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Metastasis, the leading cause of death in cancer patients, arises when cancer cells
disseminate from a primary solid tumour to distant organs. Growth and invasion
of the solid tumour often involve collective cell migration, which is profoundly
influenced by cell-cell interactions and the extracellular matrix (ECM). The ECM’s
biochemical composition and mechanical properties, such as stiffness, regulate
cancer cell behaviour andmigration dynamics. Mathematical modelling serves as
a pivotal tool for studying and predicting these complex dynamics, with hybrid
discrete-continuous models offering a powerful approach by combining agent-
based representations of cells with continuum descriptions of the surrounding
microenvironment. In this study, we investigate the impact of ECM stiffness,
modulated via ribose-induced collagen cross-linking, on cancer spheroid growth
and invasion. We employed a hybrid discrete-continuous model implemented in
PhysiCell to simulate spheroid dynamics, successfully replicating three-
dimensional in vitro experiments. The model incorporates detailed
representations of cell-cell and cell-ECM interactions, ECM remodelling, and
cell proliferation. Our simulations align with experimental observations of two
breast cancer cell lines, non-invasive MCF7 and invasive HCC 1954, under varying
ECM stiffness conditions. The results demonstrate that increased ECM stiffness
due to ribose-induced cross-linking inhibits spheroid invasion in invasive cells,
whereas non-invasive cells remain largely unaffected. Furthermore, our
simulations show that higher ECM degradation by the cells not only enables
spheroid growth and invasion but also facilitates the formation of multicellular
protrusions. Conversely, increasing the maximum speed that cells can reach due
to cell-ECM interactions enhances spheroid growth while promoting single-cell
invasion. This hybrid modelling approach enhances our understanding of the
interplay between cancer cell migration, proliferation, and ECM mechanical
properties, paving the way for future studies incorporating additional ECM
characteristics and microenvironmental conditions.
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1 Introduction

The extracellular matrix (ECM) is a complex network of
numerous macromolecules present within all tissues outside the
cells. It comprises approximately 300 different proteins, with fibrous
proteins such as collagens being the most abundant (Yue, 2014). The
ECM’s composition and structure, which vary based on tissue type
and location, determine distinct mechanical and biochemical
properties, which regulate tissue homeostasis, cell differentiation
and growth, and largely influence cell migration (Muncie and
Weaver, 2018). The physical and mechanical characteristics of
the ECM, including fibre orientation, stiffness, viscoelasticity and
porosity, affect the cell’s direction of movement, speed and various
modes of migration (single or collective) (Yamada et al., 2022). The
ECM plays an important role in regulating cell migration during
cancer metastasis, which is the primary cause of death in cancer
patients (Yamada and Sixt, 2019). More mesenchymal cancer cell
lines typically invade as single cells and this mode of invasion is
profoundly impacted by ECM pore and fibre size (Rodríguez-Cruz
et al., 2024). In solid tumours, when cancer cells migrate collectively,
their movement is directed by both cell-cell interactions and their
interaction with the ECM (Janiszewska et al., 2020). When cells
interact with the ECM, they sense and respond to mechanical cues
from the ECM through mechanotransduction pathways, often
mediated by integrin signalling (Kanchanawong and Calderwood,
2023). These cues can trigger intracellular signalling cascades,
ultimately impacting cell behaviour (Alert and Trepat, 2020;
Muncie and Weaver, 2018). The tumour microenvironment
differs significantly from healthy microenvironments and is
heavily remodelled by cancer cells and fibroblasts (Winkler et al.,
2020). Understanding how cancer cells sense and respond to the
ECM and its mechanical and biochemical features is crucial to better
understanding cancer cell migration and invasion.

Over the years, researchers have investigated cell-ECM
interactions in relation to various mechanical properties of the
ECM, including stiffness, a material’s resistance to deformation.
Notably, increases in ECM stiffness can happen during tumour
progression and affect cancer cell behaviour and migration
(Wullkopf et al., 2018; Micalet et al., 2023; Jahin et al., 2023).
Furthermore, higher ECM stiffness in breast cancers is usually
associated with poor prognosis and drug resistance (Joyce et al.,
2018; Jahin et al., 2023). Many studies looking at ECM stiffness
employ in vitro models that simplify the ECM composition, for
example, by using only collagen to represent the ECM, and are
performed in two dimensions due to ease of sample generation, their
simplicity in analysing the results and easier reproducibility (Micalet
et al., 2023). However, there are intrinsic differences between cell
cultures in two-dimensional (2D) and three-dimensional (3D)
matrices. Cell migration features, such as migration speed,
directionality, cell morphology and cytoskeletal organisation are
profoundly influenced by the surrounding ECM, while key factors
seen in vivo such as ECM remodelling inherently require an ECM
component (Cavo et al., 2016; Gonçalves and Garcia-Aznar, 2021).
For example, cells on 2Dmatrices present a flatter and more spread-
out morphology with large flat protrusions (lamellipodia) mainly
localised at the leading edge of the cell. In 3D the cells have a more
varied morphology and form protrusions on the whole cell surface,
such as pseudopodia and invadopodia, adapting to the surrounding

ECM (Caswell and Zech, 2018). Therefore, to faithfully replicate 3D
in vivo tumour microenvironments, we must focus on 3D in vitro
ECM models rather than relying solely on 2D models. However,
creating 3D in vitro ECM models presents challenges due to their
complexity, both in sample preparation and data analysis, which
explains why researchers often turn to 2D experiments to study
mechanical effects of the ECM.

A recent review by Micalet et al. (2023) collected various papers
investigating the effects of ECM stiffness in 3D in vitro models of
epithelial cancer cells. Some studies found that matrices with higher
stiffness can enhance cell migration, and promote epithelial-to-
mesenchymal transition (EMT), a process associated with
increased invasiveness (Wei et al., 2015; Stowers et al., 2017). On
the other hand, other studies have found that less stiff matrices can
drive more invasive phenotypes in cancer cells and spheroids (Staneva
et al., 2018; Berger et al., 2020; Jahin et al., 2023). Thus, the effect of
ECM on cancer migration and invasion depends not only on stiffness,
but on several factors, including the cancer cell type, the involvement
of other cells such as fibroblasts, and the composition and structure of
the surrounding microenvironment. Furthermore, ECM stiffness in
in vitro models can be modulated using different techniques, each
affecting cell migration differently. One approach involves increasing
the collagen density and therefore the extracellular matrix stiffness.
However, this alters the structural properties of the ECM, such as its
porosity, and influences cell behaviour, including the formation and
number of focal adhesions (cell-ECM adhesion sites), which often
alters cell migration (Mason et al., 2013). Anothermethod is tomodify
the alginate hydrogel density. However, this limits cell migration by
preventing chemical remodelling of the ECM, essential for cell
invasion (Mason et al., 2013). In other studies, the stiffness of the
collagen matrix is modulated using non-enzymatic glycation, induced
by sugars such as threose and ribose. This process increases cross-links
among collagen fibres, increasing fibre stiffness without modifying the
structure of the ECM (Staneva et al., 2018; Jahin et al., 2023). The
different approaches used in modelling and measuring cancer cell
invasion in 3D lead to contradictory results which are also difficult to
compare. It is therefore even harder to understand the mechanisms
behind cancer cell invasion and their dependence on ECM stiffness.

