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Introduction: Periodontitis leads to the degradation of tooth-supporting tissues,
ultimately causing tooth mobility and loss. Guided tissue regeneration (GTR)
surgery employs barrier membranes to facilitate tissue regeneration. However,
conventional membranes lack bone-inducing properties, thereby limiting their
efficacy. Our objective was to develop a bifunctional GTR membrane that
combines mechanical stability with bone-inducing capabilities. To achieve
this, we engineered BMP2 peptide-modified polycaprolactone-collagen
nanosheets (BPCNs) to enhance periodontal regeneration by improving cell
adhesion, osteogenesis, and anti-inflammatory activity.

Methods: BPCNs with nanoscale thickness were fabricated using the spin-
coating technique, incorporating BMP2 peptides, collagen, polycaprolactone
(PCL), and polyvinyl alcohol (PVA). Successful conjugation of BMP2 to the
BPCNs was verified through UV spectrophotometry and confocal laser
scanning microscopy. The biocompatibility and cell adhesion properties of
BPCNs were rigorously assessed using CCK-8 assays, microscopic imaging,
and quantitative cell counting. In vitro osteogenic efficacy was evaluated by
Alizarin Red S (ARS) staining and quantitative reverse transcription polymerase
chain reaction (qRT-PCR) to analyze osteogenic marker gene expression. A rat
periodontal defect model was established to assess in vivo regenerative
performance, with outcomes analyzed through micro-CT, hematoxylin-
eosin (H&E) staining, and Masson’s trichrome staining, confirming
enhanced tissue regeneration and the absence of systemic toxicity. The
mechanistic pathways underlying BPCNs-mediated regeneration were
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elucidated via RNA sequencing (RNA-seq), revealing the activation of
osteogenic signaling cascades and the suppression of
proinflammatory pathways.

Results: BPCNs demonstrated excellent biocompatibility, promoted fibroblast and
bone marrow stem cell (BMSC) adhesion, and enhanced BMSC osteogenesis.
Furthermore, BPCNs significantly promoted periodontal tissue regeneration in a
rat model. Mechanistically, RNA-seq analysis revealed that BPCNs upregulated
genes involved in tissue regeneration and downregulated
proinflammatory pathways.

Discussion: This study introduced a novel osteoinductive nanosheet, termed
BPCNs, which provides a groundbreaking material-based approach for the
regenerative repair of periodontal tissue defects. These findings position BPCNs
as a highly promising candidate for GTR surgery, with significant potential to
improve clinical outcomes in periodontal regenerative medicine.

KEYWORDS

BMP2 peptide, polycaprolactone-collagen nanosheets, barrier membranes, periodontal
tissue regeneration, RNA sequencing

1 Introduction

Periodontitis, one of the most common chronic inflammatory
diseases in humans, is a chronic infectious disease caused by
pathogenic microorganisms. It is characterized by the progressive
and irreversible destruction of tooth-supporting tissues, which
eventually leads to tooth loss (Papapanou et al., 2018), affecting
patient quality of life (Shen Z. et al., 2024). Moreover,
periodontitis is closely related to a series of systemic diseases,
such as diabetes (Sanz et al., 2018), inflammatory bowel disease
(IBD) (Wang et al., 2023), and Alzheimer’s disease (Shen Z. S.
et al., 2024). The existing treatment approaches of periodontal
scaling and root planing have been proven to effectively control
mild and moderate periodontitis (Suvan et al., 2020), but
restoring and regenerating damaged alveolar bone remains
challenging (Huang et al., 2024).

Guided tissue regeneration (GTR) technology provides
temporal and spatial support for both soft tissue and hard
tissue repair by covering the barrier membrane in the bone
defect area to block the growth of soft tissue, which helps to
promote bone tissue and periodontal ligament regrowth and
therefore periodontal regeneration (Donos et al., 2023;
Francisco et al., 2019; Sanz et al., 2019). However, traditional
GTR membranes are limited in clinical applications because
they lack bone induction ability and are difficult to use (Dwivedi
et al., 2020), which hinders their effectiveness in promoting
bone regeneration. Building on recent advances in
nanotechnology, researchers have recently begun applying
nanotechnology in the context of tissue regeneration, and the
developed materials been named nanosheets (Shi et al., 2014;
Hamed et al., 2023). Based on our previous research, our
nanosheets materials exhibit several notable advantages over
existing membrane materials, including thinner dimensions,
ease of manipulation, superior wet adhesion performance,
and excellent mechanical strength. Recently, our group has
further demonstrated that nanosheets, with a thickness of
tens of nanometers, exhibit not only biocompatibility,

biodegradability, and unique physical properties such as high
adhesive ability and flexibility, but also an exceptional ability to
adapt to the moist oral environment, thereby rendering them
highly suitable for oral clinical applications (Fujie et al., 2009;
Fu et al., 2023). However, the potential of nanosheets for
periodontal tissue regeneration remains unclear.

