPs, which interact with designated cell
receptors membrane, such as integrins and fibronectin-binding
proteins. Several CAPs target integrins, with the fibronectin-
derived RGD peptide being widely utilized due to its effectiveness
in promoting cell attachment (Huettner et al., 2018). RGD can bind
to multiple integrins, thereby activating additional processes like
osteogenesis, angiogenesis, and neurogenesis. RGD peptides coupled
with their products, for instance RGDS, PRGDSGYRGDS (PRG),
and DGRGDSVAYG (DGR), Undergo tailoring into different types
of supramolecular peptides to create bioactive hydrophobic
hydrogels (Hao et al., 2022; Matsugami et al., 2021; Liu et al.,
2012; Luo et al., 2019). A peptide inspired by fibronectin,
designed to enhance cell attachment Pro-His-Ser-Arg-Asn
(PHSRN)PHSAA recent findings indicate that synergistically
improve cell attachment and cell multiplication when combined
with RGD in supramolecular peptides (Aye et al., 2018).

The mechanical features of SPNHs play a crucial role in
promoting cell attachment, spreading, along with differentiation.
Such stiffness and elasticity of SPNHs directly affect cellular
behavior, as materials that are too soft or rigid may impair cell
attachment and function (Hao et al., 2022; Wang S. et al., 2021).
By adjusting the mechanical properties to align with the target
tissue, such as bone, it is possible to enhance integrin
engagement, which in turn promotes stronger cell adhesion
and proliferation. When combined with biochemical signals,
such as the RGD sequence in CAPs, this mechanical
stimulation creates a synergistic effect that promotes tissue
regeneration (Abioye et al., 2024). Balancing both mechanical
and biochemical properties makes SPNHs an ideal platform for
bone repair and regeneration.

3.2 Cell recruitment

Cell recruitment involves the ability of biomaterials to attract
endogenous repair cells from niches like the bone marrow,
promoting their migration into the material. This reduces
reliance on exogenous seed cells, thereby lowering costs and
enhancing the body’s natural healing response. SPNHs offer a
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FIGURE 1
SPNHs are biochemically functionalized to establish a versatile microenvironment. This environment facilitates key processes such as cell adhesion,
recruitment, and degradation of the matrix. Additionally, it supports enhanced functions like osteogenesis, angiogenesis, and immune modulation.
Moreover, SPNHs offer added benefits, including sterilization and suppression of tumor growth (Zhang J. et al., 2024; Hao et al., 2022).
Copyright 2018 WILEY.
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TABLE 1 Biofunctional elements and factors in bone repair applications.

Motifs or factors Fundamental purpose Additional functions Citation

RGD,RGDS, PRGDSGYRGDS(PRG),
DGRGDSVAYG (DGR)

Cell adhesion (bioactive motifs) Osteogenesis, neurogenesis,
angiogenesis

Eskandari et al. (2017), Wan et al.
(2025), Huettner et al. (2018)

PHSRN Cell adhesion (bioactive motifs) cell proliferation– Matsugami et al. (2021)

RPKPQQFFGLM (substance P, SP) Cell recruitment (bioactive motifs) Osteogenesis, angiogenesis Abioye et al. (2024), Restu et al. (2020),
Lu et al. (2018)

Interleukin-8 (IL-8) Cell recruitment (bioactive factors) – Zhang et al. (2024b)

PTGXKV Matrix degradation (bioactive
motifs)

Motif delivery Lin et al. (2019)

GPQGIWGQ Motif delivery Comazzetto et al. (2021)

Bone morphogenetic proteins (BMPs) Osteogenesis (bioactive factors) Angiogenesis Tavakol et al. (2019)

Extracellular vesicles (EVs) Angiogenesis Gentile et al. (2017)

LRKKLGKA Osteogenesis (bioactive motifs) By utilizing heparan sulfate to mediate
interaction with BMP-2, osteogenesis is

enhanced

Shi et al. (2019)