Given the complexity, cost, and duration of in vitro experiments,
computational models have become valuable tools in complementing
experimental work by replicating setups, providing insights that help
interpret results, and exploring scenarios that are difficult to test
experimentally (Metzcar et al., 2019; Crossley et al., 2024). Cancer
spheroids, commonly used in 3D in vitro models to investigate
tumour growth and invasion, frequently display collective invasion
behaviour. Various computational approaches are employed tomodel
this collective migration, including continuous, discrete, and hybrid
models, all of which have been used to examine cancer invasion and
interactions between the cells and the surrounding extracellular
matrix. In continuous models, the cells and the ECM are
represented as densities, characterising them with partial
differential equations to describe how they change in space and
time (Nguyen Edalgo and Ford Versypt, 2018; Szymańska et al.,
2024). In discrete frameworks, agent-based modelling is often used,
where each biological element, such as a cancer cell or ECM fibre, is
distinct and the interactions between the agents are defined. For
example, Prasanna et al. (2024) used a cellular Potts model-based
multiscale computational framework to investigate spatial tumour
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heterogeneity. Finally, hybrid models combine multiple methods,
such as modelling the cells using a discrete model and the
substrate using a continuous model. Poonja et al. (2023) built a
model that combines an off-lattice agent-based model for the cells
with a vector field representation of the ECM fibril structure. In this
model, the ECM is characterised by fibril orientation and stiffness,
which can inhibit cell proliferation or trigger cell migration when
respective stiffness thresholds are exceeded.

Several software tools that utilise agent-based models for studying
collective cell migration problems have gained popularity. These
modelling platforms have been used to build custom
computational models to simulate various multiscale and
multicellular problems utilising different mathematical frameworks.
Notable examples include Chaste (Mirams et al., 2013),
CompuCell3D, which uses a cellular Potts model (Swat et al.,
2012), and PhysiCell, which employs an off-lattice centre-based
agent-based model (Ghaffarizadeh et al., 2018). PhysiCell is an
efficient and extensible open-source software tool, able to simulate
large numbers of cells in high throughput. It has a growing user
community and has been previously used to model the extracellular
matrix. Gonçalves and Garcia-Aznar (2021) developed a model for
spheroid growth with PhyiCell by defining the ECM as part of the
chemical microenvironment with zero diffusivity. The extracellular
matrix in PhysiCell has also been modelled as an agent in a PhysiCell
addon, named PhysiMeSS (Noël et al., 2024). Here each ECM fibre is
represented by cylinders with varying stiffness. Another ECM
extension of PhysiCell was developed by Metzcar et al. (2025).
They modelled the ECM as a continuum, then discretised into
smaller volumetric elements which store information about the
ECM fibre orientation, average anisotropy and fibre density.

We present a hybrid discrete-continuous model built upon the
ECM framework developed by Metzcar et al. (2025) in PhysiCell,
utilising its ECM fibre density feature. The model explores the
influence of cell-cell and cell-matrix interactions on cancer
spheroid growth at different levels of ribose-induced ECM
stiffness. Our model accounts for cell-cell and cell-ECM adhesion
and repulsion, ECM remodelling, and cell proliferation with
associated inhibition of proliferation function, allowing us to
successfully replicate the experimental finding of Jahin et al.
(2023), which investigated cancer spheroid growth and invasion
of non-invasive MCF7 and invasive HCC1954 cells at different
ribose-induced stiffnesses of the ECM. Consistent with the
in vitro experiments, our results indicate that ribose-induced
stiffening can significantly reduce ECM remodelling and confine
cancer cell movement, inhibiting spheroid growth and invasion.
Moreover, this flexible modelling framework is able to incorporate
additional ECM characteristics andmicroenvironmental conditions,
such as fibre orientation and nutrient diffusion, to further refine the
dynamics of cancer spheroid-ECM interaction in the future.

2 Materials and methods

2.1 Experimental data

In this paper, we aim to investigate the mechanisms involved in
cancer spheroid growth and invasion into the extracellular matrix.
Spheroid growth refers to the expansion of the central spheroid mass

and its volume change over time as a result of cell proliferation. On
the other hand, invasion describes the penetration of single cells or
broad multicellular protrusions into the surrounding ECM. We
build the model based on the in vitro experiments conducted by
Jahin et al. (2023) studying the effect of ribose-induced ECM
stiffening on cancer spheroid growth and invasion of non-
invasive MCF7 and invasive HCC1954 breast cancer cell lines.

In their study, Jahin et al. (2023) formed tumour spheroids of
200 μm in diameter using the hanging drop method and
subsequently embedded them in a collagen matrix with varying
ribose concentrations of 0 mM, 50 mM and 200 mM as in Phillips
et al. (2023). They used the non-invasive parental MCF7 and
invasive parental HCC1954 cells, both human breast carcinoma
cell lines with epithelial-like morphology. To model the ECM, they
chose collagen I, derived from rat tail tendons, as it is the most
abundant protein component in the extracellular matrix
surrounding solid tumours, with supplementary fibronectin also
included to allow enhanced cell attachment. During collagen
hydrogel formation, ribose, a cross-linker used for non-enzymatic
glycation to induce gel stiffening in vitro models, was added at
appropriate concentrations to increase hydrogel stiffness. More
cross-linking between collagen fibres increases the ECM stiffness
without altering the matrix organisation and the ligand binding sites
for cell-ECM adhesion. This allows for the investigation of the effect
of stiffness alone on cancer spheroid growth and invasion. The
spheroids were imaged by combining Z-slices at 10 μm intervals,
covering the whole spheroid thickness. The images were captured
daily over at least 96 h and were used to track the spheroid invasion.

2.2 Model

2.2.1 PhysiCell and general framework
PhysiCell is an open-source cross-platform compatible

multiscale modelling tool, based in C++ (Ghaffarizadeh et al.,
2018). It employs a hybrid discrete-continuum approach,
coupling an agent-based model for the cells with a continuum
model for the diffusive microenvironment. The agent-based
model is off-lattice and centre-based. Each agent, corresponding
to a single cell, is modelled as a sphere, with its position defined by its
centre. The continuum microenvironment consists of chemical
substrates with associated diffusion coefficients, decay rates,
sources and sinks, and initial and boundary conditions. PhysiCell
is coupled to an efficient multi-substrate diffusion solver called
BioFVM (Ghaffarizadeh et al., 2016) to simulate the chemical
microenvironment using reaction-diffusion PDEs. PhysiCell uses
multiscale modelling, as it has been developed with the aim of
modelling problems in cancer biology and tissue engineering, which
involve processes occurring at different time scales. The system is
updated using pre-defined and user-defined parameters and
functions, making this tool flexible and customisable.