Nanosheets are typically combined with collagen layers to load
bioactive peptides for specific applications, such as promoting bone
regeneration. Among the factors studied, the BMP-2 peptide is
recognized for its ability to stimulate osteoblast differentiation,
proliferation, and adhesion, thereby enhancing bone regeneration
(Kim et al., 2013). Combination of the BMP-2 peptide with
nanosheets not only supports the formation of bone tissue but
also has the potential to induce bone regeneration. Therefore, the
synergistic effect of the BMP-2 peptide and nanosheets provides a
new idea for the development of a new generation of
GTR membranes.

In this context, we developed BMP2 peptide-modified PCL-
collagen nanosheets (BPCNs) for GTR. These multifunctional
nanosheets have good adhesion and mechanical properties and
are easy to use when combined with bone-inducing growth
factors. Therefore, this innovative method is expected to
overcome the current limitations of GTR by providing a bionic
and bone-inducing platform and promoting alveolar bone
regeneration. We evaluated the osteogenic ability and
biocompatibility of the BPCNs through a series of experiments.
In addition, we constructed a rat alveolar bone defect model and
evaluated the therapeutic effect of BPCNs during GTR (Figure 1).
Overall, in comparison to existing commercial guided tissue
regeneration (GTR) membranes, our research has culminated in
the development of multifunctional biodegradable polymeric
composite nanofilms (BPCNs) utilizing a spin-coating technique,
which facilitates rapid and large-scale production. When
benchmarked against previously studied GTR membranes, our
BPCNs exhibit several notable advantages, including a thinner
profile, ease of manipulation, superior wet adhesion properties,
and enhanced mechanical strength. Furthermore, our BPCNs
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demonstrate superior adaptability to the moist oral environment.
Notably, when loaded with bone morphogenetic protein-2 (BMP2),
our BPCNs exhibit osteogenic induction capabilities. Our study
demonstrates that these multifunctional nanosheets may be
promising GTR membrane materials for the treatment of alveolar
bone defects.

2 Materials and methods

2.1 Reagents used to prepare BPCNs

Polyvinyl alcohol (PVA, Mw: ~13,000), hexafluoroisopropanol,
polycaprolactone (PCL, Mw: ~80,000), 1-ethyl-3-(3-

FIGURE 1
Components and properties of BPCNs and their application in GTR.
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dimethylaminopropyl) carbodiimide (EDC), N-hydroxy
succinimide (NHS) and ethylenediaminetetraacetic acid (EDTA)
were purchased from Aladdin (Shanghai, China). Collagen type I
was purchased from Beijing Allgens Medical Science and
Technology Co. Ltd. 4-(N-Maleimidomethyl) cyclohexane-1-
carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt
(Sulfo-SMCC) was purchased from Beijing Biosynthesis
Biotechnology Co. Ltd. KIPKASSVPTELSAISTLYLSGGC and
FITC-labeled KIPKASSVPTELSAISTLYLSGGC were obtained
from ChinaPeptides Co., Ltd. (Shanghai, China).

2.2 Preparation process for BPCNs

The preparation process for BPCNs can be referenced in our
previous studies. Briefly, the thickness of the nanosheets is directly
proportional to the concentrations of both the PCL and collagen
solutions (Xuan et al., 2020). Previous research demonstrate that a
0.75 wt% collagen solution and a 10 mg/mL PCL solution are
suitable for the preparation of BPCNs. Type I collagen was
dissolved in a hexafluoroisopropanol solution and stirred
overnight to obtain a 0.75 wt% collagen solution. Subsequently,
EDC and NHS were mixed with the collagen solution at a mass ratio
of collagen I:EDC:NHS of 6:1:1.

The collagen solution was then dripped onto a silicon wafer and
spun at 4,000–6,000 rpm min−1 for 30 s to form collagen nanosheets
(CNs). After rinsing with pure water, the collagen layer was soaked
in Sulfo-SMCC buffer solution (1 mg/mL) for 1 h and then
incubated with KIPKASSVPTELSAISTLYLSGGC (purity >95%)
EDTA solution (0.5 mg/mL) at 4°C overnight to produce BMP2-
modified collagen nanosheets (BCNs). Additionally, a PCL solution
of 15 mg/mL was prepared in dichloromethane. This solution was
then dripped onto the BCNs, spun at 4,000–6,000 rpm min−1 for
30 s, and allowed to dry, resulting in BMP2 peptide-modified PCL-
collagen nanosheets (BPCNs). After the BPCNs were rinsed several
times with pure water, a 20 wt% PVA solution was added dropwise,
and the mixture was spun at 2000–3,000 rpm min−1 for 30 s. Owing
to the presence of PVA as a sacrificial layer, the nanosheets could be
easily peeled off using tweezers after drying.