SpSVPTNSPVNSKIPKACCVPTELSAI (BMP-2-
mimetic peptide)

Osteogenesis osteoblast differentiation、
Chondrogenesis and repair

Tavakol et al. (2019)

RKKNPNCRRH (BMP-4-mimetic peptide) Osteogenesis、Chondrogenesis Promotes osteoblast and chondrocyte
differentiation、Enhances bone defect

repair

Tavakol et al. (2019)

GQGFSYPYKAVFSTQ (BMP-7-mimetic peptide) Osteogenesis Repair kidney tissue、Anti-fibrotic
effect

Tavakol et al. (2019)

CGGKVGKACCVPTKLSPISVLYK (BMP-9-
mimetic peptide)

Osteogenesis、Chondrogenesis Angiogenesis、Regulation of bone
metabolism and vascular-bone

interactions

Tavakol et al. (2019)

DGEA Selective adhesion for osteoblasts by
integrin α2β1

Huang et al. (2019), Rabenstein (2002)

GFOGER Selective adhesion for osteoblasts by
integrin α2β1

Lee et al. (2013)

GTPGPQGIAGQRGVV Selective adhesion for osteoblasts by
integrin α2β1

Lee et al. (2017)

KRSR Selective adhesion for osteoblasts by cell-
membrane heparin sulfate proteoglycans

Amirahmadi et al. (2023)

VEGF-related factors Vascularization (bioactive factors) Osteogenesis Wan et al. (2024)

Fibroblast growth factor 2 (FGF-2) Osteogenesis Keshtkar et al. (2018)

Insulin-like growth factors (IGFs) Osteogenesis Shao et al. (2018)

Nerve growth factor (NGF) Neurogenesis (bioactive factors) Osteogenesis Wang et al. (2021b), Lin et al. (2012),
Hosseinkhani et al. (2006)

Brain-derived neurotrophic factor (BDNF) Osteogenesis Wang et al. (2021b), Lin et al. (2012),
Hosseinkhani et al. (2006)

RGIDKRHWNSQ (BDNF-mimetic peptide) Neurogenesis (bioactive motifs) – Bakshi et al. (2021)

Cyclic RKKADP (BDNF-mimetic peptide) Promotes neuronal survival and
differentiation

Promotes nerve repair and
regeneration、Promotes synaptic

plasticity

Bakshi et al. (2021)

EVYVVAENQQGKSKA (FGL) Cell proliferation and
differentiation

Antifibrosis、Promotes tissue repair
and regeneration

Sun et al. (2020)

SIDRVEPYSSTAQ (FRM) fibroblast recruitment Angiogenesis、Antifibrosis Liu et al. (2021)

IKVAV Laminin-mediated cell adhesion protein Liu et al. (2018)

(Continued on following page)
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porous, ECM-mimetic microenvironment that promotes cell
recruitment, a process that can be further augmented by
integrating bioactive elements. Whereas these substances
mimic such porous architecture of the extracellular matrix
(ECM) to promote endogenous cell migration, current
limitations lie in the precise control of bioactive motif release
kinetics. Future designs could focus on spatiotemporal
modulation of signaling molecules to optimize recruitment
efficiency. Bone marrow homing peptides (BMHPs),

containing high levels of K, P, F, S, along with T, can be
identified through phage display as effective in promoting
MSC migration. Incorporating BMHPs into SPNHs can
optimize regenerative outcomes by leveraging the body’s
intrinsic repair mechanism (Restu et al., 2020). Lu et al.
(2018) developed composite nanoscaffolds Via the integration
of decellularized cartilage matrix (DCM) with RADA 16 water-
based gel otherwise RADA 16/RADA 16-GG-PFSSTKT hydrogel.
Their findings demonstrated that both RADA 16/RADA 16-GG-

TABLE 1 (Continued) Biofunctional elements and factors in bone repair applications.

