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Culture platforms that closely mimic the spatial architecture, cellular diversity,
and extracellular matrix composition of native tissues can serve as invaluable
tools for a range of scientific discovery and biomedical applications. Organoids
have emerged as a promising alternative to both traditional 2D cell culture and
animal models, offering a physiologically relevant 3D culture system for studying
human cell biology. Organoids provide a manipulable platform to investigate
organ development and function as well as to model patient-specific
phenotypes. This mini review examines various methods used for culturing
organoids to model normal and disease conditions in gastrointestinal tissues.
We focus on how thematrix composition andmedia formulations can impact cell
signaling, altering the baseline cellular phenotypes as well as response to
perturbations. We discuss future directions for optimizing organoid culture
conditions to improve basic and translational potential.
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Introduction

In the past 2 decades, organoids have greatly expanded our ability to experimentally
model gastrointestinal (GI) physiology and pathology. Early studies of two-dimensional cell
cultures provided a simple and cost-effective way to study fundamental biology of cells in
the GI system and to test phenotypic responses to altered genetics or extrinsic stimuli.
However, many GI cells can quickly lose function when cultured in 2D (Elaut et al., 2025;
Houbracken et al., 2011). In addition, 2D cultures do not recapitulate the structure and
physiology of the native tissues or their microenvironment, leading to an incomplete
understanding of the cells and organs in this system. Mouse models, by nature, incorporate
this complexity and have been instrumental in advancing understanding of GI organ
development, normal homeostasis, and disease. The ability to drive spontaneous
pathologies through genetic engineering or inducing injury or inflammation has
provided in vivo platforms for understanding disease mechanisms and testing
therapeutics (Baydi et al., 2021; Klauss et al., 2018; Hayakawa et al., 2013). Mouse
models, however, can take a long time to generate, are low throughput, and fail to
recapitulate the complexity and heterogeneity found in the patient population at large.

Organoids begin to bridge the gap between cell culture and animal models by
mimicking key functional, structural, and biological complexities of organs. Organoid
cultures are derived from adult stem cells (ASC) or pluripotent stem cells (PSC) that are
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grown in a 3D matrix with specific factors that provide mechano-
chemical cues. These signals support self-organization of complex
structures (Sato et al., 2009; Clevers, 2016; McCracken et al., 2011).
The development of organoid cultures has enabled long-term
growth of cells from many tissues of the GI system including the
intestines, colon, stomach, pancreas, liver, esophagus, and salivary
glands (Sato et al., 2009; DeWard et al., 2014; Yoon et al., 2022;
Bartfeld et al., 2015; Crespo et al., 2017; Guan et al., 2017; Huang
et al., 2021). The function of these models has been demonstrated in
normal and disease conditions. For example, heterogeneous salivary
gland organoids were shown to display swelling morphology and
calcium influx following treatment with neurotransmitters (Yoon
et al., 2022) and colon organoids respond to spatiotemporal
induction of tumor-associated genetic alterations with increased
proliferation and plasticity as they undergo tumorigenesis (Lorenzo-
Martin et al., 2024). Moreover, multiple studies comparing global
gene expression have now shown organoids tomimic transcriptional
profiles of native tissues (Yoon et al., 2022; Paul et al., 2025;
Raghavan et al., 2021; Peng et al., 2018; Fujii et al., 2018;
Cherubini et al., 2024; Mead et al., 2018).

By mimicking the critical components and function of complex
gastrointestinal organs in an in vitro system, organoids provide a
robust experimental platform to investigate mechanisms of
development and disease. Organoids allow for rapid
manipulation to mimic genetic alterations or extrinsic stress
(Huang et al., 2021; Lorenzo-Martin et al., 2024; Li et al., 2014;
Mitrofanova et al., 2024; Farin et al., 2014). In addition, they are
amenable to high throughput applications such as drug screening
(Du et al., 2020; Mead et al., 2022; Hirt et al., 2022). Finally, they
enable modeling patient-to patient heterogeneity and can maintain
patient specificity in terms of treatment response, allowing them to
serve as models for personalized medicine approaches (Papargyriou
et al., 2024; Ooft et al., 2019; Zhao et al., 2024; Demyan et al., 2022;

Vlachogiannis et al., 2018). The current field of organoids is quickly
evolving, with organoids being incorporated into more complex
platforms including co-cultures with stromal and immune
components (Saheli et al., 2018; Min et al., 2020; Recaldin et al.,
2024), organ-on-a-chip devices (Ballerini et al., 2025; Skardal et al.,
2015; Zhang et al., 2017) and bioprinted models (Bernal et al., 2022;
Wang et al., 2024). As a new generation of models is further
developed and widely adopted, a continued consideration of the
variety of mechano-chemical signals provided by culture conditions
and how they impact phenotype and function is important.