2.3 Characterization of BPCNs

To determine the grafted amount of
KIPKASSVPTELSAISTLYLSGGC, we measured the
concentration difference via Ellman’s method. Initially,
KIPKASSVPTELSAISTLYLSGGC was dissolved in PBS to produce a
0.5 mg/mL BMP-2 peptide solution. This solution was subsequently
combined with Ellman’s reagent (supplied by MedChemExpress,
United States), and the absorbance at 412 nm was subsequently
determined using a microplate reader (Bio Tek Epoch, United States).
After a standard curve for theODvaluewas established, the change in the
concentration of the peptide following grafting was calculated.
Additionally, KIPKASSVPTELSAISTLYLSGGC that was labeled with
fluorescein isothiocyanate (FITC) and had a purity of over 95% was
utilized to prepare BPCNs. Grafting of BMP-2 onto the nanosheets was
then observed via confocal laser scanning microscopy (Zeiss
LSM980, Germany).

Fifty microliters of deionized water was applied to both the
BPCNs and BCNs for 1 hour, allowing us to observe the
hydrophilicity and water resistance properties of the PCL and
collagen layers. After removing the PVA sacrificial layer, the
surface morphology of the BPCNs and BCNs was analyzed via
field emission scanning electron microscopy (SEM; Zeiss,
Germany). Additionally, the cross-sectional and surface
morphologies of the BPCNs were examined via atomic force
microscopy (AFM; Zeiss, Germany), and the thickness of the
BPCNs was accurately measured.

The mechanical properties of the nanosheets were tested at
room temperature with a universal tensile testing machine
(CMT4204, SANS). The nanosheets were cut into a dumbbell
shape. Later, the samples were fixed onto the device and
subjected to a consistent tensile force until the nanosheets
fractured to evaluate the tensile strength and generate the stress‒
strain curves. The Young’s moduli were calculated from the slope of
the initial linear region of the stress‒strain curve.

2.4 Cellular behavior, biocompatibility and
cell adhesion testing of BPCNs

L929 cells and bone marrow stem cells (BMSCs) were used to
assess the biocompatibility of the BPCNs and their ability to
promote L929 cell and BMSC adhesion. The experimental groups
consisted of L929 cells and BMSCs cultured on both the collagen
layer of PCL-collagen nanosheets (PCNs) and the BMP2-modified
collagen layer of BPCNs. The reference substrates for comparisons
of cell adhesion were twenty-four-well plates (Wuxi NEST
Biotechnology Co., Ltd.) made of tissue culture-treated
polystyrene (TCPS), which exhibited excellent hydrophilicity and
cell adhesion (Lerman et al., 2018).

After being subjected to ultraviolet sterilization for 60 min,
PCNs and BPCNs were securely attached to 24-well plates.
L929 cells and BMSCs were subsequently inoculated into each
well at a density of 5 × 104 cells per well. After the cell
suspension was washed away with PBS at 2 h and 4 h post-
inoculation, microscopic observation was conducted and images
were captured. The numbers of adherent cells were counted in six
random visual fields. To assess cell proliferation on days 1, 2, and 3,
CCK-8 reagent (Sigma‒Aldrich, United States) was used, and the
OD value was determined using a microplate reader (Bio Tek Epoch,
United States).