Motifs or factors Fundamental purpose Additional functions Citation

YIGSR Laminin-mediated cell adhesion protein
angiogenesis

Liu et al. (2018)

RNIAEIIKDI Laminin-mediated cell adhesion protein Liu et al. (2018)

IL-4 Immune regulation anti-inflammatory Lu et al. (2019)

Antimicrobial peptides (AMPs) Sterilization Zou et al. (2014)

FIGURE 2
(A) A hybrid hydrogel structure was created by integrating a directional acellular cartilage matrix (ACM) and a self-assembling peptide (SAP)
conjugated having a bonemarrow homing peptide (BMHP). It was assumed that the scaffold’s role in attracting intrinsic Msc could foster the regeneration
of cartilage tissue (Comazzetto et al., 2021). (B) A promising scaffolding strategy, designed to repair osteochondral defects in rabbits, combines a scaffold
derived from decellularized cartilage matrix (DCM) utilizing a peptide hydrogel that assembles on its own. The hydrogel incorporates Ac-(RADA)4-
CONH2 and Ac-(RADA)4GGSKPPGTSS-CONH2 (RAD/SKP) to enhance the regenerative potential (Lu et al., 2018). (C) Amodel obtained through binding
simulation was employed as the starting conformation for molecular dynamics (MD) simulations. The R-BMHP1 was represented as an orange strand,
while the receptor was shown with a gray outline; nevertheless, R-BMHP1 occupied the binding regions of the receptor. The interaction strength of
various amino acids points to the significance of specific arginine residues (ARG1, ARG5, ARG9, and ARG13) in the R-BMHP1 nanofiber strand, along with
LYS24 from the BMHP1 peptide, in interacting with the BMPR1A receptor. Subsequent to the charge-driven interaction, osteogenesis-related genes were
significantly elevated, facilitating the repair of bone tissue (Tavakol et al., 2019). Copyright 2019, Wiley-VCH.
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PFSSTKT and RADA 16/RADA 16-GG-SKPPGTSS hydrogels
effectively promoted subchondral bone regeneration within the
DCM. Although these studies primarily focused on osteogenic
differentiation and gene expression, they also highlighted the
potential of these hydrogels for directing MSCs to the injury area,
as evidenced by increased cellular infiltration in the defect area.
Additionally, the concurrent application of BMHP1 with
crosslinked RADA 16 significantly amplified alkaline
phosphatase levels and upregulated expression of bone-related
genes in MSCs (Figure 2). Existed experimental results further
confirmed that RADA 16/RADA 16-GG-PFSSTKT scaffold
accelerates regeneration in rodent skull lesions (Cui et al.,
2022). Additionally, Substance P (SP), a neuropeptide with the
sequence RPKPQQFFGLM, plays a role in neurological functions
known for its ability to recruit MSCs (Zhang K. et al., 2024).
Upon subcutaneously implanting poly (lactic acid) (PLA)
scaffolds containing KLD 12-/KLD 12-SP hydrogels in nude
mice, it was observed that the PLA hydrogels exhibited the
highest homing activity, recruiting the most labeled MSCs.
Furthermore, several active biomolecules, like stromal cell-
derived factor 1β (SDF-1β) (Raftery et al., 2024)along with
interleukin-8 (IL-8) (Lin et al., 2019))demonstrated cell
migration properties and can be physically encapsulated
within SPNHs for enhanced bone regeneration (Table 1).