We build our model upon the PhysiCell (version 1.12.0) ECM
framework developed byMetzcar et al. (2025). The continuum ECM
is defined separately from the chemical microenvironment and is
discretised into volumetric elements, or voxels. In our model, each
voxel stores information about the local ECM density and we did not
include any additional diffusible substrate. The model consists of
three parts:
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• ECM remodelling, corresponding to changes in ECM density
due to degradation by the cells (Section 2.2.2);

• Cell movement, as a result of cell-cell and cell-ECM
interactions (Section 2.2.3);

• Cell proliferation, with associated inhibition of proliferation
function (Section 2.2.4).

We assume that the ribose concentration affects how the cells
interact with the ECM, reducing ECM remodelling and slowing cell
migration. For ECM remodelling and cell movement processes, we
update the system every mechanics time step Δtmech at the default
value of 0.1 min, whilst slower cell phenotype processes, i.e., cell
proliferation and volume changes, are updated at a slower rate, every
phenotype time step Δtcell at the default value of 6 min
(Ghaffarizadeh et al., 2018).

We present a pseudo-2D model representing a z-slice image of
the experimental data (Figure 1A). The cells are spherical agents
with a maximum volume V and corresponding radius R that can
interact with the ECM voxels. We use a single layer of ECM voxels
inside which the cell agents can move in the x- and y-directions,
though their movement is restricted in the z-direction, making it a
constrained 3D model (pseudo-2D). This framework was chosen to
facilitate the comparison between the simulated and experimental
data, as the experimental images were captured from z-slices of
the spheroid.

To compute cell-ECM interactions for cell movement and ECM
remodelling, we must choose which ECM voxel each cell agent
interacts with. In PhysiCell the default voxel accessed for cell-
substrate interactions is the nearest voxel (centre) to the position
xi of the cellCi (Figure 1B). However, invading cancer cells can form

FIGURE 1
(A)Constrained 3Dmodel schematics. The ECM voxels are represented as orange cubes and the cancer cell as a green sphere. The cancer cell agent
moves freely within the ECM voxels in the x− and y-directions, but not in the z-direction. (B)Cell-ECM interactions computation. The cell (green) interacts
with the ECM voxel (orange) whose centre (×) is nearest to either its position xi or its front pi, determined as the point on the cell surface in its direction of
movement di (C)Cell-cell interactions computation. CellCi on the left has a radius Ri and an interaction radius Ri,A and cellCj on the right has a radius
Rj and an interaction radius Rj,A . The two cells interact when their distance is less than Ri,A + Rj,A .
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outward protrusions, such as filopodia and invadopodia, to adhere
and remodel the ECM fibres mechanically and chemically (Capuana
et al., 2020). During chemical remodelling, cancer cells can use these
protrusions to secrete soluble or membrane-bound matrix
metalloproteinases (MMPs), a class of matrix-degrading enzymes
crucial for invasion (Itoh, 2015). For this reason, we introduce an
alternative method of selecting the nearest voxel to the cell. When
remodelling the ECM, we modify the density of the nearest ECM
element to the cell front, corresponding to the nearest voxel to the
point pi on the cell surface in its direction of movement di, as shown
in Figure 1B.We also use the nearest voxel to the cell front to find the
local ECM density when computing the cell speed due to cell-ECM
adhesion (Equation 4). If the cell is not moving, and so di � 0, we
select the nearest voxel to the cell position xi (Figure 1B).

For interactions between cell agents, such as cell-cell adhesion,
as in PhysiCell, we consider the set of neighbouring cellsN i defined
as all the cells within interaction distance Ri,A + Rj,A from the cell
Ci’s centre xi (Figure 1C). Ri,A and Rj,A are the maximum
interaction (or adhesion) radii of the cells Ci and Cj respectively
and they are fixed multiples of the cells radii (Ghaffarizadeh
et al., 2018).

2.2.2 ECM remodelling
When a cell enters into contact with an ECM element, it remodels

the matrix substrate by changing its density ρ ∈ [0,1]. We assume the
cells degrade the ECM by dynamically reducing its density towards
zero. The ECM density update equation is the following:

dρ

dt
� −rdeg,ribρ, (1)

where rdeg,rib is the cell’s characteristic rate of degradation of the
ECM, which depends on the ribose concentration. It has been
observed that an increase in ribose and fibre cross-linking
through glycation correlates to less ECM remodelling and
degradation of the ECM fibres (Francis-Sedlak et al., 2010; Chang
et al., 2020). Therefore, we assume that the ECM degradation rate
rdeg,rib depends on the ribose concentration rib as follows:

rdeg,rib � rdeg,0e
−δrib, (2)

where δ ≥ 0 is a parameter that determines how strongly the ribose
affects the cell’s base degradation rate rdeg,0, i.e., when the ribose
concentration is zero. By choosing δ � 0 we assume that the ribose
concentration does not affect the cell’s degradation rate. If δ > 0, as
the ribose concentration rib increases, the degradation rate rdeg,rib
decreases, tending to zero as rib goes to infinity.

2.2.3 Cell movement
The total velocity vi of a cell Ci can be written as

vi � vi,cc + vi,cm, (3)
where vi,cc is the cell-cell interaction velocity as a result of cell-cell
adhesion and repulsion and vi,cm is the cell-matrix interaction
velocity as a result of cell-ECM adhesion and repulsion.

2.2.3.1 Cell-cell interactions
To reproduce cell-cell interactions, we use the built-in functions

in PhysiCell for cell-cell adhesion and repulsion, in PhysiCell

referred to as cell mechanics (Macklin et al., 2012; Ghaffarizadeh
et al., 2018; Metzcar et al., 2025). The cell-cell interaction velocity
vi,cc (Equation 3) is a result of cell-cell adhesion and repulsion forces.
When the distance between two cell centres |xj − xi| is less than their
interaction distance Ri,A + Rj,A, cell-cell adhesion is activated and
the cell agents start pulling each other (Figure 1). On the other hand, the
cell-cell repulsion force is activated when two cells start overlapping, so
when the distance between the two cell centres |xj − xi| is less than the
sum of their radiiRi + Rj (Figure 1). This force is used to reproduce the
effect of volume exclusion, and resistance to cell deformation when a
cell is pushed by other cells.

2.2.3.2 Cell-matrix interactions
The cell-matrix interaction velocity vi,cm (Equation 3) is a result

of cell-ECM adhesion and repulsion

vi,cm � vi,cmr + vi,cma,

where vi,cmr is the cell-ECM repulsion velocity and vi,cma is the cell-
ECM adhesion velocity.