2.5 In vitro osteogenic properties of BPCNs

BMSCs were seeded into six-well plates in osteogenic medium
(Cyagen, China) at a density of 5 × 10³ cells per well. They were then
cultured with PCNs, BMP2 peptides and BPCNs for 21 days.
Following 21 days of coculture, the cells were fixed with a 4%
paraformaldehyde solution, washed three times with PBS, and
subsequently stained with ARS staining kits (Cyagen, China).
Quantification was performed using ImageJ software.
Additionally, after 14 days of coculture, cells from different
treatment groups were collected to assess the expression of
osteogenic genes, including osteopontin (OPN), osteocalcin
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FIGURE 2
Preparation and characterization of the nanosheets. (A) BMP-modified PCL-collagen nanosheets (BPCNs) were prepared via the spin-coating
technique. (B) C109H183N27O35S (KIPKASSVPTELSAISTLYLSGGC) was grafted onto the collagen layer via a thiol–maleimide reaction. (C) Peeling of the
PVA-supported BPCNs from the siliconwafer. Scale bar = 1 cm. (D)CLSM images of the PCNs and BPCNsmarkedwith FITC. Scale bar = 500μm. (E)Water
resistance and hydrophilicity of BCNs and BPCNs. Scale bar = 500mm. (F) SEM images of the BCNs and BPCNs. Scale bar = 5 μm. (G) AFM images of
the cross-sectional profile and the surface of the BPCNs. (H) Representative tensile strain-stress curve of BPCNs. Scale bar = 1 μm.
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(OCN), and alkaline phosphatase (ALP), through quantitative real-
time polymerase chain reaction (qRT‒PCR) assays. The primers
used are listed in Supplementary Table S1.

2.6 In vivo assessments

Twenty male SD rats (weights: 260–300 g) were purchased from
Sun Yat-sen University. All experiments were approved by the
Animal Care and Use Committee of Sun Yat-sen University
under protocol number SYSU-IACUC-2021-001051. The SD rats
were randomly assigned to four groups, with five animals in each
group. The groups were as follows: (1) the PBS group, which
included rats with periodontal defects but no treatment; (2) the
PCN-treated group; (3) the BMP2 peptide-treated group; and (4) the
BPCN-treated group. To evaluate the biological performance of the
nanosheets in vivo, we used a rat periodontal defect model. The
animals were anesthetized using pentobarbital sodium (supplied by
MREDA Technology; lot number 1507002). A small incision was
made on the gingiva before the first left maxillary molar, revealing
the alveolar bone under continuous saline irrigation. A periodontal
defect, approximately 1 mm × 1 mm × 1 mm, was created on the
mesial alveolar bone of the first maxillary molar using a small
electric drill. The membranes were subsequently placed over the
defects, and the incisions were sutured. Six weeks after surgery, the
animals were euthanized, and the maxillary bones with defects
were collected.

2.7 Micro-CT analysis

Formicro-CT analysis, the maxillary bones of the experimental rats
were collected, fixed in 4% PFA for 24 h, washed three times with PBS,
dehydrated in 75% ethanol, placed in standardized cylindrical sample
containers, and then scanned using a high-resolutionmicro-CT scanner
(ScanoMedical AG, Bassersdorf, Switzerland). The parameters were set
to 70 kV, 114 mA, 20 μm increments, and a 3,000 ms integration time.
Following scanning, three-dimensional microstructural image data
were reconstructed and analyzed using image analysis software
(Mimics Research 21.0, Materialize, Belgium). The distance between
the cementoenamel junction and the alveolar bone crest (CEJ-ABC
distance) was measured.

2.8 HE and Masson’s trichrome staining

Samples of the experimental teeth and their surrounding tissues
in the root furcation area were excised and trimmed. The samples
were then decalcified with 10% EDTA for 3 months. These samples
were subsequently prepared for HE and Masson’s trichrome
staining. HE staining was used to observe the formation of new
alveolar bone, periodontal ligament, and cementum. On the other
hand, Masson’s trichrome staining was used to assess new bone
maturation and the formation of new collagen fibers. After 6 weeks,
the main organs (the heart, liver, spleen, lungs, and kidneys) from
each group were collected, fixed, dehydrated, and embedded in
paraffin. The tissues were subsequently sectioned and stained with
HE to evaluate whether the main organs were damaged.

2.9 RNA sequencing analysis

The periodontium was extracted from rats treated with BPCNs
and PBS. RNA was isolated from the periodontium with TRIzol
reagent. RNA sequencing was performed by BGI Genomics (China).
Differentially expressed genes (DEGs) were analyzed via the edgeR
analysis package in the R statistical program, with the criteria
defined as an adjusted p value ≤0.05 and an absolute log2 (fold
change) >1.5. Prism software (GraphPad) and RStudio were used to
create heatmaps and volcano plots. Gene Ontology (GO) term
enrichment analysis was performed for the top 200 deregulated
DEGs. Gene set enrichment analysis (GSEA) was performed using
GSEA software (https://www.gsea-msigdb.org/gsea/index.jsp).

2.10 Statistical analysis

All the data are presented as the means ± SEMs from at least
three independent experiments. Comparisons between groups were
performed using an unpaired two-tailed Student’s t-test or one-way
analysis of variance (ANOVA) with Tukey’s post hoc test. A value of
p < 0.05 was considered to indicate statistical significance. All the
statistical analyses were carried out using Prism
software (GraphPad).