3.3 Matrix degradation

Hydrogel matrices should provide niches that facilitate the
infiltration of endogenous cells, ensuring that the scaffold can
effectively degrade during the bone defect repair process.
Moreover, the speed of decomposition in the matrix should be
carefully balanced in accordance with tissue development speed
regeneration into optimize healing outcomes (Kou et al., 2021).
One strategy involves using diverse sequences that exhibit
varying response rates to matrix metalloproteinases (MMPs),
potentially resulting in distinct physical performance of the
SPNHs. Giano et al. (2011) implemented various MMP-13-
cleavable sequences into β-hairpin peptides following the
PTGXKV pattern, substituting different residues at the X
position: phenylalanine for Decapeptide 1 (DP1), leucine to
Decapeptide 2 (DP2), isoleucine to Decapeptide 3 (DP3),
along with alanine in Decapeptide 4 (DP4) (Hao et al., 2022).
This data indicated a degradation rate order of the different
hairpin structure peptides in the following manner: DP 1 > DP
2 > DP 3 > DP 4 (Giano et al., 2011). A possible cause of this is
that DP one exhibits the lowest mechanical properties,
potentially facilitating MMP-13’s penetration and degradation
of the matrix. Another approach involves linking MMP-cleavable
sequences through distinct spacer regions characterized by
unique secondary structures. The MMP-1-cleavable sequence
(GPQGIWGQ) was connected to hydrophobic alkyl chains via
different spacer regions: Peptide Assembly 1(PA1), Peptide
Assembly 3(PA3), and Peptide Assembly 4(PA4) (well-known
folding sequences), and Peptide Assembly 2(PA2) (exhibiting
20% helical structure). Results indicated degradation did not
appear in PA three along with PA 4 nano-scale filaments over
70 h, while PA one nanofibers exhibited detectable degradation

(0.21%) within 24 h (Shi et al., 2019). In the case of PA 2, a
degradation rate of 3.22% was observed after 24 h. These results
suggest that the secondary structure of the spacer can influence
degradability by affecting the availability of the active sites (Shi
et al., 2019). (Figure 3) This expands the possibilities for
selecting SPNHs.

4 Improved biochemical functions

4.1 Osteogenesis

In bone tissue engineering, SPNHs can enhance osteogenesis
by incorporating bone-inducing factors or peptides. Among the
most widely used bioactive proteins are recombinant BMPs,
including BMP-2, BMP-3, BMP-4, BMP-6, BMP-7, BMP-9,
and BMP-12, which exhibit osteoinductive activity. Studies
have shown that when BMPs are encapsulated within peptide
amphiphiles (PAs), they promote healing in rabbit cranial
defects (Fichman and Schneider, 2020). However, BMPs face
challenges such as purification difficulties, high costs,
supraphysiological dosing, and rapid release rates. To address
these issues, enhancing the affinity between SPNHs and
bioactive factors is an effective strategy. Heparan sulfate (HS),
a glycosaminoglycan component of the ECM, is able to non-
covalently bind to bioactive proteins, improving signal
transduction in osteogenesis by stabilizing receptors and
protecting proteins from hydrolysis, ultimately enhancing
bone formation and mineralization (Huang et al., 2019;
Rabenstein, 2002). This interaction can enhance signal
transduction, stabilize receptors, and protect proteins from
hydrolysis (Figure 4). Lee et al. (2013) developed the
functionalized PA with heparin-binding peptides
(LRKKLGKA) engineered to mimic these interactions,
demonstrating collagen-based hydrogel composites containing
BMP-2 along with HS reduce BMP-2 dosage by tenfold while
promoting bone regeneration compared to collagen/BMP-
2 composites. However, animal-sourced HS in clinical settings
is constrained by poor bioavailability and potential side effects.
To overcome this, sulfated monosaccharides have been
employed to simulate natural polysaccharides and conjugated
to PA (Lee et al., 2017). ECM-derived peptides, such as RGD,
DGEA (Amirahmadi et al., 2023), GFOGER (Ha et al., 2023), P-
15 (GTPGPQGIAGQRGVV) (Atieh et al., 2021),and KRSR
(lysine-arginine-serine-arginine) (Gentile et al., 2017), can
also selectively bind to osteoblasts, promoting
biomineralization. Additionally, extracellular vesicles (EVs),
rich in bioactive components, have emerged as promising
materials for promoting osteogenesis and angiogenesis (Dee
et al., 1998; Wang et al., 2022). Nevertheless, their clinical
utility in bone tissue engineering is constrained by rapid
degradation and systemic clearance. The integration of CAPs
into peptide hydrogels significantly strengthens EV-matrix
interactions, thereby optimizing their therapeutic potential for
bone repair applications (Firoozi et al., 2020; Wan et al., 2024).
Clinically, SPNHs serve as excellent drug carriers, holding
promise for the delivery of osteoinductive drugs, thus
emerging as potential materials for bone tissue engineering.
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4.2 Neuroangiogenesis