The cell-ECM adhesion velocity (vi,cma) is a result of cell
adhesion to the ECM fibres and can be written as

vi,cma � si,cmadi,cma,

where si,cma is the cell speed due to cell-ECM adhesion and di,cma is
the cell-ECM adhesion direction. The cell-ECM adhesion direction
di,cma is given by a uniform random unit vector, whilst the speed due
to cell-ECM adhesion si,cma is the magnitude of the velocity due cell-
ECM adhesion and depends on the ECM density ρ. A higher density
of the ECM corresponds to a higher number of cell-ECM adhesion
sites. Therefore, we define si,cma as a linearly increasing function with
respect to the ECM density ρ:

si,cma � 4 Sribρ. (4)
Srib is the maximum cell-ECM interaction speed for a given
concentration of ribose rib. The factor 4 ensures that when
computing the total cell-ECM interaction speed (si,cm), the
maximum equals Srib (see Equation 7). A higher ribose
concentration corresponds to more cross-linking between the
collagen fibres. This affects the mechanical remodelling of the
fibres, as it makes it harder for the cells to realign the ECM
fibres, which is essential to allow direct cell migration and
invasion (Provenzano et al., 2006). Since we do not account for
fibre alignment and orientation in our model, we assume that higher
ribose concentration, and collagen stiffness, relate to slower cell
migration. Thus, we further assume that Srib decreases as the ribose
concentration increases as follows

Srib � S0e
−σrib, (5)

where σ ≥ 0 is a parameter that determines how strongly the ribose
affects the maximum cell-ECM interaction speed at ribose
concentration 0 mM (S0). Similarly to the role of δ in Equation
2, by setting σ � 0 we assume that the ribose concentration does not
affect the cell maximum speed, while if σ > 0 the cell maximum
speed decreases as the ribose concentration rib increases, tending to
zero as rib goes to infinity.

Further, in a 3D matrix, the ECM fibres act as an obstacle to cell
migration when the matrix is dense. When the ECM density ρ is
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equal to 1 the cells will be fully repelled by the ECM, which will act as
a wall, and when ρ is equal to zero there is no repulsion. Therefore,
we define the ECM density-dependent cell-ECM repulsion
velocity as

vi,cmr � − vi,cc + vi,cma( )ρ. (6)

Equations 4, 6 indicate that as the ECM density increases, both
cell-ECM adhesion and repulsion speeds increase, leading to a non-
monotonic resultant total cell-matrix speed (si,cm). Assuming that
the cell has no neighbours (vi,cc � 0), we find that the total cell-ECM
interaction speed is given by

vi,cm � vi,cma + vi,cmr

� vi,cma 1 − ρ( )
0si,cm � 4Sribρ 1 − ρ( ), (7)

which reaches its maximum at ρ � 0.5, where si,cm � Srib.

2.2.3.3 Cell-ECM interaction velocity update
The persistence in cell movement is defined as the mean time a

cell maintains its direction of motion (Maiuri et al., 2015). Therefore,
we update the cell direction due to cell-ECM interaction di,cm with
probability

Prob change di,cm( ) � Δtmech

Tper
,

where Tper is the persistence time (Ghaffarizadeh et al., 2018).
Instead, the cell speed due to cell-ECM interaction si,cm gets
updated deterministically every mechanics time step Δtmech. In
this way, the cell is able to rapidly react to changes in the ECM
density and tune its speed accordingly.

2.2.4 Cell proliferation
For cell proliferation, we use a live cell model from PhysiCell

(Ghaffarizadeh et al., 2018). This simple model for proliferation
consists of cells dividing in any time interval [t, t + Δt] with
probability:

Prob division during t, t + Δt[ ]( ) � 1 − e−rdivΔt ≈ rdivΔt,

where rdiv is the cell proliferation (or division) rate. When dividing,
the cell will halve its volume, duplicate the cell with all its state
and parameter values and place the daughter cells side by side
with their centres inside the radius of the original cell. The
daughter cells then grow in volume until reaching the maximum
volume V.

However, compression of the tumour spheroid due to
confinement and lack of nutrients can slow or arrest cell
proliferation (Delarue et al., 2014; Engin et al., 2017; Ahn
et al., 2024). The spheroid can be compressed when the
surrounding ECM is too dense and is not degraded quickly
enough, slowing proliferation (Delarue et al., 2014). Nutrient
diffusion depends on the porosity of the ECM, which in turn
depends on the density of the fibres (Ahn et al., 2024).
Furthermore, the cells in the centre of the spheroid are less
exposed to nutrients, since the cells in the outer layer consume
the nutrients first (Pinto et al., 2020). Therefore, as we chose not
to include nutrient diffusion in the current model, we simplify
inhibition of proliferation by assuming that proliferation is

inhibited when the cells are surrounded by neighbours (the number
of neighbours above a pre-defined overcrowding threshold) and is
slowed down by the presence of extracellular matrix. We rewrite the
probability of division in any time interval [t, t + Δt] as

Prob division during t, t + Δt[ ]( ) ≈ rdivfIP Ni, ρ( )Δt,
where fIP is the inhibition of proliferation function defined as

fIP Ni, ρ( ) � 1 − ρ if 0<Ni <Nmax

0 if Ni ≥Nmax
{ (8)

with Ni being the number of neighbours of the cell Ci, Nmax the
overcrowding threshold and ρ ∈ [0,1] the ECMdensity of the nearest
voxel to the cell position.

2.3 Statistical analysis

To compare our results with the experimental data, we
calculated spheroid area growth relative to the initial time, cell
count and Delaunay mean distance between cells in Python version
3.10.12. Given the stochastic nature of our model, we ran
10 replicates for each simulation and computed the mean and
25th/75th percentile of spheroid area growth relative to the initial
time, cell count and Delaunay mean distance every 60 min.
Simulations were performed on the University of Birmingham’s
high-performance computing (HPC) cluster, BlueBEAR. We
utilised a single node (2 × 56-core Intel® Xeon® Platinum 8570)
and ran batches of 20 simulations simultaneously, each allocated
4 GB of RAM. Completion times varied with the number of agents,
ranging from approximately 45 s to 5 min, with most simulations
finishing within 2–3 min.

We computed the spheroid area growth relative to the initial
time by calculating the area covered by the cells at each time point
and dividing it by the area covered at the initial time t � 0 min. The
spheroid area was approximated by dividing the entire domain into
a 5000 × 5000, initially setting all grid elements to a value of 0. This
baseline value represents unoccupied space. We then drew disks of
value 1 at the coordinates of each cell’s centre with their
corresponding radius (Figure 2A). Overlaps were ignored, as grid
elements covered by multiple cells are only counted once. To
calculate the total spheroid area, we summed the grid elements
with value 1 and rescaled to the original domain size to obtain the
spheroid area in μm2. This process is analogous to the method used
for computing spheroid invasion relative to the initial time in Jahin
et al. (2023).

For the cell count, we tallied the total number of cells in the
simulations at each time point, corresponding to the number of
nuclei in a slice of the experimental data.

Finally, the Delaunay mean distance measures the proximity of
cells. It utilises the Delaunay triangulation, the dual graph of the
Voronoi diagram, of a set of points. The edges of the graph form
triangles whose circumscribed circles do not contain any other
point. We used the cell centres as the input nodes of the network
and generated the Delaunay network using the spacial algorithm
Delaunay from the Python library SciPy version 1.11.1

(Figure 2B). We then computed the mean edge length between the
nodes to find the Delaunay mean distance.
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3 Results

3.1 Impact of key cell-ECM interaction
parameters on spheroid growth

Invasion and migration of cancer cells from a cancer spheroid
into the surrounding extracellular matrix depends strongly on how
they interact with the ECM (Yamada et al., 2022). The cancer cells
need to remodel the ECM to enable invasion, and can then use the
adhesion sites on the collagen fibres to propel themselves and invade
further. In our model, to study such cell-ECM interactions, we
consider different biophysical parameters representing cell-ECM
cross-talk and specific properties of the ECM. We control how
quickly the agent cells reduce locally the ECM density by changing
the degradation rate (rdeg,0, Equation 1). In turn, the ECM density
affects the cell’s speed (Equations 4, 6), which reaches its maximum
cell-ECM interaction speed (Srib) when the ECM density is equal to
0.5. The ECM density also affects the cell’s proliferation rate (rdiv)
through the inhibition of proliferation function (Equation 8). In this
section, we present the results of our analysis on the degradation rate
(rdeg,0) and maximum cell-ECM interaction speed (S0) without any
ribose at different proliferation rates (rdiv). Then we analyse the δ
and σ parameters, which determine how strongly ribose affects the
degradation rate (rdeg,rib, Equation 2) and the maximum cell-ECM
interaction speed (Srib, Equation 5) respectively at different ribose
concentrations (rib).