3 Results

3.1 Preparation and characterization
of BPCNs

We first synthesized BPCNs using the spin coating technique
(Figure 2A), which was chosen for its simplicity and flexibility. To
graft the collagen layer with BMPs, the collagen layer was soaked in a
polypeptide solution (Figure 2B). After grafting, we determined the
concentration of the BMP2 peptide solution and calculated the
amount and ratio grafted onto the BPCNs on the basis of the
reaction between the sulfhydryl groups of C109H183N27O35S and
DTNB (Ellmann’s reagent), which results in the formation of yellow
substances. When 0.5 mg mL−1 BMP2 peptide solution (1.5 mg
BMP2 dissolved in 3 mL EDTA solution) was used for grafting, the
amount and ratio of KIPKASSVPTELSAISTLYLSGGC grafted onto
the BPCNs were approximately 39.42 nmol cm−2 and 57%. To
observe whether BMP2 peptide was grafted onto the nanosheets,
C109H183N27O35S labeled with a FITC fluorescence group was
utilized. Fluorescence microscopy revealed that the BPCNs
exhibited strong fluorescence, indicating successful grafting of
BMP2 peptide onto the nanosheets. In contrast, the PCNs
without BMP2 peptide grafting did not exhibit fluorescence
(Figure 2D). Finally, to ensure easy peeling of the nanosheets
from the silicon wafer, a micron-thick PVA layer was introduced
as a sacrificial layer on the BPCNs (Figure 2C).

Moreover, we examined the hydrophilicity and water resistance
properties of the nanosheets, as the hydrophilicity of these
nanosheets has a significant effect on cell adhesion and
proliferation. After 1 hour of immersion, the water-soaked
sections of both the BCNs and BPCNs remained insoluble,
suggesting that both the PCL layer and the BMP2 peptide-
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modified collagen layer exhibited water resistance characteristics.
Photographs captured to evaluate the water contact angles revealed
that the collagen layer exhibited excellent hydrophilicity, whereas
the PCL layer exhibited hydrophobicity (Figure 2E). After the PVA
layer was washed away, we characterized the surface morphology of
the BPCNs and BCNs by scanning electron microscopy and atomic
force microscopy.

SEM observations revealed that the BPCN nanosheets are
composed of multilayer structures, with distinct compact and porous
layers. Additionally, the surfaces of the PCL layer and collagen layer

appeared smooth (Figure 2F). Furthermore, AFM analysis provided
insights into the cross-sectional profile and surface morphology of the
BPCNs, revealing that they have a thickness of 83.49 nm ± 7.12 nm,
which satisfied the required thickness for the nanosheets (Figure 2G).

We conducted tensile tests to measure the tensile properties of the
nanosheets, considering that the nanosheets may suffer from stretching
during GTR surgery. The tensile strain‒stress curve indicated that the
BPCN nanosheets have great flexibility. The Young’s modulus of the
BPCNs was approximately 27 MPa. These results suggest that the
BPCNs are highly suitable for irregular defects (Figure 2H).

FIGURE 3
Cell adhesion properties, biocompatibility and osteogenic ability of BPCNs. (A) Images of L929 cell adhesion on various substrates. Scale bar =
50 μm. (B) Images of BMSC adhesion on various substrates. Scale bar = 50 μm. (C) The proportions of adherent L929 cells at 2 h and 4 h were calculated
and are presented in a graph (****p < 0.0001). (D) The proportions of adherent BMSCs at 2 h and 4 hwere calculated and are presented in a graph (****p <
0.0001). (E) The OD values obtained from the CCK8 assay of L929 cells on days 1, 2 and 3. (F)OD values obtained from the CCK8 assay of BMSCs on
days 1, 2 and 3. Scale bar = 100 μm. (G) Images of ARS-stained areas on various substrates. Scale bar = 50 μm. (H) Proportions of ARS-stained areas on
various substrates. (I–K) qRT‒PCR analysis of BMSC osteogenesis (OPN, OCN, ALP) (*p < 0.05).
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FIGURE 4
Alveolar bone repair in a rat periodontal defect model. (A) Micro-CT images of 3D reconstructions and buccopalatal sections of maxillary molars
subjected to different treatments. The green lines represent the area of the bone defect and the distance between the ABC and the CEJ (scale bar =
1mm). (B)Quantitative evaluation of the bone defect area. (C)Quantitative evaluation of the distance between the ABC and the CEJ. (*p <0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001).
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3.2 Cellular behavior and biocompatibility
of BPCNs