Since the development of the first organoids, several methods for
culturing GI organoids have been tested. The nutrients, growth
factors, matrix components, and physical cues, such as stiffness, that
cells experience influence their signaling pathway usage and
phenotype at baseline. They also impact how cells respond to
additional perturbations or stress (see Figure 1). Optimizing
culture conditions to recapitulate innate biology of tissues can
help ensure organoid phenotypes mimic in vivo cellular response
to perturbations while reductionist models can uncover mechanistic
insights into cell and tissue function. In this mini review, we will
outline many matrix and media compositions that have been used
for culturing organoids of the gastrointestinal system. We will
highlight the progress that has been made thus far in creating
physiologically relevant environments for organoid culture and
will discuss future directions in this field.

Section 1: matrix

The extracellular matrix (ECM) is a crucial component of the
tissue microenvironment. Its composition, organization, and
mechanical properties affect cell behavior through chemical
signaling and mechanotransduction. In experimental systems

FIGURE 1
Schematic of gastrointestinal organoid culture and analysis. Gastrointestinal (GI) tissues or cells (A) or differentiated pluripotent stem cells (B) are
plated into extracellular matrix in the presence of culture media. Distinct matrix properties (C) and media composition (D) can affect organoid
establishment, growth, and phenotypes in response to perturbations (E). Characterization of organoid cell states and behaviors in these cultures following
modification of culture conditions (F) can be compared to native tissues and further optimized to understand biological mechanisms as well as
improve the model platform. Created with BioRender.com.
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such as organoids, the matrix can be chosen to either recapitulate the
normal environment or to recapitulate specific components. While
mimicking the native matrix gives higher fidelity to the in vivo
response of organoids (Lee et al., 2021), as of now, there are no
perfect matrices that fully recapitulate the native environments of
gastrointestinal organs. Reductionist models, therefore, serve as
powerful tools for understanding the impact of individual
elements, which can then be combined to develop an
idealized model.

Several types of matrices have been produced and tested for
gastrointestinal organoid culture, including basement membrane
extract (BME)-based hydrogels, decellularized ECM hydrogels,
defined natural protein hydrogels, hydrogels composed of
recombinant proteins and peptides, and synthetic polymer
hydrogels (Kozlowski et al., 2021). Each of these matrices has
advantages and disadvantages, depending on the experimental
design. The material source, composition, cost, availability, ease
of use, and variability all need to be considered. Many types of
matrices allow for some degree of control over elastic and
viscoelastic properties, degradability, and composition (Table 1).
These controllable matrix properties, through activation of cell
surface receptors such as integrins, can influence downstream
signaling pathways. Ultimately, these signals impact epigenetic
and transcriptional programs and control organoid phenotypes
and cellular behavior (Below et al., 2022; Saraswathibhatla et al.,
2023). For example, matrix stiffness leads to integrin activation and
focal adhesion assembly. This drives activation and nuclear
translocation of YAP/TAZ, which mediate transcriptional
responses to the mechanical cues (Dasgupta and McCollum,
2019; Jafarinia et al., 2024; Panciera et al., 2017). In vivo,
gastrointestinal cells in physiological and pathological states
experience a wide range of chemical and physical signals from
their native ECM. The mechanisms by which distinct

components or properties of the matrix impact cellular behavior
are incompletely understood. In this section, we discuss recent
developments in several types of matrices that impact
gastrointestinal organoid culture efficiency or phenotype.