Taking into account that bone has a dense vascular network
and innervated structure, both blood vessels and nerves play
crucial roles in bone metabolism, remodeling, cellular function,
and nutrient exchange. This intricate network not only supports
the mechanical integrity of bone but also regulates various
biological processes essential for maintaining bone health and
facilitating repair mechanisms (Fan et al., 2014). When passive
diffusion of oxygen and nutrients is insufficient to promote bone
regeneration, angiogenesis and neurogenesis become crucial for
the repair of injured bone. New blood vessel formation is critical
for supplying nutrients and oxygen, while nerve regeneration
supports cellular signaling and metabolic regulation necessary
for effective healing (Wang B. et al., 2021). Therefore,
incorporating angiogenic signals into biomaterials enhances
bone regeneration. Various bioactive proteins play pivotal
roles in angiogenesis, including VEGF (Lin et al., 2012), bFGF
(Hosseinkhani et al., 2006) along with IGFs, all critical for cellular
growth and repair (Kang et al., 2012). VEGF is widely recognized
for its role in inducing the formation of new blood vessels (Hao
et al., 2022). To illustrate, linking VEGF to BMP-2 and tangibly
encapsulating it in PA hydrogels loaded into collagen
demonstrated enhanced bone regeneration in a rat model of
extensive skull damage. This underscores the significant
influence of angiogenesis in bone regeneration (Bakshi
et al., 2021).

NGF and BDNF are vital bioactive molecules involved in the
formation and regeneration of neural tissue, both of which influence
bone formation either directly or indirectly (Sun et al., 2020; Liu

et al., 2021; Liu et al., 2018). The combination of neurotrophic
molecules and osteogenic agents within SPNHs has the potential to
stimulate bone repair, as these hydrogels are widely explored for use
in neural along with neurotissue engineering (Koss et al., 2016).
Neurodevelopmental sequences extracted through neurotrophic
factors comprise peptides that mimic BDNF (e.g.,
RGIDKRHWNSQ, cyclic RKKADP) (Lu et al., 2019) coupled
with emanating from neural cell anchoring factors sequences
(e.g., EVYVVAENQQGKSKA (Wang et al., 2015) and
SIDRVEPYSSTAQ (Zou et al., 2014)), which are designed to
promote neurogenesis. Neurogenic components obtained in the
native extracellular matrix, such as Emanating from laminin
sequences (e.g., IKVAV, YIGSR, and RNIAEIIKDI), are applied
in the field of NTE. Notably, both IKVAV and YIGSR have
proven capable of stimulating angiogenesis as well (Jain and
Roy, 2020).

4.3 Immunomodulation

The importance of this immune system in regulating
osteogenesis is crucial, particularly the involvement of several
components of the immune response, like neutrophils,
macrophages, and T lymphocytes. Macrophages, specifically,
play a significant role; initially exhibiting an M1 phenotype that
facilitates the uptake of apoptotic cells coupled with pathogens
while promoting inflammation, they subsequently transition to an
anti-inflammatory M2 phenotype, which stimulates osteogenesis
(Jiang et al., 2021). Current research has prioritized dual
modulation of macrophage phenotypes by suppressing

