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Tissue engineering (TE) has emerged as a promising therapeutic strategy,
employing artificial scaffolds to regenerate functional cardiac tissue and
offering new hope for innovative treatment approaches. A straightforward
method for producing biodegradable, conductive polymer-based composites
involves blending conductive polymers directly with biodegradable ones. This
approach’s flexibility enables the development of diverse biodegradable,
conductive polymer scaffolds, which have been extensively explored in tissue
engineering and regenerative medicine. While this technique successfully
combines the advantages of both polymer types, it may face challenges such
as potential compromises in conductivity and biodegradability. This review
emphasizes the potential to tailor degradation rates and conductivity by
selecting appropriate polymer types and ratios, ensuring adaptability for
various biomedical applications.
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1 Introduction

Themultidisciplinary field of tissue engineering integrates scaffolds, cells, and biological
molecules to create viable biological replacements that maintain, improve, or restore tissue
function (Makris et al., 2014; Vacanti and Vacanti, 2014). Scaffolds are designed to
temporarily support cells, promoting cell proliferation and differentiation to aid in the
formation of new tissue (Schumann et al., 2007). Key properties of scaffolds include
biocompatibility with native tissues, controlled biodegradation rates, non-toxic degradation
products, adequate porosity for nutrient and waste exchange, mechanical strength, and the
ability to be sterilized (Guo and Ma, 2014, Van Vlierberghe et al., 2011, Zustiak and Leach,
2010, Wu et al., 2016, Guo et al., 2008). Additionally, the biomaterials used should fully
degrade once the scaffold is no longer required (Schumann et al., 2007).

Polymers are the most commonly used scaffolding biomaterials due to their excellent
mechanical stability, biocompatibility, and biodegradability. Synthetic biodegradable
aliphatic polyesters, such as poly (lactic acid) (PLA), poly (lactic-co-glycolic acid)
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(PLGA), polycaprolactone (PCL), poly (glycerol sebacate) (PGS),
and polyurethane, along with natural biopolymers like chitosan,
gelatin, and collagen, are frequently used for tissue engineering
scaffolds (Guo et al., 2008; Guo et al., 2007, Shoichet, 2010, Garg and
Goyal, 2014, Toivonen et al., 2015, Inkinen et al., 2011, Sukmana,
2012; Guo et al., 2011). However, these materials often lack covalent
bonding sites and exhibit poor hydrophilicity, which can hinder cell
adhesion. Despite being biodegradable, both biopolymers and
conventional polymers are inherently insulating, limiting their
use in biomedical applications that require conductive properties.

To overcome these limitations, materials such as graphene,
carbon nanotubes (CNTs), nanowires, and metallic gold
nanoparticles have been extensively studied for their exceptional
electrical and mechanical properties, making them promising
candidates for conducting biomaterials in bone tissue engineering
and biosensor applications (Hopley et al., 2014, Goenka et al., 2014,
Fan et al., 2014, Abarrategi et al., 2008, Harrison and Atala, 2007,
Nair et al., 2017, Shevach et al., 2014, Shevach et al., 2013).
Nevertheless, their widespread and efficient use is constrained by
issues such as non-biodegradability, concerns about long-term in
vivo toxicity, and uneven distribution of conducting particles in
composite systems.

Conducting polymers are a unique class of organic compounds
that offer advantages such as ease of synthesis, processing flexibility,
and electrical and optical properties similar to those of metals and
inorganic semiconducting materials (Bredas and Street, 1985,
MacDiarmid et al., 1987, MacDiarmid, 2001, Ouyang et al., 2018,
Checkol et al., 2018). Unlike traditional inorganic and metallic
electronic materials, conductive polymers such as polyaniline,
polypyrrole, and polythiophene provide enhanced mechanical
strength and structural adaptability, making them more
compatible with tissues and cells. These polymers, along with
their derivatives and composites, are promising biomaterials due
to their biocompatibility, ease of synthesis, modifiability, and ability
to electrically regulate physicochemical properties through surface
functionalization and the use of various dopant molecules
(Ravichandran et al., 2010; Guimard et al., 2007).

These advantageous properties have led to their increasing
application in biological fields such as drug delivery, biosensors,
and tissue engineering (Hardy et al., 2013; Thompson et al., 2010). In
addition to their biocompatibility, conducting polymers can
stimulate biological processes, including cell adhesion, growth,
differentiation, and protein release at the polymer-tissue
interface, with or without the application of electrical stimulation
(Harris and Wallace, 2018, Mawad et al., 2012, Kaur et al., 2015,
Schmidt et al., 1997).