Basement membrane extracts

Organoids are commonly cultured in BME matrices such as
Matrigel, Cultrex, and Geltrex that are derived from the secretion of
mouse sarcoma cells (Kleinman and Martin, 2005). The first
organoids cultured using Matrigel were murine intestinal stem
cells (Sato et al., 2009), and this system has been adapted for
other organoid types including colon (Sato et al., 2011), stomach
(Stange et al., 2013; Barker et al., 2010), intestine (Dekkers et al.,
2013), liver (Huch et al., 2013a), and pancreas (Huch et al., 2013b;
Tiriac et al., 2018; Tsai et al., 2018; Wang et al., 2017; Seino et al.,
2018; Lumibao et al., 2024). Basement membrane extracts are
versatile, affordable, and readily available, which allows many
research groups to easily incorporate organoids into their work,
including using organoids in high throughput screens (Du et al.,
2020). BME hydrogels, however, have an undefined nature and large
batch-to-batch variation. Mechanical properties, including elastic
modulus, pore size, stress relaxation, and creep are difficult to
separate from chemical cues in these matrices, and the
mechanical properties are heterogeneous within each sample
(Kozlowski et al., 2021). Commercially available basement
membrane extracts are also derived from sarcoma cells and
therefore contain growth factors and other chemical cues that are
not present in normal cell matrix, so the composition may not be
suitable for normal organoid culture (Vukicevic et al., 1992). Due to
these limitations, culturing organoids in other matrix types may
provide more accurate and consistent results.

TABLE 1 The advantages and disadvantages of types of matrices used for organoid culture and examples of their use in gastrointestinal organoid culture.

Type of matrix Advantages Disadvantages Organoid examples

Basement membrane extract
(BME)-based

• inexpensive
• commercially available
• used in well-developed
protocols

• undefined composition
• lot-to-lot variation
• lack of tunable mechanical properties
• lack of cues necessary for growth/
differentiation

Intestine (6, 8, 49-52), Liver (13, 53), Pancreas (54-57), Salivary
Gland (10), Esophagus (9)

Decellularized ECM matrix • preserves native chemical
cues

• difficult preparation
• limited by donor availability
• poorly defined composition
• lack of tunable mechanical properties
• batch-to-batch variability

Liver (33, 61,67), Intestine (61), Pancreas (61, 62, 63),
Stomach (61)

Defined natural protein matrix • inexpensive
• commercially available
• defined composition
• easily modifiable

• structural information is not
preserved

• reduced chemical cues
• lot-to-lot variation

Liver (24), Pancreas (28, 76 77, 87), Intestine (22, 68-72, 78-81)

Recombinant protein and
peptide matrix

• precise placement of
chemical cues

• mechanically tunable
• tunable degradation rate

• high cost
• possible endotoxin contamination
• possible immunogenicity

Pancreas (86, 88, 89), Intestine (85, 92)

Synthetic polymer matrix • mechanically tunable
• chemically tunable
• reproducible
• tunable degradation rate

• high cost
• requires functionalization with cell-
binding
peptides or presence of feeder cells

• cytoxicity concerns

Liver (101, 102), Intestine (93-96, 98), Pancreas (99)
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Decellularized ECM matrices

Hydrogels derived from decellularized ECM have been shown to
be viable alternatives to basement membrane extracts (Giobbe et al.,
2019; Sackett et al., 2018; Chaimov et al., 2017; Gaetani et al., 2018).
While BMEs are also ECM-derived, they only contain basement
membrane-specific proteins and lack the wider range of proteins
found in decellularized tissues. A major benefit of non-BME
hydrogels derived from decellularized ECM is the retention of
matrix components and chemical cues found in native tissues,
including structural proteins, proteoglycans, and
glycosaminoglycans (GAGs), which allow researchers to model
how the cell’s complex native environment affects signaling and
phenotypes. Decellularized ECM hydrogels are produced by treating
with detergents to remove cells and then solubilizing the matrix,
causing fibers to form into a gel (Saldin et al., 2016). The choice of
detergent greatly affects the composition of the final hydrogel, with
common detergents including sodium deoxycholate (Giobbe et al.,
2019; Sackett et al., 2018), Triton X-100 (Saheli et al., 2018; Chaimov
et al., 2017; Gaetani et al., 2018), and sodium dodecyl sulfate (SDS)
(Saheli et al., 2018; Gaetani et al., 2018). Using a less harsh detergent,
such as Triton X-100, and treating with protease inhibitors can help
retain basement membrane and matricellular proteins (Gaetani
et al., 2018). Additionally, to address the challenge of incomplete
removal lipids from the human pancreas, which contains a higher
lipid content than animal pancreata, Dutton Sackett et al.
demonstrated a method for decellularizing and delipidizing by
performing homogenization prior to sodium deoxycholate
treatment (Sackett et al., 2018).