We initiated all simulations with a spheroid of cancer cells of
200 μm in diameter and homogeneous ECM density with value ρ �
1 throughout, except at the spheroid’s location, where the ECM
density is zero. We set the overcrowding thresholdNmax used in the
inhibition of proliferation function (Equations 5–8), equivalent to a

cell fully surrounded by the other cells (hexagonal packing) (Metzcar
et al., 2025). All of the parameters used in the simulations are also
listed in the Supplementary Tables S1–S5 and other PhysiCell
specific parameters are set to their default values as used in
PhysiCell 1.12.0 (Ghaffarizadeh et al., 2018). We examined the
impact of the degradation rate (rdeg,0) and the maximum cell-
ECM interaction speed (S0) on spheroid area growth relative to the
initial time and Delaunay mean distance (explained in Section 2.3),
holding the ribose concentration at 0 mM. The analysis was
conducted for three proliferation rates: rdiv � 0.0004 min−1,
0.0006 min−1 and 0.0008 min−1 (Figures 3A, B).

Our results demonstrate that an increase in proliferation rate
(rdiv) enhances spheroid area growth relative to the initial time
(Figure 3A) and reduces the Delaunay mean distance (Figure 3B).
This is expected, as faster cell division leads to a denser cell
population, which is correlated to a lower average cell-cell distance.

Further, increasing the maximum cell-ECM interaction speed
(S0) leads to enhanced spheroid growth and a higher Delaunay
mean distance when the degradation rate rdeg,0 is above
0.0001 min−1, and to little change when equal to 0.0001 min−1

(Figures 3A, B). A higher S0 allows more cells to detach from the
spheroid, reducing the number of neighbours, and consequently
avoiding proliferation arrest. It also enables cells to access and
degrade more areas of the ECM, further promoting proliferation.
Additionally, with faster cell migration, cells at the spheroid’s edge
become more dispersed, contributing to the increase in Delaunay
mean distance.

Finally, we observed that increasing the degradation rate rdeg,0
does not always induce a monotonic increase in spheroid area
growth relative to the initial time and Delaunay mean distance.
Generally, increasing the degradation rate enhances spheroid

FIGURE 2
(A) Spheroid area output. The domain is divided into a 5000 × 5000 grid. The grid elements that overlap with a cell have value 1 and are shown in
white. The grid elements corresponding to the background have value 0 and are shown in black. The spheroid area is computed by summing together the
elements of the grid and rescaling to the original size of the domain. (B)Delaunay triangulation output. We generate a network that connects the centres
of the cells using the spacial algorithm Delaunay from the Python library SciPy. The scale bar on the bottom right is of length 100 μm.
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growth (Figure 3A) and increases cell-cell distance, leading to a
higher Delaunay mean distance (Figure 3B). This occurs because
a higher degradation rate reduces ECM density around the
spheroid, which in turn positively affects proliferation and
invasion. However, when the degradation rate is excessively
high (rdeg,0 � 0.0128 min−1), the ECM is degraded too quickly,
which inhibits migration and invasion. Therefore, for fixed
proliferation rate rdiv and maximum cell-ECM interaction

speed S0, as the degradation rate rdeg,0 increases, the spheroid
growth slows down (Figure 3A) and the Delaunay mean distance
decreases (Figure 3B).

Figure 3C shows simulation images at the final time point (96 h)
for S0 � 0.2, 0.5 and 0.8 μm·min−1, rdeg,0 � 0.0002, 0.0008 and
0.00064 min−1 and rdiv � 0.0004, 0.0006 and 0.0008 min−1. These
images illustrate that higher S0 values lead to greater cell dispersion
at the spheroid’s edge. When combined with higher ECM

FIGURE 3
(A, B) Heatmaps showing the effects on spheroid area growth relative to the initial time t0 (A) and Delaunay mean distance (B) after 96 h with ribose
concentration 0 mM of proliferation rate rdiv (columns), maximum cell-ECM interaction speed S0 (x-axis) and degradation rate rdeg,0 (y-axis). The colour
intensity represents the mean values over 10 replicates of the spheroid area growth relative to the initial time ranging from 1 to 8 and Delaunay mean
distance ranging from 10 μm to 30 μm, as shown in the colour bars. Contour lines are also shown in white. Heatmaps withmean values and standard
deviations can be found in the Supplementary Figure S1 (C) Tables showing the simulation figures at 96 h for varying proliferation rate rdiv (columns),
maximum cell-ECM interaction speed S0 (x-axis) and degradation rate rdeg,0 (y-axis). The cells are represented in semi-transparent green and the ECM
density is in orange taking values between 0 and 1, as shown in the colour bar.
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degradation rdeg,0 more single cells are observed migrating away
from the spheroid. Thus, increased degradation rate and maximum
cell-ECM interaction speed contribute to the formation of
protrusions in the spheroid. In contrast, lower degradation levels
and migration speed limit spheroid growth, resulting in a more
rounded spheroid shape.

We then analysed the impact of the parameters δ and σ on
spheroid area growth relative to the initial time (Figure 4). For
δ, σ � 0 the functions are constant, so rdeg,rib � rdeg,0 and
Srib � S0, while for δ, σ > 0 the functions are monotonically
decreasing with respect to the ribose concentration rib, so
rdeg,rib < rdeg,0 and Srib < S0 for ribose rib greater than zero
(Equations 2, 5). For this analysis, we fixed the degradation
rate at ribose concentration 0 mM (rdeg,0 � 0.0032 min−1), the
maximum cell-ECM interaction speed at ribose concentration
0 mM (S0 � 0.7 μm·min−1) and the proliferation rate (rdiv �
0.00072 min−1). The analysis was conducted for two ribose
concentrations: rib � 50 mM and 200 mM.

Figure 4 shows that higher ribose concentrations correspond to a
decrease in spheroid growth, and increasing either δ or σ also results
in reduced spheroid growth. Notably, at 200 mM ribose, when σ is
greater than or equal to 0.015 mM−1, spheroid growth remains
unchanged for fixed values of δ. This occurs because for σ �
0.015 mM−1 the maximum cell-ECM interaction speed is
significantly reduced, S200 � S0e−σ200 ≈ 0.035 μm·min−1 compared
to S50 � S0e−σ50 ≈ 0.33 μm·min−1. As a result, as the cell population
becomes denser, proliferation is inhibited throughout the spheroid
except at its boundary, where proliferation depends on the
surrounding ECM density. Consequently, spheroid growth is
determined by the rate at which cells degrade the ECM at the
boundary, facilitating increased proliferation in this region.