Conductive polymer composites have demonstrated significant
potential across various biomedical applications. In neural tissue
engineering, these materials mimic the electrical properties of neural
tissues, promoting neuronal growth, differentiation, and repair
(Green et al., 2017). In cardiac tissue engineering, conductive
polymers support the electrical stimulation necessary for
cardiomyocyte contraction and regeneration (Navaei et al., 2018).
Similarly, in bone tissue engineering, these composites enhance
osteoblast activity and bone regeneration through electrical
stimulation (Liu et al., 2020). Conductive polymer composites
also aid muscle tissue engineering by facilitating myocyte
alignment and contraction, which is crucial for functional muscle

repair (Jing et al., 2019). Beyond tissue engineering, they are
employed in biosensors and diagnostics, offering high sensitivity
and specificity for detecting biomarkers and other biological signals
(Wang et al., 2020).

The conductivity of native tissues is critical to understanding the
requirements for biomaterials in tissue engineering. In the
introduction, the conductivity of native tissues is discussed with
examples such as cardiac tissue, which has a conductivity ranging
from approximately 102 to 101 S/cm, and neural tissue, with a
conductivity of around 103 S/cm. These values serve as a
benchmark for designing conductive materials suitable for tissue
engineering. Additionally, the typical conductivity values of
common polymers used in tissue engineering, such as polyaniline
(101 S/cm), polypyrrole (103S/cm), and PEDOT:PSS (102 S/cm), are
highlighted the need to achieve conductivities comparable to those
of native tissues.

Biomaterials based on conducting polymers are particularly
advantageous for creating electrically sensitive skeletal muscle
cells, cardiac muscle cells, neurons, skin, and bone tissues (Qazi
et al., 2014; Li et al., 2006). Several cell types, including fibroblasts,
myoblasts, cardiac cells, and mesenchymal stem cells, have
demonstrated positive responses to biomaterials containing
conducting polymers, particularly regarding cell adhesion and
proliferation (Zhao et al., 2017; Balint et al., 2014; Liu et al.,
2010). This highlights the significance of conducting polymers in
tissue engineering, as regulating cellular behaviour is essential for
effective tissue regeneration (Ravichandran et al., 2010; Green et al.,
2008; Abidian et al., 2010). However, challenges arise when applying
these conductive polymers in tissue engineering. The primary
limitations of current systems include poor polymer-cell
interactions, insufficient cell adhesion sites, hydrophobicity, low
solubility and processability, and unpredictable mechanical
properties (Guimard et al., 2007; Thomas et al., 2000; Green
et al., 2012; Kishi et al., 2012; Hu et al., 2011). Moreover, the
inability of conducting polymers to degrade presents a significant
obstacle for tissue engineering applications. Prolonged retention of
these polymers in vivo can provoke inflammatory responses and
may necessitate a second surgical procedure for removal (Zelikin
et al., 2002). To address these challenges, there is a critical need for
new materials that overcome the limitations of synthetic polymers,
nanoparticles, and conducting polymers when used individually for
specific applications. The primary aim of this review is to provide an
overview of the fundamentals of conducting polymers,
biodegradable polymers, and functionalization strategies for
biodegradable conducting polymer composites in biomedical
applications.

1.1 Fundamentals of conducting polymers

Conducting polymers are synthetic macromolecules
characterized by highly delocalized π-conjugated backbones and
flexible side chains (Figure 1) (Swager, 2017; Stenger-Smith, 1998;
Moon and Kenry, 2018; Kenry, 2018). Examples include
polyacetylene, polypyrrole, polyaniline, polythiophene, poly (3,4-
ethylenedioxythiophene), polyfluorenes, poly (p-phenylene
vinylene), poly (p-phenylene), and poly (p-phenylene
ethynylene), along with their derivative compounds (Figure 2).
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These polymers possess backbones composed of alternating single
(C–C), double (C=C), or triple (C≡C) bonds, enabling electron
delocalization along the conjugated chain. The overall strength of
the polymer is determined by the robust σ bonds between atoms
(Swager, 2017; Shirakawa et al., 1977). The high electrical
conductivity of these polymers is primarily attributed to the
conjugated double or triple bonds along their backbone. This
structure imparts high electrical conductivity and provides
unique electrical and photophysical properties, such as high
molar absorption, efficient energy transfer, fluorescence quantum
yield, photostability, and variable electron affinity and ionization
energy. Additionally, the hydrophobic and rigid nature of the
polymer backbone facilitates π–π stacking interactions, further
enhancing the material’s properties.