Several groups have shown decellularized ECM matrices to
perform equal to or better than Matrigel or collagen in terms of
supporting organoid growth and function. Giobbe et al. created a
hydrogel using decellularized porcine intestinal tissue that
supported human gastric, small intestinal, liver ductal, fetal
hepatocyte, and pancreatic organoids. Compared to culture in
Matrigel, organoids cultured in the decellularized ECM hydrogels
had more similar morphologies and expression profiles to the tissues
of origin (Giobbe et al., 2019). Lewis et al. showed that hydrogels
derived from porcine liver could support the formation of complex
branching biliary networks from cholangiocytes, which was not
possible using collagen I hydrogels or Matrigel (Lewis et al., 2018).
Saheli et al. co-cultured human hepatocarcinoma cells, bone marrow
derived mesenchymal stem cells, and human umbilical cord vein
endothelial cells in decellularized ovine liver hydrogel and found
these heterotypic liver organoids to have significantly more albumin
and alpha-1 antitrypsin secretion, urea production, and
CP3A4 enzyme activity as compared to organoids cultured in
collagen (Saheli et al., 2018).

Preservation of matrix components and chemical cues of the
native environment in decellularized ECM hydrogels supports
complex and functional organoid models. However, there
are also challenges to using decellularized ECM hydrogels
including difficult preparation, lack of precise compositional
definition, lack of control over physical properties, and
large batch-to-batch variability. Additionally, the quantity of
ECM that can be prepared is limited by the availability of
starting material, which can be a barrier to scaling up this
technology.

Defined natural protein matrices

Hydrogels with defined protein composition can be formed
using individual or combinations of polymers derived from
natural sources. Compared to other types of hydrogels, these
natural protein matrices have low toxicity and are inexpensive
and easily modifiable. There are several well-developed protocols
that successfully utilize natural protein matrices such as alginate,
fibrin, chitosan, cellulose, gelatin, hyaluron (hyaluronic acid), or
collagen for organoid culture (Broguiere et al., 2018; Capeling et al.,
2019; Jabaji et al., 2013; Tong et al., 2018; Jabaji et al., 2014; Ng et al.,
2019). Protein matrices derived from plants, such as alginate,
cellulose, and chitosan, are biocompatible but have no cell
adhesion cues. They can be used to create minimally supportive
hydrogels or modified with adhesion cues (Capeling et al., 2019;
Curvello et al., 2021a). In contrast, hydrogels composed of ECM
proteins such as collagen, fibrin, and laminin have inherent adhesion
molecules and have been shown to support long-term expansion of
murine and human intestinal stem cell organoids equally as well as,
or better than, Matrigel in terms of organoid growth and
differentiation (Broguiere et al., 2018; Jabaji et al., 2013; Tong
et al., 2018). For example, collagen matrices allowed
differentiated intestinal epithelial organoids to form enteroid
structures and sheet-like growth (Jabaji et al., 2014).

Natural protein matrices have been used in different types of
organoid culture, including hydrogel capsules (Liu et al., 2020) and
floating gels (Papargyriou et al., 2024; Randriamanantsoa et al.,
2022). The floating gels allow organoids to take on different
morphologies, such as hollow tubes (Sachs et al., 2017) or
branched structures (Papargyriou et al., 2024; Randriamanantsoa
et al., 2022). Papargiryriou et al. showed that these branched
organoid models could recapitulate phenotypic and
transcriptional heterogeneity of mouse and human pancreatic
cancer, and that the branching required canonical TGFβ
signaling (Papargyriou et al., 2024). Defined natural protein
matrices are also compatible with the co-culture of multiple cell
types. This has been demonstrated in air-liquid interface cultures
that support long-term growth of heterotypic GI organoids
containing epithelial and mesenchymal cells (Li et al., 2014;
Ootani et al., 2009; Katano et al., 2013) and in co-cultures of
pancreatic α- and β-like cells that exhibited glucose-stimulated
insulin secretion (Liu et al., 2020).