3.2 Model captures inhibition of cancer
spheroid growth of non-invasive and
invasive breast cancer cells when increasing
ribose concentration

To begin with, we replicated experiments from Jahin et al. (2023)
that study the effect of ribose concentration on two different cell
lines of parental breast cancer cells: MCF7 andHCC 1954. MCF7 cells
are a non-invasive cell line, which correlates with weaker cell-ECM
interactions (Comşa et al., 2015). On the other hand, HCC1954 cells
are a more aggressive and invasive cell line, characterised by enhanced
contractility, and therefore stronger interactions with the ECM fibres
enabling migration, and further ECM remodelling (de Abreu Pereira
et al., 2022; Jahin et al., 2023). The in vitro experiments showed that
with increasing ribose concentration, and therefore collagen fibre
stiffness, the spheroid invasion was inhibited for the invasive
HCC1954 cells, while the non-invasive MCF7 cells did not invade
for any of the ribose concentrations.

The cell-ECM interactions in our model depend on two
parameters: ECM degradation rate, which controls the ECM
remodelling by the cells (Equation 1), and maximum cell-ECM
interaction speed, which affects the cell’s movement (Equation 4).
Given the different invasiveness of the two cell lines, we assume that
the invasive cells have a higher ECMdegradation rate andmaximum
cell-ECM interaction speed than the non-invasive cells. From the
wide range of values studied in Section 3.1 (Supplementary Figure
S3), we choose the values that lead to simulations matching the
experimental observations (Figures 5E, F). Hence, we use the
following set of values: ECM degradation rate rdeg,0 �
0.0001 min−1 and maximum cell-ECM interaction speed S0 �
0.1 μm·min−1 for non-invasive cells, and ECM degradation rate

FIGURE 4
Heatmaps showing spheroid growth relative to the initial time t0 for ribose concentration of 50mM (left) and 200mM (right) for varying values of the
parameters δ (y-axis) and σ (x-axis). We set rdeg,0 � 0.0032 min−1, S0 � 0.7 μm·min−1 and rdiv � 0.00072 min−1. The colour intensity represents the mean
values over 10 replicates of the spheroid area growth relative to the initial time ranging from 1 to 8, as shown in the colour bars. Heatmaps with mean
values and standard deviations can be found in the Supplementary Figure S2.
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rdeg,0 � 0.0032 min−1 and maximum cell-ECM interaction speed
S0 � 0.7 μm·min−1 for invasive cells. Further, the strength of the
effect of ribose concentration on the cell behaviour depends on the
parameters δ for degradation rate rdeg,rib (Equation 2) and σ for
maximum cell-ECM interaction speed Srib (Equation 5). Following
Section 3.1 (Figure 4), we use δ � 0.02 mM−1 and σ � 0.035 mM−1 to
match the spheroid growth after 96 h of the invasive cells for ribose
concentrations of 50 mM and 200 mM (Figure 5Di). Finally, we set
the proliferation rate rdiv � 0.00072 min−1, which is the default
parameter for the live cell cycle model of MCF10A breast cancer
epithelial cells in PhysiCell (Ghaffarizadeh et al., 2018). Following
the in vitro experiments performed in Jahin et al. (2023), we set the
initial spheroid diameter to be 200 μm (corresponding to 139 cells),
with homogeneous ECM density with value ρ � 1 throughout,
except at the spheroid’s location, where the ECM density is zero.
We study the effect of ribose concentrations, 0 mM, 50 mM and
200 mM, on spheroid area growth relative to the initial time, cell
count and Delaunay mean distance, as shown in Figures 5C, D.

Simulation images at 24 h and 96 h for non-invasive and invasive
cells are shown in Figures 5A, B respectively.

In their experiments with non-invasive MCF7 cells, Jahin et al.
(2023) observed that increasing ribose concentration did not affect
spheroid growth (Figure 5Ei), consistent with previous reports
(Ziegler et al., 2014). Our findings also indicate that spheroid
growth was inhibited for the non-invasive cells, with the spheroid
area growth at the final time point remaining below 2 for all ribose
concentrations (Figure 5Ci). However, while the invasion of
MCF7 cells was low, Jahin et al. (2023) observed an increase in
the number of nuclei, particularly at 0 mM ribose (Figure 5Eii).
Similarly, our simulations showed a larger increase in cell count at
0 mM ribose, with the cell count reaching ~ 280 after 96 h
(Figure 5Cii), which matches the corresponding mean number of
nuclei observed in vitro (Figure 5Eii). Interestingly, they found that
the Delaunay mean distance increased for ribose concentration of
0 mM and it decreased at 50 mM and 200 mM, indicating a denser
spheroid for higher ribose concentrations (Figure 5Eiii). In our

FIGURE 5
Results of simulations for non-invasive (MCF7) and invasive (HCC 1954) cell lines. (A, B) Simulation images of non-invasive (A) and invasive (B) cell
lines respectively, with ribose concentrations of 0mM, 50mM and 200mM at 24 h and 96 h. The cells are represented in semi-transparent green and the
ECM density is in orange, with values between 0 and 1 as indicated in the colour bar. The scale bar at the bottom right is 100 μm in length. Full videos of
non-invasive and invasive spheroids with ribose concentration 0mM can be found in the Supplementary Material. (C, D) Simulation results for non-
invasive (C) and invasive (D) cell lines showing line plots of spheroid growth relative to the initial time t0 change over time (i), box plots of cell count (ii) and
box plots of Delaunay mean distance (iii). In the line plots, the ribose concentrations are represented in blue for 0 mM, orange for 50 mM and green for
200 mM. Mean and 25th/75th percentile are shown, with the addition of min/max in box plots. (E, F) Adapted with permission from Jahin et al. (2023).
Plots for MCF7 (non-invasive) (E) and HCC 1954 (invasive) (F) cell lines showing growth relative to the initial time t0 (i), number of nuclei (ii) and Delaunay
mean distance (iii). Mean and 25th/75th percentile are shown, with the addition of min/max in box plots. Asterisks indicate statistical significance
following ANOVA testing with Sidak’s post hoc test (** = p< 0.01, *** = p< 0.001, **** = p< 0.0001).
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simulations, we observed that the Delaunay mean distance between
24 h and 96 h slightly increased at ribose concentration 0 mM and
decreased for ribose 200 mM, but remained constant at 50 mM
(Figure 5Ciii). This means that, in our simulations, the spheroid at
50mM is less dense than in the experimental data. This can be due to
more rapid degradation of the ECM or slower cell proliferation than
in the experiments. We also observed a larger decrease in Delaunay
mean distance for ribose 200 mM in our simulations compared to
the experimental data. This difference could be attributed to the
absence of cell death in our in silicomodel, whereas the experimental
data show a reduction in the number of nuclei over time likely due to
cell death (Figure 5Eii). The higher cell count maintained in the
simulations likely results in a denser spheroid and therefore a larger
decrease in Delaunay mean distance.