The electrical conductivity of conducting polymers (CPs) is
believed to result from nonlinear defects occurring during the
polymerization of monomers or through doping processes (Gross
et al., 2000; Tang et al., 2010). Doping alters the conductivity of CPs

by adding or removing electrons from the polymer backbone. Key
factors influencing doping in conducting polymers include
conjugation length, polymer chain length, and charge carrier
mobility. Doping typically introduces p-type or n-type dopants,
which impart positive or negative charges to the polymer. Adding a
p-type dopant oxidizes the polymer, generating hole charge carriers.
Conversely, introducing an n-type dopant reduces the polymer,
adding an electron to the conduction band and creating electron
charge carriers. The presence of π-orbital systems within the
polymer backbone further enhances the mobility of these charge
carriers. Undoped polymers generally exhibit low electrical
conductivity, behaving like insulators or semiconductors (Le
et al., 2017). However, minimal doping can increase the
conductivity of conducting polymers by as much as 10 orders of
magnitude or more. For example, doped conducting polymers such
as polypyrrole, polyaniline, polythiophene, and PEDOT exhibit
electrical conductivities ranging from 1.0 × 102 to 7.5 × 10³,
3.0 × 101 to 2.0 × 102, 1.0 × 101 to 1.0 × 10³, and 4 × 10⁻1 to 4 ×

FIGURE 1
Structure of a conducting polymer (CP) featuring its conjugated backbone, composed of alternating single double, that enable electron
delocalization and contribute to its electrical conductivity.

FIGURE 2
Chemical structures of common CPs.
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102 S/cm, respectively (Kaur et al., 2015; Balint et al., 2014). Despite
their exceptional electrical properties, pure conducting polymers are
often unsuitable for biological applications due to their low
dispersibility in aqueous solutions. Low dispersibility in aqueous
solutions refers to the inability of a substance, such as a conducting
polymer, to evenly distribute or dissolve in water-based
environments. This characteristic often results in aggregation or
precipitation of the substance, leading to poor stability and reduced
functional performance in biomedical applications. For example,
conducting polymers like polypyrrole and polyaniline are inherently
hydrophobic, which limits their dispersibility in water and aqueous
biological media, thereby restricting their compatibility and efficacy
in biomedical applications (Sahoo et al., 2010).

However, CPs can be readily conjugated with functional groups
through their flexible side chains, imparting desirable biophysical
features (Jaymand et al., 2015; Feng L. et al., 2013). Conducting
polymers (CPs) can be functionalized to improve properties such as
enhanced cellular internalization and reduced cytotoxicity, but these
improvements alone are insufficient for the full range of biological
applications, as CPs must also be biodegradable to unlock their
complete potential (Tian et al., 2012).

Increased cellular internalization of conducting polymers offers
significant benefits, particularly in biomedical applications such as
drug delivery, biosensors, and tissue engineering. Enhanced cellular
internalization allows conducting polymers to interact more
effectively with cellular components, such as membranes and
intracellular pathways, facilitating targeted delivery of therapeutic
agents and enabling precise modulation of cellular behaviour. This
property is especially important for applications requiring
intracellular delivery of drugs, genes, or bioactive molecules, as it
ensures higher efficiency and effectiveness of the therapeutic
process. Additionally, internalized conducting polymers can
influence intracellular electrical signalling, further promoting cell
growth, differentiation, and tissue repair (Cui et al., 2013).

The growing emphasis on biodegradability in biomaterials is
evident in ongoing research exploring CPs in biomedical fields,
including controlled drug delivery, tissue engineering, and
regenerative medicine (Guo et al., 2013). Unfortunately, due to
their inert π-conjugated structure and inherent lack of
biodegradability, CPs do not naturally degrade in biological
environments. This limitation has hindered their effective use
in vivo bio-applications and clinical translation. Efforts to
develop CPs with biodegradable properties have been ongoing,
but achieving optimal systems that combine electrical
conductivity with biodegradability remains challenging (Lee et al.,
2009a). This dual functionality is critical for advancing CPs in
biomedical applications, yet creating polymers that meet both
criteria continues to be a significant hurdle.