While defined natural protein matrices are widely used and have
been shown to support a variety of organoid cultures, they can
exhibit lot-to-lot variation due to their animal origins and it is
difficult to tune their mechanical properties without influencing the
matrix composition. For example, a high concentration of collagen
would be required to reach the stiffness of in vivo organs or tissues.
To address this, several groups have blended collagen with inert co-
polymers such as nanocellulose (Curvello et al., 2021b), alginate
(Branco da Cunha et al., 2014), and chitosan (Wang and Stegemann,
2010), which allows hydrogels with a lower collagen concentration
to achieve high stiffness while still providing adhesive sites for cell.
Altered matrix properties can also be achieved by engineering a
natural protein matrix to contain peptides for adhesion or
crosslinking (Cruz-Acuña et al., 2023) or by adding recombinant
proteins into a hydrogel with defined natural proteins (Hunt et al.,
2021; LeSavage et al., 2024) as is discussed in the section below.
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Recombinant protein and peptide matrices

Recombinant proteins and peptides are produced by genetically
engineered organisms. Compared to defined natural proteins,
recombinant proteins and peptides have the risk of potential
endotoxin contamination, but they allow for greater control over
mechanical and chemical properties. They can be designed to
incorporate precise placement of chemical cues or cell-binding
domains and can have tunable mechanical properties and
degradation rates. They can, therefore, be used to independently
study the effects of cell adhesion and matrix stiffness on organoid
formation efficiency and phenotype. The Ku lab developed a
hydrogel called aECM-lam that was composed of recombinant
elastin-like polypeptide and that incorporated a functional,
β1 integrin-binding, IKVAV (Ile-Lys-Val-Ala-Val) sequence
derived from laminin. This aECM-lam hydrogel was shown to
induce differentiation of CD133high;CD71low pancreatic progenitor
cells into endocrine and acinar lineages (Jin et al., 2013; Ghazalli
et al., 2015; Jin et al., 2016), consistent with published roles for
β1 integrin in endocrine differentiation and β-cell proliferation and
survival (Pinkse et al., 2006; Diaferia et al., 2013). Similar assays with
distinct modified recombinant proteins could further delineate
mechanisms of how activation of specific integrins and their
downstream signaling drive differentiation and cell behavior. To
test the relative contributions of adhesiveness and stiffness, the
Heilshorn lab and colleagues used a recombinantly engineered
ECM that combines cell-adhesive RGD domains with an elastin-
like structural domain that permits differential crosslinking to give
variable stiffness. Matrices with decreased stiffness and higher RGD
concentrations enhanced intestinal organoid formation.
Additionally, organoids cultured in stiffer matrices increased
production of matrix metalloproteinases, suggesting that these
cells adapt to be able to remodel the matrix into a more
compliant environment favorable for their continued growth and
development (DiMarco et al., 2015).

Combining recombinant proteins with defined natural proteins
can also be used to create matrices with tunable stiffness, stress-
relaxation rate, and integrin-ligand concentration, enabling
fundamental studies of organoid-matrix interactions. A 3D
matrix composed of hyaluronic acid and recombinant elastin-like
protein (HELP) enabled formation, differentiation, and passaging of
primary human epithelial intestinal organoids (Hunt et al., 2021).
Culturing patient-derived pancreatic cancer organoids in HELP
matrices showed that high-stiffness drives a reversible resistance
to chemotherapy through increased expression of the ATP-binding
cassette (ABC) family of drug efflux transporters. The ability to
adjust individual components of the matrix also allowed the authors
to determine that hyaluronic acid–CD44 signaling, and not integrin
signaling, was essential for this stiffness mediated phenotype
(LeSavage et al., 2024).

Synthetic polymer matrices

Hydrogels composed of synthetic polymers such as polyacrylic
acid, polyvinyl alcohol, and polyethylene glycol (PEG) are well-
defined, highly reproducible, and easily modifiable. Using different
methods of production, some of the heterogeneity found in native

organs can be recapitulated, including differences in adhesivity,
stiffness, viscoelasticity, composition, erosion, and porosity on
organoid behavior. Synthetic polymer hydrogels require
functionalization with cell-binding peptides or the presence of
feeder cells to support organoid culture. These cell-binding
peptides can include GFOGER (collagen-I-derived), RGD
(fibronectin-derived), lam-5 (laminin-derived), AG73 or IKVAV
(both laminin α1 chain-derived), or basement membrane-binding
peptides (Below et al., 2022; Hernandez-Gordillo et al., 2020;
Gjorevski et al., 2016; Cruz-Acuña et al., 2017; Cruz-Acuña et al.,
2018; Valdez et al., 2017). In addition to being designed with specific
adhesive domains, the pore size and stiffness of synthetic matrices
can be controlled by varying the polymer density, macromer size,
and number of reactive arms in the macromer (Mulero-Russe and
García, 2024). While the basic materials of these hydrogels, such as
PEG and PLGA are inexpensive, the custom-made cell-binding
peptides that are required for organoid growth can be costly, and
the design and use of synthetic matrices can require materials
science expertise.