In contrast, the invasive HCC1954 cells exhibited a reduction in
spheroid growth and the number of nuclei with a ribose concentration
increase in vitro (Figures 5Fi, ii). Our simulations closely matched the
experimental data, resulting in a spheroid growth of ~ 6 after 96 h and
a cell count of ~ 570 after 72 h for ribose 0 mM, spheroid growth of ~
3.4 after 96 h with a cell count of ~ 370 after 72 h for ribose 50 mM,
and spheroid growth of ~ 1.8 after 96 h and a cell count of ~ 250 after
72 h for ribose 200 mM (Figures 5Di, ii). Further, Jahin et al. (2023)
found that the Delaunay mean distance at 72 h was higher than that at
24 h, for all ribose concentrations considered. However, it decreased
with an increase in the ribose concentration (Figure 5Fiii). Our
simulations showed that the Delaunay mean distance at 24 h and
72 h is almost the same for each ribose concentration, but lowers as the
ribose increases (Figure 5Diii). However, we see that the Delaunay
mean distance does not remain constant over time (Supplementary
Figure S4Biii). We noticed that the Delaunay mean distance at ribose
0 mM initially increases and peaks between 24 h and 48 h, before
decreasing. While we see an overall increase in Delaunay mean
distance for ribose concentration 0 mM, as seen experimentally,
our model predicts a rapid increase of Delaunay mean distance
and has a similar value at 24 h and 72 h, in contrast to the
experiments. With only two experimental time points, we cannot
capture the dynamics in the first 24 h and between 24 h and 72 h.
Including more time points would allow us to better understand
variations over time and a more accurate representation of how the
spheroid evolves.

With our choice of parameters, we observe that low degradation
rate andmaximum cell-ECM interaction speed inhibit both invasion
and proliferation of the spheroid. This is mainly due to the cell-ECM
repulsive velocity vcmr (Equation 6) and the inhibition of
proliferation function (Equation 8). As observed in the parameter
analysis in Section 3.1, low degradation rate and maximum speed
make the spheroid denser thanks to the ECM acting as a wall because
of the repulsive velocity. Proliferation is inhibited at the centre of the
spheroid due to the high number of neighbours and at the edge due
to the high ECM density. The chosen values for δ and σ in our
simulations give low degradation rates and maximum cell-ECM
interaction speeds for the invasive cells at ribose concentrations of
50 mM and 200 mM. The degradation rates at ribose concentrations
50 mM and 200 mM are rdeg,50 ≈ 0.001 min−1 and rdeg,200 ≈
0.00006 min−1, while the maximum cell-ECM interaction speeds
are S50 ≈ 0.1 μm·min−1 and S200 ≈ 0.0006 μm·min−1. This indicates
that both ECM degradation and cell speed are substantially reduced
for the invasive cells as the ribose concentration increases, which

lowers tumour invasion and proliferation. Thus, our simulations are
in line with the observation by Jahin et al. (2023), that ribose-
induced cross-linking of collagen possibly reduces ECM remodelling
and migration, slowing spheroid growth and invasion.

3.3 MMPs inhibition for invasive cells inhibits
spheroid area growth

Cancer cells remodel the extracellular matrix mechanically and
proteolytically when invading, creating paths that facilitate themigration
of nearby attached cancer cells (Walker et al., 2018). The cells
mechanically apply forces to the ECM fibres by pushing or pulling
the fibres when adhering to ligand binding sites, resulting in fibre
displacement and orientation changes. Fibre orientation can direct
migration, and the realignment of the collagen fibres has been
associated with higher invasion (Provenzano et al., 2006). On the
other hand, proteolytic remodelling involves enzymatic degradation
of ECM fibres through the activity of matrix metalloproteinases
(MMPs). It has been shown that ECM degradation by MMPs
significantly contributes to cell invasion as it facilitates migration and
realignment of the fibres (Itoh, 2015). Jahin et al. (2023) investigated the
role of MMPs in fibre alignment and invasion by treating the invasive
HCC1954 cells with the pan-MMP inhibitor GM6001. They observed
that MMPs inhibition significantly reduces invasion for ribose 0 mM,
but not for ribose 50 mM and 200 mM (Figure 6C).

In our model, ECM remodelling is represented by the degradation
rate parameter rdeg,0, which is responsible for changes in ECM density.
We compared the experimental results in control conditions (DMSO)
with the invasive cells simulations discussed in Section 3.2. Following
the parameter analysis from Section 3.1 (Supplementary Figure S3), we
choose the degradation rate matching the experimental results of
growth relative to the initial time after 72 h of the invasive
HCC1954 cell line with the addition of the pan-MMP inhibitor
GM6001 (Figure 6C). We selected the degradation rate rdeg,0 �
0.0004 min−1. This non-zero value arises because the pan-MMP
inhibitor only blocks ECM degradation, but not mechanical
remodelling of the fibres, which makes it possible for the cells to
locally change the density of the ECM even without degrading the
fibres. Simulation images at 72 h for invasive cells with high (Control)
and low (GM6001) degradation rates are shown in Figure 6A.

Similarly to the results from the experimental data by Jahin et al.
(2023) shown in Figure 6C, spheroid area growth relative to the
initial time after 72 h was significantly reduced for ribose 0 mM
going from ~ 4 in the control conditions simulation (Control) to ~
2 with the reduced degradation rate (GM6001) (Figure 6B). At
ribose concentration of 50 mM spheroid growth was less affected by
the MMP inhibition, both in vitro and in the simulations. Finally, at
200 mM, both the Control and the reduced degradation rate
(GM6001) conditions have similar spheroid sizes in the
simulations after 72 h, which is in line with the experimental
data in the DMSO and GM6001 conditions (Figure 6C).

4 Discussions

In this paper, we presented a hybrid discrete-continuous model
built in PhysiCell (version 1.12.0) to describe the interactions
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between cells modelled as discrete agents and the extracellular
matrix as a continuum. Our model incorporates cell-cell and cell-
ECM adhesion and repulsion, ECM remodelling, and cell
proliferation with associated inhibition of proliferation function,
allowing us to investigate the critical role of cell-ECM interactions in
cancer spheroids.

Our findings indicate that increased cell-ECM adhesion
promotes invasion, while ECM degradation significantly
influences spheroid growth. Notably, we observed a non-
monotonic effect of ECM degradation: increasing degradation
enhances growth due to reduced matrix confinement, yet
excessive degradation limits migration for the cells at the edge of
the spheroid, ultimately restricting invasion. The cell’s maximum
speed is reached when the ECM density ρ is equal to 0.5 (Equation
7). Therefore, when the matrix is degraded too quickly, the ECM
density quickly reaches values below 0.5, making the cells migrate
slower. Typically cells do not over-degrade the ECM as the
relationship between adhesion and cell survival is crucial.
Anoikis, a programmed cell death mechanism in anchorage-
dependent cells, highlights the necessity for ECM attachments
since the communication between proximal cells and between
cells and ECM provide essential signals for growth or survival
(Kim et al., 2012). However, it has been found that cancer cells
undergoing EMT can acquire anoikis resistance (Kim et al., 2012). In
our model, we assume that the target value for ECM degradation is
zero density (Equation 1). This can potentially be a limitation of our
model leading to wrong predictions for high degradation rates. We
also observed that the Delaunay mean distance for invasive cells at
ribose concentration 0 mM does not monotonically increase, which
contrasts with the interpretation we could derive from the results
depicted in Figure 5Fiii. As shown in Supplementary Figure S4Biii,
we found that the Delaunay mean distance reaches its peak between
24 and 48 h before gradually decreasing. This unexpected result
could be an artifact of how we defined ECM remodelling in our

model. However, this prediction could be validated experimentally
by measuring the Delaunay mean distance across a greater number
of time points. Finally, we found that lower rates of ECM
degradation and migration speeds result in more symmetrical
and compact spheroids. In contrast, higher degradation and
migration speeds lead to increased cell detachment and
protrusion formation at the spheroid’s edge.