FIGURE 3
(A) The environment induces folding and self-organization, resulting in the development of a gel-like structure. The following biological
disintegration of β-hairpin hydrogels (Giano et al., 2011). (B) A relationship within the MMP-1 breakdown effectiveness, coupled with the β-sheet
proportion in the self-assembled PA nanofibers., this MMP-1 cleavage activity was markedly lowered in PA nanofibers that displayed enhanced β-sheet
formation (Shi et al., 2019). Copyright 2022 Elsevier.
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M1 polarization and enhancing M2 activation. To achieve this,
interleukin-4 (IL-4)—a potent M2-polarizing cytokine—was
covalently conjugated with BMP-2 conjugated with graphene
oxide (GO) to establish a controlled release platform. This IL-4/
BMP-2 functionalized GO system was subsequently encapsulated
within carboxymethyl chitosan/polyethylene glycol diacrylate
(CMC/PEGDA) hybrid hydrogels. Experimental studies ex vivo
showed that such dual-factor hydrogel synergistically encouraged
M2 macrophage activation and bone regeneration, while in vivo
evaluations demonstrated significant inflammation suppression
coupled with enhanced bone formation (Zou et al., 2021).
Additionally, certain immunomodulators can be incorporated as
drug carriers into SPNHs for applications in bone tissue
engineering.

5 Additional biochemical functions

5.1 Sterilisation

Acute and chronic bone infections present significant treatment
challenges due to bacterial colonization and acidic
microenvironments (Fang et al., 2021). Osteomyelitis, typically
caused by infections leading resulting in bone tissue response
otherwise bone marrow, is typically managed with completely
removing the affected tissue, followed by the implantation of
antimicrobial materials. SPNHs serve as a perfect support system
functioning in two ways, with scaffolding as one along with
controlled release, providing both antibacterial and osteogenic
properties. Yang et al. (2018) included positively charged

FIGURE 4
(A) The source, makeup, and intersomatic interactions of EVs. The terms Hsp (heat shock protein), MVB (multivesicular body), and Tsg 101 (tumor
susceptibility gene 101) are used to denote specific cellular components (Keshtkar et al., 2018). (B) Intracellular mechanisms of extracellular vesicle
formation and release. Extracellular vesicles are secreted by cells via one of which the external protrusion of the plasma bilayer (microvesicle pathway) or
the internal folding of the endosomal bilayer (Exosomal route). Exosomes are membrane-bound vesicles formed through endocytosis. After the
plasma bilayer folds inward to generate the early endosome, exosomes are produced as internal vesicles by additional inward folding of the boundary
bilayer of the endosome, which is now identified as the multivesicular body (MVB). Ultimately, exosomes are released when the MVB merges with the
plasma bilayer. Various cellular machineries play a role in controlling cargo packaging and the release of exosomes (Shao et al., 2018). Copyright
2011 abcam. (C) To facilitate the local delivery of MSC-EVs, a matrix metalloproteinase-2 (MMP2)-responsive self-assembling peptide hydrogel (KMP2)
was utilized. It demonstrated enhanced kidney function by decreasing cell death in tubular cells, expression of Inflammatory signaling molecules, and
invasionof macrophages (Firoozi et al., 2020). Copyright 2011 abcam.
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antimicrobial peptides (Amps) within RADA 16 hydrogels,
achieving controlled release of Amps in a rabbit osteomyelitis
model. This approach effectively inhibited the multiplication of S.
aureus as well as promoted bone repair. Additionally, encapsulating
ciprofloxacin within RADA 16/calcium phosphate cement scaffolds
demonstrated significant efficacy in preventing postoperative
infections (Li et al., 2021).

5.2 Tumour suppression

Scaffolds with combined capabilities of tumor inhibition and
bone regeneration offer a potential treatment for bone abnormalities
resulting from tumors. Antitumor agents with osteogenic properties,
such as metformin—a diabetes medication that inhibits tumors and
promotes bone formation—were successfully incorporated into
scaffolds, inducing multiple beneficial functions, including both
antitumor effects and enhanced bone regeneration (Tan et al.,
2021). Currently, there are few studies investigating SPNHs as
controlled release scaffolds. Conjugating antitumor agents to
SPNHs presents a promising strategy for enhancing their
therapeutic efficacy in bone regeneration.