1.2 Fundamentals of
biodegradable polymers

Biodegradability is one of the most essential properties of a
biomaterial. This characteristic is typically present in polymeric
materials, as environmental factors, enzymes, living organisms, or
even simple water molecules can cause the polymeric chains to break
down, resulting in weight loss of the material (Larranaga and

Lizundia, 2019). The natural degradation of materials is highly
advantageous, especially in biomedical devices and applications,
where they can perform their intended function and then be
safely absorbed or eliminated by the body. Due to their excellent
biocompatibility, biodegradable polymers are the preferred choice
for various biomedical applications, including drug delivery systems,
vascular grafts, surgical sutures, artificial skin, bone fixation devices,
gene delivery systems, tissue engineering, and diagnostic
applications (George et al., 2020). Synthetic polymers, particularly
aliphatic polyesters, are widely used in biomedical applications for
scaffold construction because of their excellent compatibility with
biological systems. These materials typically degrade through the
hydrolysis of ester groups present in their backbone (Englert et al.,
2018). Among the most widely used biodegradable synthetic
polyesters are polylactide (PLA), polyglycolide (PGA),
polycaprolactone (PCL), and their copolymer, poly (lactic-co-
glycolic acid) (PLGA). These materials were among the first to be
explored in the development of biodegradable conducting polymers
(Figure 3). In fact, due to their exceptional biocompatibility and
biodegradability, these biodegradable aliphatic polyesters have long
been practically useful in biomedical applications, even before the
discovery of conducting polymers (CPs) (Kenry and Liu, 2018).

1.3 Functionalization strategies of
biodegradable ConductingPolymer
composites in biomedical applications

Conducting polymers (CPs) can be modified to incorporate
biodegradability through innovative design and fabrication
techniques. The following strategies have been employed to
develop biodegradable CPs.

(1) Polymer/nanoparticle filler composites
(2) Polymer/antibacterial particle composites
(3) Composite blends.

1.3.1 Polymer/nanoparticle filler composites
The electrical conductivity of the composite materials was analyzed

to assess the enhancement relative to the pure conducting polymer and
the base polymer. The conductivity of the composites is significantly
higher than that of the base polymer, attributed to the incorporation of
the conducting polymer and conductive fillers. For example, composites
containing 20% polypyrrole exhibited a conductivity increase of nearly
300% compared to the base polymer, indicating the effective integration
of the conductive polymer.

Degradation rates of these materials were evaluated to determine
their suitability for in vivo applications. Biodegradable conducting
polymers and their composites displayed controlled degradation
over a period of weeks to months, depending on the composition
and environmental conditions. This tunable degradation is
particularly relevant for applications requiring temporary
scaffolding, such as peripheral nerve repair or cardiac tissue
engineering. For in vivo applications, the degradation products
must exhibit minimal toxicity. The materials evaluated in this
study showed promising biocompatibility, with degradation
byproducts falling within acceptable toxicity thresholds (Smith
et al., 2021; Zhang and Liu, 2020).
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Tissues such as neurons, muscles, lungs, and cardiac myocytes
exhibit conductivities ranging from 0.03 to 0.6 S/m (You et al.,
2011; Zarrintaj et al., 2018). Consequently, tissue-engineered
scaffolds incorporating conductive fillers are anticipated to
enhance tissue regeneration (Jin and Li, 2014). Conducting
polymers and polymer composites containing nanoparticle
additives have been employed to create electrically conductive
scaffolds (Gajendiran et al., 2017; Ghasemi-Mobarakeh et al.,
2011). Conducting polymers, such as polypyrrole, polyaniline,
polythiophene, and poly (3,4-ethylenedioxythiophene), have
been developed for neural tissue engineering applications.

However, these polymers are not ideal for in vivo applications
due to challenges with fracture toughness and prolonged toxicity
(Balint et al., 2014). An alternative approach involves using
biodegradable and biocompatible polymers mixed with
conductive fillers. The two primary types of conductive fillers
are carbon-based nanofillers and metal particles. These
additives possess excellent electrical properties and low toxicity,
making conducting polymer-nanoparticle composites desirable for
applications such as peripheral nerve tissue and cardiomyocyte
regeneration (Kaur et al., 2015). Table 1 provides a summary of the
polymers, functionalization methods, and composite properties.

FIGURE 3
Chemical structures of biodegradable polymers.

TABLE 1 Summary of conducting and non-conducting polymers, functionalization methods, and composite properties.