We replicated the experiments carried out by Jahin et al. (2023)
that investigated the impact of ribose-induced collagen stiffening on
the invasion of two parental breast cancer cell lines: the non-invasive
MCF7 and the invasive HCC 1954. We differentiated the cell lines
based on their cell-ECM interaction parameters: ECM degradation
rate (rdeg,rib), which controls the ECM remodelling by the cells
(Equation 1), and maximum cell-ECM interaction speed (Srib),
which affects the cell’s movement (Equation 4). We assigned low
cell-ECM interaction parameter values to the non-invasive cells and
high cell-ECM interaction parameter values to the invasive cells.
Assuming that higher ribose concentrations reduce ECM
degradation and migration speed, our model successfully
predicted a decrease in spheroid area growth with increasing
ribose concentration, in line with the experimental observations
of Jahin et al. (2023). Furthermore, we confirmed that inhibiting
ECM degradation reduced spheroid growth in the invasive cell line.

In our current model, we represent the collagen fibre matrix as a
homogeneous density and treat the ribose as a separate quantity that
directly impacts ECM remodelling and cell migration. However, a
more comprehensive framework of the matrix would benefit from
incorporating additional ECM properties, such as fibre orientation,
alignment and cross-linking (Metzcar et al., 2025; Noël et al., 2024).
Fibre orientation and alignment affect the directed migration of
cells, which is a process correlated with enhanced spheroid invasion.
Furthermore, as cells dynamically remodel the ECM, fibre
orientation and alignment change not only locally but also at
greater distances. The addition of ribose increases cross-linking

FIGURE 6
Simulations for invasive (HCC 1954) cells with pan-MMP inhibitor GM6001 at 72 h. (A) Simulation images of invasive cells with high (Control) and low
(GM6001) degradation rates, with ribose concentrations of 0 mM, 50 mM and 200 mM, at 72 h. The cells are represented in semi-transparent green and
the ECM density is in orange taking values between 0 and 1 as shown in the colour bar. The scale bar on the bottom right of length 100 μm. (B) Box plots of
spheroid growth relative to the initial time t0 of invasive cells with high (Control) and low (GM6001) degradation rates at 72 h. The ribose
concentrations are represented in blue for 0 mM, orange for 50 mM and green for 200 mM. Mean and 25th/75th percentile with min/max are shown. (C)
Adapted with permission from Jahin et al. (2023). Box plots of growth relative to the initial time t0 of invasive cells (HCC 1954) at 72 h. Comparison
between control condition (DMSO) and pan-MMP inhibitor treatment (GM6001) at ribose concentrations 0 mM (blue), 50 mM (orange) and 200 mM
(green). Mean and 25th/75th percentile with min/max are shown. Asterisks indicate statistical significance following ANOVA testing with Sidak’s post hoc
test (*** = p< 0.001).
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between fibres and impacts both the chemical and mechanical
remodelling of the ECM by cancer cells. Furthermore, cancer
cells also contribute to ECM deposition and cross-linking. Our
modelling framework is adaptable and allows for the integration
of these additional ECM properties, such as fibre orientation and
alignment, as in Metzcar et al. (2025). In subsequent phases of the
model development, we plan to implement these features and
investigate their effects on spheroid growth.

The ECM can also be characterised by its stiffness, rather
than by its density and ribose concentration (Poonja et al., 2023).
However, our focus was on understanding how ribose-induced
collagen stiffening specifically affected cancer spheroid growth
and invasion. As previously mentioned, ECM stiffness can be
modulated through various methods, each impacting different
properties of the ECM and ultimately influencing the behaviour
of the cells, thereby affecting the spheroid growth and invasion.
It would be interesting to explore how these different stiffening
methods could be reproduced in the current model.
Additionally, it has been observed that the timing of ECM
stiffening can either inhibit or promote cancer cell invasion,
highlighting the complex relationship between ECM stiffness
and cancer cell invasion (Staneva et al., 2018). Matrix stiffening
after cancer invasion begins promotes further spheroid invasion,
while a stiff matrix surrounding the spheroid at the early stages
prevents invasion.

In addition to integrating more ECM features, future
iterations of our model could incorporate diffusible nutrients
and cell death mechanisms (Botte et al., 2023; Ruscone et al.,
2023; Mancini et al., 2024; Macnamara et al., 2024). Currently,
our model employs an inhibition of proliferation function based
on the number of neighbouring cells and ECM density (Equation
8). While this approach provides a basic setup, a more
comprehensive model would directly account for the effect of
pressure, nutrient availability and cell death on proliferation
dynamics. Another extension to the current model could
involve incorporating various cell types, such as cancer-
associated fibroblasts, which play a role in ECM remodelling
by depositing ECM components (Jahin et al., 2023; Metzcar et al.,
2025). However, incorporating these additional components into
a hybrid model poses challenges, particularly with respect to
parameter validation and mathematical function accuracy. This
is worsened by the scarcity of relevant data. For instance, we lack
the data necessary to distinguish between the proliferation and
death of cancer cells within the spheroid.

Adding more features to the model would likely increase the
variability of the results. Currently, the variability in the in silico
model is considerably lower than that observed in the in vitro
experiment. However, this is not necessarily problematic, as we
are making a qualitative comparison based on mean values. The in
silico model is a simplified description of the more complex in vitro
model. For instance, in our simulations, we assume the ECM density
to be initially homogeneous, contributing to the reduced variability
of the results.

It is also important to note that our model operates within a
constrained 3D space. Although we conceptually address the
impacts of the ECM on cell migration in 3D, all simulations and
analyses were restricted to 2D. We chose this approach to mimic the
original 2D data: thin z-slices (microscopy images) of 3D spheroids.

Additionally, the ECM framework developed by Metzcar et al.
(2025) in PhysiCell currently supports only constrained 3D
simulations, representing single slices of a 3D environment. This
limits the model’s ability to capture the effects of the 3D
environment and unconstrained cell movement on spheroid
behaviour. Using the knowledge gained in this quickly executing
constrained 3D model, we plan to model a fully 3D spheroid as
future work.

In conclusion, the interactions between cancer cells and the
extracellular matrix in 3D cancer spheroid growth are intricate
and not yet fully understood. Our proposed model represents an
initial attempt to account for the chemical and mechanical
interactions within this context, paving the way for future
research that integrates additional ECM properties and
environmental factors.
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