The defined composition of PEG hydrogels allows for the
identification of specific factors that affect organoid formation
and behavior. Hernandez-Gordillo et al. compared growth of
human duodenal and colon enteroids and endometrial organoids
in PEG hydrogels functionalized with either collagen I- or
fibronectin-derived peptides. They found that the collagen
I-derived GFOGER sequence that binds α2β1 integrin was a
critical factor for organoid formation (Hernandez-Gordillo et al.,
2020). Control over the composition of hydrogels can also enable
differentiation into functional organoids. The chemical structure of
Amikagel, a polymerized amikacin hydrate with polyethylene glycol
diglycidyl ether, allowed for spontaneous heterotypic organoid
formation from co-cultured human embryonic stem cell-derived
pancreatic progenitor cells and human umbilical vein endothelial
cells. These heterotypic cultures plated in Amikagel had increased
expression of C-peptide and insulin and showed a glucose-
stimulated increase in insulin (Candiello et al., 2018).

Synthetic polymer matrices, like recombinant peptide
matrices, can be used to independently test effects of the
chemical composition and adhesion cues as well as mechanical
properties such as elastic and viscoelastic modulus, polymer
density, and pore size. Pérez-González et al. cultured mouse
intestinal organoids in micropatterned polyacrylamide hydrogels
coated with collagen and laminin and demonstrated that hydrogel
stiffness affects epithelial compartmentalization, crypt folding and
collective cell migration (Pérez-González et al., 2021). Gjorevski
et al. showed that separate stages of intestinal organoid formation
require different stiffnesses and adhesion sites. High matrix
stiffness enhanced expansion of intestinal stem cells through
YAP-dependent mechanotransduction, while a soft matrix and
laminin adhesion was required for differentiation and organoid
formation. They modeled a dynamic matrix using a hydrogel with
a hydrolytically degradable polymer backbone which allowed gels
to soften over time and suggest that synthetic matrices may need to
be dynamic in order to recapitulate the native environment
(Gjorevski et al., 2016). Other groups have also developed
synthetic polymer matrices that can be degraded either by
external factors such as light, allowing for precise control over
stiffness in different areas of the matrix (Gjorevski et al., 2016), or
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by factors produced by the embedded cells, allowing for
remodeling of the matrix over time (Lee et al., 2017).

Cruz-Acuna et al. tested the independent effects of biochemical
composition and mechanical properties on human intestinal
organoid formation by creating PEG hydrogels functionalized
with adhesive peptides whose stiffness could be changed by
changing polymer density. They changed both the type and
density of the peptides and showed that this affected organoid
development (Cruz-Acuña et al., 2017; Cruz-Acuña et al., 2018).
Below et al. developed PEG hydrogels that incorporated collagen-
based, fibronectin-based, and basement membrane binding motifs
and whose elastic modulus could be tuned by changing the molar
ratio of cross-linking peptide. This approach showed that a
combination of all three adhesion motifs best supported organoid
growth and demonstrated the ability of their synthetic gels to
capture the full stiffness range of murine and human pancreatic
cancers (Below et al., 2022). Finally, pore size was shown to be an
important mechanical property for organoid culture, as it was found
that inverted crystal colloidal scaffolds coated with collagen with a
pore diameter of 140 µm promoted hepatic differentiation of human
adipose-derived mesenchymal stem cells or induced pluripotent
stem cells (iPSCs)-derived progenitors (Wang et al., 2016; Ng
et al., 2018).

Altogether, there are many options for complex or reductionist
matrices for organoid cultures. The different types of matrices have
different mechanical and chemical properties, some of which can be
manipulated. These factors, along with cost, availability, and ease of
use, all may need to be considered (Table 1) as one or more matrix is
chosen to address specific biological questions.

Section 2: media

As discussed above, the matrix composition and mechanical
properties play key roles in the formation and organization of
organoids and can be altered to drive distinct cell states or to
recapitulate dynamic environments. Historically, media was
optimized to maintain and propagate tissue cultures, but media
composition can mimic developmental signals and niche ligands to
serve as a powerful tool to impact cell states and behaviors. In this
section, we discuss how media components have been optimized to
drive development and differentiation of heterogeneous cultures as
well as how they contribute to selection and drug-responses of
patient-derived organoids.