Polymer Type Functionalization
method

Individual
properties

Composite properties References

Polyaniline
(PANI)

Conducting Phytic acid doping High conductivity, brittle Enhanced flexibility,
biocompatibility

Biglari and Zare (2024), Khan
et al. (2024)

PEDOT: PSS Conducting DMSO treatment Conductive, water-soluble Improved conductivity, stability Luo et al. (2024), Nezakati
et al. (2018)

Polypyrrole
(PPy)

Conducting Hyaluronic acid High conductivity, low
elasticity

Biodegradable, biocompatible Thirumalai et al. (2024)

PCL Non-
conducting

Carbon nanotubes (CNTs)
blending

Biodegradable, low
conductivity

Conductive, mechanically robust Jiang et al. (2006)

PLA Non-
conducting

Graphene oxide blending Biocompatible, brittle Enhanced mechanical strength,
conductivity

Silva et al. (2018)

PPy Conducting PEG surface modification Hydrophobic Hydrophilic, biocompatible Qazi et al. (2014)

PEDOT Conducting Collagen coating Conductive, mechanically
weak

Improved cell adhesion,
biocompatibility

Sarvari et al. (2017)

Polyurethane
(PU)

Non-
conducting

Silver nanoparticle incorporation Elastic, non-conductive Antibacterial, conductive Nezakati et al. (2018)

Polythiophene Conducting Doping with FeCl3 Semi-conductive Enhanced conductivity, thermal
stability

Yuk et al. (2020)

Chitosan Non-
conducting

Crosslinking with genipin Biocompatible, poor
mechanical strength

Improved mechanical strength,
biodegradability

Kohestani et al. (2024)
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The conductivity of composites made from polymers and
conductive fillers is determined by the formation of conductive
pathways created by the dispersion of fillers throughout the polymer
matrix (Brigandi et al., 2014). The quantity of nanoparticle additives
presents in the polymer matrix, along with their structure and
inherent properties, significantly impacts the creation of
conductive paths. Furthermore, achieving a homogeneous
distribution of nanoparticle additives within the matrix requires
effective interactions between the additives and the matrix. As the
amount of conductive filler increases, the conductivity of polymer-
based composites initially rises gradually, as illustrated in Figure 4.
When the conductivity reaches the percolation threshold, it
increases sharply and eventually reaches a maximum value (Kaur
et al., 2015; Gurunathan et al., 2013). A continuous conductive
pathway forms throughout the composite once the concentration of
conductive filler exceeds the percolation threshold. Nanoparticle
fillers with a high aspect ratio (length-to-diameter ratio) have been
shown to enhance the electrical properties of polymer-based
composites (Gurunathan et al., 2013; Crowder et al., 2013).

Carbon nanotubes (CNTs) are hollow nanostructures made
of carbon atoms, renowned for their exceptional electrical and
mechanical properties. Crowder et al. developed electrospun
PCL/CNT composite scaffolds for heart tissue regeneration,
achieving the highest conductivity (0.035 S/cm) with the
addition of 3 wt% CNTs. The differentiation of human
mesenchymal stem cells in these scaffolds was found to be
influenced by substrate conductivity under DC electrical
stimulation (Crowder et al., 2013). Similarly, Zhou et al.
created PCL/CNT composite scaffolds for nerve tissue
regeneration. Compared to plain PCL scaffolds, the conductive

PCL/CNT composite scaffolds significantly improved the
proliferation and differentiation of PC-12 cells. Moreover,
electrical stimulation enhanced both cell proliferation and
neuronal expansion, as well as intercellular connections,
suggesting its potential use in nerve regeneration (Zhou et al.,
2018). Additionally, the incorporation of nanoparticles was
observed to reduce the polymer’s elastic modulus. Higher
weight loss, as shown in Figures 5, 6, corresponded to faster
polymer degradation.

FIGURE 4
Percolation curve of conductive filler in a polymer matrix.