A fundamental prerequisite for the utilization of biomaterials in
vivo is excellent biocompatibility. Cellular behaviors such as
viability, morphology, and adhesion were assessed by microscopy
and the CCK8 assay. PCNs and BPCNs were used as the

experimental groups to explore the cell adhesion ability of the
collagen layer and BMP2 peptide-modified collagen layer.
L929 cells and BMSCs were seeded onto plates containing a
collagen layer. The cells were subjected to microscopy and
photographed at 2 and 4 h, as shown in Figures 3A, B. Notably,
as shown in Figures 3C, D, the numbers of adherent cells in the
experimental groups were significantly greater than that in the PBS

FIGURE 5
Tissue repair in a rat periodontal defect model. (A) H&E staining of periodontal tissue. (B) Masson staining of periodontal tissue. The green lines
represent the distance between the ABC and the CEJ.
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group, indicating that the collagen layers of both the PCNs and
BPCNs accelerated the adhesion of L929 cells and BMSCs.
Additionally, a CCK8 assay was conducted to evaluate cell

proliferation and cytotoxicity over a period of 3 days. Compared
with the PBS group, both the BPCN and PCN treatment groups
exhibited no cytotoxicity (Figures 3E, F).

FIGURE 6
BPCNs exhibit excellent biocompatibility and biosafety in vivo. (A) Technical roadmap for visceral sampling in rats. (B) H&E staining of rat major
organs (the heart, liver, spleen, lungs, and kidneys) after nanosheet treatment for 6 weeks. Scalebar = 200 μm.
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FIGURE 7
BPCNs upregulate components of pathways related to tissue regeneration but downregulate components of proinflammatory pathways. (A)
Volcano plots showing DEGs. (B) Gene Ontology (GO) functional analysis of upregulated DEGs in the periodontium of the BPCN-treated group
compared with the PBS-treated group. (C) GO functional analysis of downregulated DEGs in the periodontium of the BPCN-treated group compared
with the PBS-treated group. (D–G) Heatmaps of DEGs from the selected pathways in the periodontium of the BPCN-treated group compared with
the PBS-treated group. *p < 0.05. (H, I) Analysis of transcription factors related to inflammatory genes.
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3.3 BPCNs increase the osteogenic ability
of BMSCs

Calcium nodules are characteristic markers for osteogenesis
within the bone structure. To assess osteogenesis, calcium
nodules were observed in the Alizarin red S (ARS)-stained area
on day 21. The results indicated that BMP2 peptide treatment and
BPCN treatment led to the accumulation of calcium products in
larger amounts, suggesting greater osteoinductive capacity (Figures
3G, H). Furthermore, the expression of osteogenesis-related genes,
including OPN, ALP, and OCN, was examined to evaluate
osteopromotive effects. Notably, as shown in Figures 3I–K, the
expression of these osteogenesis-related genes was significantly
upregulated in both the BMP2 peptide treatment group and the
BPCN treatment group compared with that in the PBS group and
PCN treatment group.

3.4 BPCNs show clear osteogenic capability
in vivo

The ability of BPCNs to guide the repair and regeneration of
periodontal defects was evaluated in a rat model. A periodontal
defect was surgically created by removing a segment of the alveolar
bone to mimic a clinical periodontal defect. As shown in
Figure 4A, gross observation after 6 weeks revealed that the
rats in the PBS group exhibited the least amount of new bone
formation. The defect remained obvious, with exposed root
surfaces, indicating limited spontaneous healing capabilities.
On the other hand, compared with the PBS group, the PCN
group presented slightly more new bone formation. This
increase in bone formation suggested that the PCL material
and collagen material might have some osteogenic potential,
although the effect was still relatively limited. In contrast, the
BMP2 peptide treatment significantly promoted osteogenesis at
the defect site, as evidenced by substantial new bone formation
within the periodontal defect. BMP2, a well-known osteogenic
factor, strongly promoted osteogenesis at the defect site.
Interestingly, combined treatment with PCNs and
BMP2 peptide resulted in an even more pronounced osteogenic
effect. The newly formed bone in the BPCN treatment group
almost filled the defect, resulting in nearly complete restoration of
the periodontal structure. As shown in Figures 4B, C, both the
BMP2 peptide treatment group and the BPCN treatment group
presented obvious decreases in the bone defect area and the length
of the CEJ-ABC. Moreover, in the BPCN group, the bone defect
area and the length of the CEJ-ABC were reduced the most among
all the groups. These findings suggest that the combination of
PCNs and BMP2 peptide could synergistically enhance the repair
and regeneration of periodontal defects.