Basic nutrients including amino acids, vitamins, salts,
metabolites, and proteins are provided to organoid cultures with
a base media, often Advanced DMEM/F12. Supplementation with
additional factors including antioxidants, such as N-acetylcysteine,
vitamins, such as nicotinamide, hormones, such as Gastrin, and a
variety of growth factors and/or signaling pathway inhibitors
supports the growth of a range of organoid types. For
reproducibility, as well as for potential clinical translation, there
has been effort toward ensuring that components added to the
media are well defined. Serum, for example, can be replaced with
defined factors to promote organoid growth including the Wnt
agonist R-spondin-1 (RSPO1), epidermal growth factor (EGF), and
Noggin (Sato et al., 2009). Defined medias are considerably more
expensive than some alternatives including conditioned media from

growth factor producing cells. However, leftover serum and other
undefined factors in conditioned media have the potential to
introduce lot-to-lot variability affecting experimental outcomes. A
recent assessment of conditioned media from the commonly used
L-WRN producer cell line across five laboratories at three
institutions found highly replicable Wnt3a, R-spondin3, and
Noggin growth factor activity across all groups (VanDussen
et al., 2019). In general, however, similar to control of the matrix
components discussed above, reproducibility of organoid
experiments can be enhanced with defined media components.

Signaling pathway activators and inhibitors that are critical for
the development, differentiation, or maintenance of organ-specific
cell types can be added to organoid cultures to drive PSCs or ASCs
toward mature fates (Clevers, 2016; Lancaster and Knoblich, 2014).
In early organoid work, Sato et al. showed that intestinal ASCs
required RSPO1, EGF, and Noggin for proliferation and successful
passaging as organoids (Sato et al., 2009). Spence et al. drove human
PSCs toward hindgut cell fates with Activin A, Wnt, and fibroblast
growth factor (FGF) treatments, and then cultured them in Matrigel
with RSPO1, EGF, and Noggin to develop intestinal organoids
(Spence et al., 2011). Huch et al. cultured liver stem cells with
RSPO1, EGF, FGF10, hepatocyte growth factor (HGF), and
nicotinamide to develop liver progenitor cultures. Additional
inhibition of Notch and transforming growth factor beta (TGFβ)
signaling drove expression of mature hepatocyte markers and some
hepatocyte function (Huch et al., 2013a). In similar approaches,
recapitulating developmental signaling pathways or niche ligands
has allowed development of distinct cell fates or the balanced
differentiation of heterogenous cultures. Huang et al. used
multiple signaling ligands and inhibitors to induce pancreatic
progenitors to differentiate to either acinar or ductal fates. They
further built on this system, showing lineage-specific responses to
the expression of distinct oncogenes GNASR201C and KRASG12D as
well as differential transcriptional and morphological responses to
TGFβ signaling in KRASG12D-expressing acinar versus ductal
organoids (Huang et al., 2021). Yoon et al. used a variety of
growth factors and inhibitors to refine culture conditions for
salivary organoids to promote long-term growth as well as
phenotypic and functional heterogeneity of salivary glands (Yoon
et al., 2022). Yang et al. optimized niche signals to drive a balance in
intestinal stem cell proliferation and differentiation in their organoid
cultures and showed that manipulation of specific signaling
pathways could shift that balance and drive specific intestinal
fates (Yang et al., 2025). Finally, Mead et al. used high
throughput screening on a miniaturized organoid platform to
identify new regulators of intestinal stem cell differentiation
(Mead et al., 2022).

As organoid research has expanded to model patient-derived
tissues from specific pathologies, including cancer, there has been
recognition that specific media components contribute to the
efficiency of organoid generation from a heterogeneous patient
population and to the selection of subpopulations of patient-
derived cells. Seino et al. developed a library of 39 patient-
derived organoids from pancreatic cancer and identified three
functional subtypes of these organoids based on their dependence
on Wnt and R-spondin in the media. They also altered the media
composition with EGF depletion, Noggin depletion, or
Nutlin3 addition to intentionally select for pancreatic cancer
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organoids expressing mutant KRAS, mutant SMAD4, or mutant
p53, respectively (Seino et al., 2018). Hawkins et al. similarly
observed different patient-derived pancreatic cancer organoid
lines required distinct concentrations of Wnt. They further
showed that this information may be useful in designing
combination treatment strategies (Hawkins et al., 2024).