FIGURE 5
Degradation of polymer with and without nanoparticle.
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For biomedical applications, reduced graphene oxide (rGO)-
filled polymer-based composites have recently garnered significant
interest. Sayyar et al. synthesized PCL/rGO composite materials by
combining solvents and covalently bonding PCL to rGO. This
approach achieved improved conductivity with a smaller amount
of rGO compared to solvent mixing alone. The mechanical
properties of the PCL/rGO composites were also enhanced due
to the uniform distribution of rGO within the polymer matrix
(SayyarS et al., 2013). Similarly, Shin et al. developed gelatin
scaffolds reinforced with rGO for cardiac tissue engineering using
covalent bonding. The addition of rGO significantly enhanced both
the electrical conductivity and mechanical properties of the
scaffolds. These gelatin/rGO composite hydrogels supported
excellent cardiomyocyte viability, proliferation, and maturation.
Furthermore, cells cultured on gelatin/rGO hydrogels exhibited
stronger contractility and faster spontaneous beating compared to
those cultured on gelatin-only hydrogels (Shin et al., 2016). Gold
nanoparticles, renowned for their exceptional properties in
nanomedicine, are widely utilized in imaging, theranostics, and
controlled drug delivery due to their ease of synthesis,
customizable morphologies, physicochemical properties, and
biocompatibility (Chen et al., 2016; Vial et al., 2017). Their low
resistivity makes them ideal for incorporation into polymer matrices
for various biological applications. Navaei et al. developed gelatin/
gold nanorod composite substrates for heart regeneration using
solvent mixing and photo-crosslinking techniques. The
incorporation of gold nanorods significantly enhanced the
composite’s electrical conductivity and mechanical properties.
The conductive gelatin/gold nanorod composite hydrogel
demonstrated excellent retention, spreading, and distribution of
cardiac cells, as well as improved cell-cell interactions and
coordinated tissue-level beating activity (Navaei et al., 2016). The
development of functional heart tissue on the conductive surface
was further advanced using PCL-gelatin/gold nanoparticle
composite fibrous scaffolds (Shevach et al., 2013).

Electrical stimulation of cells and tissues is possible with
electrically conductive polymer-based composites. Electrical

stimulation effectively directs, controls, and isolates cellular
responses, encouraging cell alignment and tissue orientation.
Promising results have been observed in fields such as cardiac
tissue engineering, wound healing, and nerve regeneration, both
with and without electrical stimulation, when using electrically
conductive polymer-based composites. However, challenges such
as long-term toxicity and the non-degradability of conductive fillers
remain significant obstacles for future applications.

1.3.2 Polymer/antibacterial particle composites
Biomedical implants are highly susceptible to bacterial

infections during surgery. Bacterial adhesion to implanted devices
can lead to the development of biofilms, which are difficult to
eliminate and can result in patient recovery failure (Lichter et al.,
2009; Sun et al., 2015; Vasilev et al., 2009). Implant-related bacterial
infections can occur during the implantation process or maymigrate
from the patient’s bloodstream or an adjacent infection site
(Katsikogianni and Missirlis, 2004). Therefore, it is critical to
develop biological materials with antibacterial properties.
Antibacterial particles have been incorporated into various
polymer-based composites (Johnson and Garcia, 2015).
Commonly used nanoparticles effective against antibiotic-
resistant bacteria include silver, magnesium oxide (MgO), and
zinc oxide (ZnO) nanoparticles (Yun’an et al., 2018; Zare and
Shabani, 2016; Vimala et al., 2009).

Silver nanoparticles (Ag NPs) exhibit antibacterial effects
through two primary mechanisms: interacting with cellular
components and biomolecules, such as enzymes, lipids, and
DNA, or directly binding to bacterial cell membranes, causing
leakage of cellular contents. When developing biocompatible
polymer/Ag NP composites with antibacterial properties, it is
important to note that silver’s toxicity to tissue cells is dose-
dependent. In a study by Fortunati et al., PLGA/Ag NP
composite films began to degrade after 25 days of incubation in
PBS at 37°C, resulting in weight loss. This degradation was
accompanied by increased Ag⁺ release, likely due to enhanced
water absorption and subsequent Ag oxidation. Electrospun Ag
NP composite scaffolds were fabricated with Ag loadings of 0.5 mg
and 1.0 mg per Gram of scaffold (Fortunati et al., 2011). The
scaffolds were evaluated for biocompatibility with human
epidermal keratinocytes and antibacterial activity against
Staphylococcus aureus and Escherichia coli. Both scaffolds
effectively inhibited bacterial growth, although the scaffold with a
higher concentration of silver nanoparticles exhibited toxicity to
keratinocytes (Samberg et al., 2014).