3.5 BPCNs promote tissue regeneration
in vivo

To further investigate and evaluate guided periodontal tissue
regeneration by BPCNs, the rats were sacrificed and subjected to
histological staining. As shown in Figures 5A, E, H staining revealed

that the PBS group exhibited dense connective tissue but lacked new
bone formation. This observation suggested that without any
additional treatment, the periodontal tissue regeneration of the
rats was limited. In contrast, the other three groups displayed
varying degrees of new bone formation, with a small amount of
new bone observed in the PCN group. This finding was encouraging,
indicating that PCNs have some regenerative potential, but the effect
was relatively small. Moreover, the BMP-2 peptide group presented
more new bone formation. The periodontal defects in the BPCN
group were mostly filled by regenerated alveolar bone. As shown in
Figure 5B, Masson staining was carried out to evaluate the
collagenous matrix of the regenerated alveolar bone, as high-
quality newly synthesized collagenous matrix is an important
indicator for regenerated alveolar bone tissue and exhibits dark
blue staining. Limited collagenous matrix staining was observed in
the PBS group, whereas varying intensities of dark blue collagenous
matrix staining were observed in the other three groups. Notably, the
intensity of the dark blue staining closely corresponded to the
amount of regenerated bone. H&E staining of the major organs
(Figure 6) indicated that the BMP2 peptide, BPCN and PCN
treatments did not significantly affect the major organs of SD rats.

3.6 BPCNs upregulate the expression of
components of pathways related to tissue
regeneration but downregulate the
expression of components of
proinflammatory pathways

We conducted RNA sequencing analysis of the periodontium of
rats with periodontitis that were treated with BPCNs or PBS to
elucidate the mechanisms underlying the therapeutic effects of
BPCNs in periodontitis model rats. As shown in Figure 7A, in
the periodontium of BPCN-treated and PBS-treated rats with
periodontitis, we identified differentially expressed genes (DEGs)
(adjusted p value ≤0.05 and absolute log2 (fold change) >1.5). To
gain further insight, we conducted a GO term enrichment analysis of
the DEGs on the basis of their involvement in biological processes.
Compared with those in PBS-treated rats with periodontitis, the
upregulated DEGs in the periodontium of BPCN-treated mice were
enriched predominantly in terms such as the estrogen signaling
pathway and MAP kinase activation (Figure 7B), whereas the
downregulated DEGs were enriched in terms such as the
leukocyte-mediated cytotoxicity pathway and cytokine signaling
in the immune system (Figure 7C). Gene set enrichment analysis
(GSEA) further confirmed activation of the identified pathways
(Supplementary Figure S1).

Heatmaps of the DEGs within these enriched GO pathways
revealed that DEGs associated with the estrogen signaling pathway
and MAP kinase activation were upregulated in BPCN-treated rats
with periodontitis compared to PBS-treated rats with periodontitis,
whereas leukocyte-mediated cytotoxicity and cytokine signaling in
the immune system were downregulated (Figures 7D–G). We
conducted transcription factor analysis on the upregulated and
downregulated genes and found that the downregulated genes
correspond to transcription factors MAZ, KAT2A, and NFRF1,
which are associated with inflammation, indicating that treatment
can downregulate inflammation. At the same time, upregulated
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genes correspond to transcription factors MYB, HCFC1, and MAX,
which are associated with tissue regeneration. In summary, BPCNs
can promote periodontal defect repair by downregulating
inflammation and promoting tissue regeneration (Figures 7H, I).
Taken together, the findings from the GO term enrichment analysis
suggest that BPCN treatment suppresses the immune and
inflammatory response in rats with periodontitis.

4 Discussion

Barrier membranes are critical in guided tissue regeneration
(GTR) surgery (Sanz et al., 2020), as they prevent soft tissue invasion
and allow time for tissue repair (Donos et al., 2023; Francisco et al.,
2019). Our study demonstrated that BPCNs not only enhance cell
adhesion and bone regeneration in vitro but also significantly
improve periodontal tissue regeneration in vivo. RNA sequencing
confirmed that BPCNs activate tissue regeneration pathways and
reduce inflammation, making them promising for GTR surgery due
to their ease of use and bone-inducing properties.