Patient-derived organoids provide an opportunity not only to
study the biology underlying tumorigenic phenotypes, but also to
test patient-specific responses to therapeutics. Tiriac et al., for
example, developed a biobank of 66 patient-derived pancreatic
cancer organoids and demonstrated that the drug sensitivity
profiles of the organoids reflected the patient response to
therapy (Tiriac et al., 2018). Huang et al. leveraged patient-
derived xenografts (PDX) of pancreatic cancer to compare the
therapeutic sensitivity of the PDX models to that of PDX-derived
organoids. They demonstrated that, when grown in Wnt-free
media, the organoids retained the tumor differentiation status
and histological heterogeneity and were concordant with the
PDXs for drug sensitivity (Huang et al., 2020). Hogenson et al.
evaluated patient-derived organoids frommultiple gastrointestinal
cancers for their ability to predict clinical response. They also
found that Wnt in the organoid media impacted transcriptional
signatures and drug sensitivity, with the media lacking Wnt giving
better concordance with patient responses (Hogenson et al., 2022).
These studies indicate that factors in the media can critically affect
the interpretation of organoid response to specific stressors.
Raghavan et al. analyzed matched pancreatic cancer patient
samples and organoid models to investigate how
microenvironmental signals present at distinct sites or
associated with distinct molecular subtypes could control
organoid state or drug response. They found that organoid
cultures supplemented with TGFβ exhibited plasticity toward a
basal-like phenotype and had therapeutic responses distinct from
organoids with classical gene expression. In addition, treatment of
the organoids with IFNγ to model signaling from CD8+ T cells, was
found to increase IFN response gene signatures and drive an
intermediate state expressing both basal and classical programs
(Raghavan et al., 2021).

Conclusion and future directions

Together, the properties of the matrix and media in which
organoids are cultured can alter the efficiency of organoid
generation, affect signaling pathways leading to phenotypic
changes, and alter the responses to perturbation. Many recent
studies of patient-derived tumor organoids have focused on the
presence of Wnt ligands in the media, finding Wnt signaling to be a
major player in driving organoid selection, heterogeneity and drug
sensitivity (Huang et al., 2020; Hogenson et al., 2022). TGFβ was
found to alter organoid subtype, which also impacted drug
sensitivity (Raghavan et al., 2021). Future work using high
throughput screens to test responses to exogenous ligands,
inhibitors, or drugs that impact specific signaling pathways
(Mead et al., 2022; Hirt et al., 2022) can be leveraged to continue
to uncover mechanisms driving distinct organoid phenotypes or
vulnerabilities. As integrins and other receptors regulating
mechanotransduction cooperate with many growth factor

receptors, including those in the Wnt pathway (Crampton et al.,
2009; Tejeda-Muñoz et al., 2022; Cooper and Giancotti, 2019; Sarker
et al., 2020; Li et al., 2023), it will also be of interest in future work to
study these signals in combination. Through adaptation of the
media along with the matrix, organoid studies can address how
specific signaling pathways converge to contribute to lineage
commitment and progression, function, and response to
perturbations.

The matrix and media can be chosen to recapitulate the native
environment or can be designed in a reductionist approach to
understand specific aspects of cellular responses to the
environment. Matrices that support organoid growth, for
example, can range from inert gels with a single adhesive site to
the complex decellularized ECM from the tissue of interest.
Proteomics analyses on ECM-derived matrices has been used to
compare hydrogels to native matrices (Giobbe et al., 2019).
Proteomics studies have also enabled the design of manipulable
gels in which specific components of the native environment can be
modulated to define which matrix proteins or properties control cell
fates (Below et al., 2022). Extending these types of studies to
additional tissues or disease states will be of interest. Similarly,
large scale atlasing of transcriptional profiles in normal and tumor
tissues is providing unprecedented information about the ligands,
receptors, and signaling pathways that control cell-cell
communication in niche environments (Yanai et al., 2024). As
these studies suggest additional pathways to control through
changes in the media or matrix, single cell transcriptomic
approaches can be used to compare organoid cell composition
and cell state to that found in normal tissues to validate these
efforts (Yoon et al., 2022; Fujii et al., 2018; Cherubini et al., 2024;
Mead et al., 2022).

Future work incorporating GI organoids into increasingly
complex model platforms will increase understanding of organ
development, homeostatic function, and disease. In addition,
leveraging patient-derived GI organoids in precision medicine
approaches may provide routes for clinical translation.
Throughout these studies, systematic perturbation of the matrix
and media components will allow for continued interrogation of
mechanical and chemical signals regulating gastrointestinal
physiology and pathology.
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