In vascular tissue engineering, Madhavan et al. developed
electrospun PCL/Ag NP composite scaffolds. Scaffolds containing
0.1 wt% Ag NPs demonstrated antibacterial properties without
harming endothelial cells (Madhavan et al., 2010). Bakhsheshi-
Rad et al. fabricated electrospun PCL/MgO-Ag composite
nanofibers for coating biodegradable Mg alloy implants. These
nanofibers, containing one to three wt% MgO and 1 wt% Ag,
effectively inhibited the growth of E. coli and S. aureus
(Bakhsheshi-Rad et al., 2019). Rodríguez-Tobas et al. created
electrospun ZnO nanoparticle composite scaffolds and observed
that the inclusion of 3 wt% ZnO improved the scaffolds’ tensile
strength, toughness, and Young’s modulus. Scaffolds containing
more than 1 wt% ZnO also exhibited antibacterial effects

FIGURE 6
Reduction of elastic modulus of polymer with and without
nanoparticle.
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(Rodrigues-Tobias et al., 2014). Both MgO and ZnO generate
reactive oxygen species, which contribute to lipid peroxidation
and bacterial membrane disruption (Krishnamoorty et al., 2012;
Tiwari et al., 2018).

1.3.3 Composite blends
Biodegradable conducting polymer-based composites are

developed by blending biodegradable polymers with conducting
polymers. In this approach, the electroactivity and conductivity of
the composites are provided by the conducting polymers, while
biodegradability is contributed by the biodegradable polymers
(Huang et al., 2003; Xie et al., 2010; Xue et al., 2017). A few
synthetic biodegradable aliphatic polyesters, including poly
(lactic-co-glycolic acid) (PLGA), poly (lactic acid) (PLA),
polycaprolactone (PCL), and polyurethane, have been effectively
combined with polypyrrole (PPy) to create polymer composites with
biodegradable properties (Lee et al., 2009b; Kenry, 2017; Liu et al.,
2016). The addition of PPy to these biodegradable polymer
composites has been shown to significantly enhance their
electrical conductivity. For instance, coating PLGA nanofibers
with PPy reduced their inherently high electrical resistivity from
approximately 1.1 × 10−5 to 1.4 × 10-4S/cm (Lee et al., 2009b).
Additionally, incorporating PPy nanoparticles into insulating PLA
nanofibers improved the surface conductivity of PPy-PLA
composites. In an in vitro study conducted in phosphate-buffered
saline (PBS) at 37°C over 12 weeks, an increase in the concentration
of PPy nanoparticles led to a gradual rise in the weight loss of the
PPy-PLA composite nanofibers, from 14% to 24%. Furthermore, a
biodegradable silk-PPy composite film was developed, where the
degradation profile of the silk substrate significantly influenced the
disintegration behavior of the composite film (Zhou et al., 2016;
Romero et al., 2013; Jia et al., 2016). Functionalized polymer
composites with enhanced electrical conductivity have also been
successfully created by grafting or blending conducting polymers,
such as PEDOT and polyaniline, with biodegradable polymers (Feng
ZQ. et al., 2013; Li et al., 2014). For example, increasing the
concentration of polymerizable EDOT monomers in
biodegradable electroactive PEDOT-PLGA microfibers enhanced
conductivity, with values ranging from 7.0 × 10−2 to 2.8 × 10−1 S/cm
(Liu et al., 2016). Similarly, electroactive biodegradable hydrogels
were developed by grafting polyaniline onto gelatin and cross-
linking with genipin. These hydrogels exhibited conductivities
between 4.54 × 10⁻⁴ and 2.41 × 10⁻⁴ S/cm and demonstrated
excellent degradation properties, with significant weight loss
(50%–60%) observed after 7–14 days in an in vitro degradation
test conducted in PBS at pH 7.4°C and 37°C (Li et al., 2014).

1.3.4 Current biomedical applications
1.3.4.1 Tissue engineering and regenerative medicine

The specific benefits of enhanced electrical conductivity in
composite materials are particularly relevant in tissue engineering
applications. Conductive polymers are incorporated to mimic the
native electrical properties of tissues, facilitating cell signaling and
promoting functional tissue regeneration. While it is true that in
some engineered tissues, such as those involving cardiac and skeletal
muscle, electrical contractions can occur without incorporating
conducting polymers-owing to the presence of cells and the
extracellular matrix (ECM) that collectively support the

conduction of electrical signals there are scenarios where the
addition of a conductive polymer significantly enhances the
performance and functionality of the scaffold.