We employed nanomaterials and spin coating technology to fabricate
collagen nanosheets specifically aimed at periodontal regeneration.While
our previous work demonstrated that nanotechnology enabled the
creation of thinner, more adhesive barrier membranes suitable for soft
tissue defects (Fujie et al., 2009; Fu et al., 2023; Zhang Y. et al., 2024), it
remains uncertain whether these nanosheets can fully address
periodontal regeneration. Spin coating was selected for its simplicity,
precision, and efficiency, facilitating rapid, large-scale production at a low
cost (Xuan et al., 2020). Collagen, known for its excellent
biocompatibility, promotes cell adhesion and proliferation, and can
also serve as a carrier for bioactive peptides (Naomi et al., 2021; Sun
et al., 2022; Xie et al., 2018; Cooperman and Michaeli, 1984; Calciolari
et al., 2018; Niwa et al., 2012; Stoecklin-Wasmer et al., 2013). To enhance
mechanical strength and performance, we integrated PCL as a backing
layer, a material recognized for its biocompatibility and durability
(Dwivedi et al., 2020; Hedvicakova et al., 2023). Our research
confirmed that both PCL and collagen were non-toxic in SD rats,
and their combination enhanced the overall functionality of the
barrier membrane (Bezwada et al., 1995). The hydrophobicity of the
PCL layer also supports controlled drug release, improves membrane
stability within periodontal defects, and ensures an optimal degradation
rate, making this combination promising for clinical applications
(Dwivedi et al., 2020; Engelberg and Kohn, 1991; Gumusderelioglu
et al., 2019).

Current clinical barrier membranes often lack bone-guiding
capabilities, limiting their effectiveness in periodontal
regeneration (Chen et al., 2021; Zhang Q. et al., 2024; Zhang
et al., 2023). To address this, we aimed to enhance this function
by incorporating BMP2 peptide, a potent osteogenic factor. The
BMP2 peptide was chemically stabilized on the collagen layer,
allowing for uniform distribution and prolonged bioactivity,
which significantly improved osteogenic differentiation in BMSCs
(Kim et al., 2013; Chen et al., 2021; Kim et al., 2018; Howard et al.,
2022). In our study, BPCNs significantly accelerated bone
regeneration in a rat model of periodontal defects. Micro-CT
analysis confirmed that BPCNs markedly enhanced alveolar bone
healing compared to control groups. Additionally, Masson’s
trichrome staining revealed increased and organized collagen

fiber regeneration, suggesting that BPCNs not only promoted
bone healing but also supported soft tissue repair, accelerating
the overall healing process. These findings demonstrate the
significant therapeutic potential of BPCNs in treating periodontal
defects. Their ability to promote both bone regeneration and soft
tissue healing makes them a promising candidate for clinical
applications in periodontal regeneration therapies.

We identified the mechanism by which BPCNs promote
periodontal defect healing. In the BPCN treatment group, the
estrogen and MAP kinase pathways were significantly
upregulated. Estrogen inhibits osteoclast formation and promotes
their apoptosis, reducing osteoclast numbers and bone resorption,
while also stimulating osteoblast proliferation and differentiation,
enhancing bone formation (Almeida et al., 2017). Additionally,
MAP kinase pathway activation is crucial for osteoblast
differentiation (Almeida et al., 2017; Xiao et al., 2002).
Inflammation, particularly when excessive and prolonged, impairs
periodontal tissue regeneration (Gruber, 2019). Our results showed
that factors associated with leukocyte-mediated cytotoxicity and
cytokine signaling were significantly downregulated in the BPCN
group, suggesting that BPCNs reduce inflammation during tissue
regeneration, thus creating a more favorable environment
for healing.

According to the S3-level clinical guidelines for periodontitis
treatment issued by the European Federation of Periodontology, the
use of barrier membranes in regenerative therapy is strongly
recommended, with the option to either incorporate or omit
bone grafts (Sanz et al., 2020; Nibali et al., 2020). BPCNs offer
an environment conducive to bone cell growth and attachment.
They optimize the local microenvironment by releasing bone
morphogenetic protein-2 (BMP-2) peptide, directly promoting
bone cell differentiation and bone formation, and facilitating
natural repair of bone tissue. In our study, a rat model of
periodontal tissue defects with relatively small defect volumes
was established, and good regenerative outcomes were obtained
without the use of bone graft materials. Therefore, the use of
periodontal regeneration surgery without bone graft materials is
feasible in some cases. Yet, further preclinical studies and clinical
trials are necessary to verify their ability to achieve better
regenerative effects in various types of defects and complex cases.

In conclusion, our study successfully utilized spin coating to
fabricate BMP2 peptide-incorporated BPCNs, demonstrating their
effectiveness in promoting periodontal tissue regeneration. These
findings support the potential of PCL-collagen nanosheets as
practical, bone-regenerative materials for GTR, characterized by
their ease of use and ability to enhance tissue repair.
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