6 Discussion

Bone regeneration depends on the complex interplay of multiple
processes, where angiogenesis and neurogenesis are key to successful
healing. SPNHs hold great promise in this context, offering a versatile
matrix that can simultaneously support both vascular and neural
regeneration, critical for bone repair. When passive diffusion of
oxygen and nutrients is inadequate, angiogenesis becomes essential
to supply the necessary resources for healing. SPNHs have been
shown to enhance blood vessel formation by incorporating pro-
angiogenic peptides, such as VEGF and BMP-2, which stimulate
endothelial cell migration and capillary growth within the scaffold.
This vascularization is crucial for bone regeneration, as it facilitates
nutrient delivery and regulates osteogenesis. Despite their promising
potential, there are still several challenges in the development of
SPNHs. The fabrication process can be complex, resulting in
variations in mechanical properties and biological performance.
Controlling degradation rates is also critical to prevent premature
breakdown of the scaffold. Additionally, issues related to cost-
effectiveness and scalability for large-scale production remain
significant hurdles. While the mechanical properties of SPNHs can
be adjusted, they may still fall short of matching the strength and
elasticity of natural bone, especially in applications that require high
load-bearing capacity.

In addition, neurogenesis is crucial for bone reconstruction
through influencing osteoblast function and modulating
inflammation. SPNHs can be designed to release neurotrophic
factors like NGF and BDNF, promoting nerve growth and
enhancing the overall regenerative process. The dual role of
SPNHs in supporting both angiogenesis and neurogenesis offers
a unique advantage in addressing the complex needs of bone healing.
By delivering multiple bioactive factors in a controlled manner,
SPNHs create an integrated microenvironment that accelerates bone
restoration process.

Whereas other strategies are also adopted to facilitate bone
renewal, like hydrogels mimicking the bone ECM, the
incorporation of bioactive elements into scaffolds, and the use of
EVs, SPNHs offer distinct advantages. Hydrogels mimicking the
hierarchical structure of bone ECM aim to replicate the natural
architecture of bone but may not offer the same level of functional
versatility or tunable mechanical properties as SPNHs. Bioactive
element-doped scaffolds, such as those incorporating strontium or
calcium, can enhance osteogenesis; however, they lack the ability to
dynamically release multiple bioactive factors, an ability that SPNHs
possess. Furthermore, while EVs show promise in bone
regeneration, their rapid clearance and short half-life limit their
long-term effectiveness. In contrast, SPNHs offer a sustained release
system with controllable degradation rates, providing prolonged
therapeutic effects. Therefore, the ability of SPNHs to deliver a
combination of bioactive signals, along with their customizable
mechanical properties, places them ahead of other approaches in
terms of promoting bone regeneration.

7 Conclusion

In summary, SPNHs are an innovative biomaterial that holds
great promise for advancing tissue engineering, particularly in bone
regeneration. Their unique properties allow for multifaceted
applications, which can significantly improve skeletal healing
outcomes. While extensive animal studies have validated their
efficacy, the next phase of research must pivot towards clinical
applications to establish robust evidence of their safety and
effectiveness in human subjects.

8 Future perspectives

Future research should prioritize clinical trials to validate the
effectiveness of SPNHs in diverse settings. Exploring their potentials
to surpass traditional natural and synthetic hydrogels could pave the
way for broader clinical adoption. Additionally, investigating the
long-term performance of SPNHs in vivo will be crucial for
understanding their durability and integration within host tissues.
Emphasizing personalized approaches in biomaterial design could
further enhance the therapeutic potential of SPNHs, positioning
them as a cornerstone in regenerative medicine.
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