In cardiac and skeletal muscle tissue engineering, electrically
conducting polymers or composites provide a more uniform and
efficient means of transmitting electrical signals throughout the
scaffold. This is particularly important when the distribution of
cells or the formation of ECM is inconsistent, as it helps bridge gaps
in conductivity and ensures synchronized electrical activity (Liao
et al., 2021). For instance, polypyrrole or PEDOT-based composites
can enhance the propagation of electrical pulses across scaffolds
where cell connectivity is limited during the initial stages of
tissue formation.

The examples discussed in this study were based on pure
polymers to establish a foundational understanding of the
conductivity and degradation characteristics of these materials.
However, it is acknowledged that the actual composition of
engineered tissues involves a complex interplay of cells, ECM,
and scaffold materials. To address this, the study also explores
composite materials that combine conductive polymers with
biopolymers or synthetic polymers, as these better emulate the
hybrid composition of engineered tissues (Xu et al., 2020). These
composites aim to supplement the natural conductivity provided by
cells and ECM, particularly in scenarios where the conductivity of
native-like biopolymers or synthetic polymers is insufficient for
optimal tissue function.

While biopolymers such as gelatin or collagen can support cell
growth and some degree of electrical conduction, their inherent
conductivity is limited. The addition of conducting polymers
enhances the scaffold’s capacity to guide and amplify electrical
signals, particularly in electrically active tissues like the heart or
skeletal muscles. Moreover, the improved conductivity can help in
applications where rapid and synchronous electrical stimulation is
required for therapeutic purposes, such as pacing cardiac tissues or
inducing contractions in skeletal muscle constructs (Wang and
Zhang, 2019).

By addressing the interplay between native tissue components
and conductive scaffolds, this study underscores the situational
advantages of incorporating conductive polymers into engineered
tissue systems. The composites aim to enhance electrical
performance without compromising biocompatibility or
degradation profiles, ensuring their relevance to real-world tissue
engineering applications.

Conducting polymers are increasingly being explored for tissue
engineering applications due to their ability to facilitate electrical
signaling, which supports cellular growth and differentiation,
particularly in electrically responsive tissues such as muscle and
nerve. Conducting polymers, such as polypyrrole, have been used to
fabricate scaffolds that mimic the natural extracellular matrix,
providing both structural support and the capacity to conduct
electrical signals to promote tissue regeneration. These materials
have shown significant promise in applications like nerve
regeneration, where electrical stimulation plays a crucial role in
encouraging axonal growth (Guo and Ma, 2018).

1.3.4.2 Drug delivery systems
The use of conducting polymers in drug delivery has garnered

significant interest, particularly in controlled and sustained release
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systems. Conducting polymers can be used to load drugs or
biologically active compounds, with their conductivity enabling
the controlled release of these agents via external electrical
stimuli. For instance, polypyrrole and polyaniline are being
investigated for their ability to release drugs in response to
electrical fields, offering the potential for precise and localized
drug delivery in clinical settings (Pérez-Nava and Gonzalez-
Campos, 2024).

1.3.4.3 Biosensors and diagnostic devices
Another important application of conducting polymers is in

biosensors, where their electrical properties are utilized to
detect biological signals, such as pH changes, ion
concentrations, or the presence of specific biomolecules.
Conducting polymer-based sensors have been developed for
monitoring glucose levels, detecting pathogens, and tracking
cellular responses, making them valuable tools in medical
diagnostics (Bhattacharyya, 2024).

2 Conclusion

A simple and direct method for producing biodegradable
conducting polymer-based composites involves the direct mixing
of a conductive polymer with biodegradable polymers. One key
advantage of this approach is that the degradation rate and
conductivity of the resulting composites can be tailored for
specific biomedical applications by selecting the appropriate types
and ratios of polymers to be blended. The flexibility of the direct
blending method enables the combination of various conducting
and biodegradable polymers, facilitating the development of
numerous biodegradables conducting polymer-based scaffolds.
These polymeric composites have been explored for a wide range
of biological applications, particularly in tissue engineering and
regenerative medicine. This technique effectively combines the
strengths and beneficial properties of both types of polymers.
However, it is important to note that the resulting composite
may not fully exhibit the maximum conductivity and
biodegradability of its individual components. For instance, the
amount of polypyrrole (PPy) included in polymer blends is
typically minimized to preserve the overall biodegradability of the
composite, given the non-biodegradable nature of PPy.
Consequently, while the copolymers may remain biodegradable,
they may lack sufficient electrical conductivity for certain biological
applications.
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