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The sit-to-stand (STS) transition is crucial for daily activities, and it is particularly
challenging for those with physical disabilities. This paper investigates the
dynamics of muscle synergy networks during the STS transition, comparing
self-executed STS with robotic assistance. Six subjects participated in the
study, performing STS with and without robotic assistance. Muscle
coordination was assessed using electromyography data from the trunk, thigh,
and shank muscles. Non-negative matrix factorization (NMF) was employed to
extract muscle coordination patterns, revealing distinctions in the number of
synergies between self- and robot-STS. Spatial muscle synergy analysis indicated
significant differences between self- and robot-STS, emphasizing alterations in
muscle activation patterns due to robotic assistance. Detailed muscle-level
analysis highlighted specific muscles’ modulation, particularly in the shank,
thigh, and trunk regions. Network analysis demonstrated variations in
coordination network connectivity and stability between self- and robot-
assisted STS. Centrality measures identified specific muscles, such as vastus
lateralis, playing a crucial role in dynamic correlations within the muscle
synergy network during STS. The findings suggest adaptability in human
motor system responses to external assistance, with implications for refining
robotic assistance strategies to align with natural movement patterns. Future
research could involve a more diverse participant pool and explore upper-limb
support.
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1 Introduction

The sit-to-stand (STS) transition is a vital component of daily life, facilitating the shift
from a seated to a standing position. Bohannon (2015) reports that, on average, individuals
perform the STS transition 45 times daily, with this figure increasing to 71 for healthy older
individuals. Recognized as the starting point for most activities of daily living (ADL), STS is
acknowledged as one of the most challenging and mechanically demanding activities
(Yamako et al., 2017). However, individuals facing physical disabilities and unable to
execute the STS transition experience a diminished quality of life, necessitating assistance.
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Unfortunately, the escalating aging population and a shortage of
caregivers pose challenges for meeting this substantial demand.

To address this challenge, diverse assistance robots have been
developed. These robots vary in design and function (refer to
Figure 1 for visual examples of STS assistance robots) and are
primarily categorized into upper-limb support (Asker and Assal,
2019; Rea and Ottaviano, 2018; Mombaur and Ho Hoang, 2017;
Geravand et al., 2017; Rea and Ottaviano, 2016; Shomin et al., 2015;
Ottaviano et al., 2014; Asker et al., 2014; Rea et al., 2013; Burnfield
et al., 2013) and lower-limb support (Zheng et al., 2019; Shiraishi
and Sankai, 2018; Matjačić et al., 2016; Kiguchi and Yokomine,
2015). Various approaches have been explored in the development
of robotic assistance for STS, with each addressing unique challenges
and preferences. Notably, the assistance provided from the shoulder
has been deemed effective for maximal support by service robots
(Asker and Assal, 2019; Rea et al., 2013). Concurrently, trunk
support has gained popularity as a prevalent method for aiding
STS. In contrast, a distinct perspective is observed among robotics
researchers and engineers who advocate for enabling individuals to
use their own arm power to perform the STS task (Geravand et al.,
2017; Shomin et al., 2015; Burnfield et al., 2013). This divergent
approach underscores the diversity in the strategies employed to
tackle the challenges of STS assistance.

Further attention has been directed toward supporting STS from
the lower limbs, acknowledging the increased torque demand during

STS compared to walking (Mak et al., 2003). The inadequacies of
some upper-limb support robots, highlighted by their weight,
bulkiness, and maneuverability issues, have prompted a shift
toward lower-limb support (Zheng et al., 2019). This shift
encourages user participation by allowing real-time regulation of
torque outputs, fostering a more dynamic and user-engaged STS
process. In response to these challenges, innovative robotic designs
have emerged, including a wheel-chair-type robot supporting lower
limbs (Shiraishi and Sankai, 2018) and a chair-type robot developed
by Matjačić and colleagues for providing STS support services
(Matjačić et al., 2016).

When a robot supports the STS transition, the interaction
between the robot and the user becomes a crucial factor in
determining the success of the assistance. Evaluation of STS
assistance robots has thus become a prominent focus within the
field of human–robot interaction. Approaches include assessing the
center of mass calculated from a human model (Geravand et al.,
2017; Rea and Ottaviano, 2016), applying the minimum jerk
criterion of shoulder trajectory for replicating natural STS
performance (Asker and Assal, 2019), trajectory verification
through shoulder trajectory recording (Shomin et al., 2015; Rea
and Ottaviano, 2018), and studying lower-limb activities, with a
specific emphasis on knee angular displacement (Zheng et al., 2019).

In-depth investigations into various aspects of human motion,
such as ankle, knee, hip, pelvis, and trunk displacement, have been

FIGURE 1
Related works about STS assistance robots, research gap, and the concept of this study. (a) Asker and Assal (2019). (b) Rea and Ottaviano (2018). (c)
Mombaur and Ho Hoang (2017). (d)Matjačić et al. (2016). (e) Shomin et al. (2015). (f)Ottaviano et al. (2014). (g) Rea et al. (2013). (h) Zheng et al. (2019). (i)
Shiraishi and Sankai (2018). (j) Geravand et al. (2017). (k) Rea and Ottaviano (2016). (l) Kiguchi and Yokomine (2015). (m) Asker et al. (2014). (n) Burnfield
et al. (2013).
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conducted to provide a comprehensive understanding of STS
dynamics (Matjačić et al., 2016). The study of knee torque
(Zheng et al., 2019), vertical ground reaction force (Shiraishi and
Sankai, 2018; Matjačić et al., 2016), and electromyography (EMG)
analyses focusing onmuscles such as vastus lateralis, vastus medialis,
and rectus femoris (Zheng et al., 2019) contributes valuable insights
into the intricate dynamics of performing STS tasks when assisted by
a robot. Similar studies extending to multiple lower-limb muscles,
including the tibialis anterior, soleus, gastrocnemius, quadriceps,
and hamstrings, have enriched our knowledge of muscle activities
during STS (Matjačić et al., 2016).

Additionally, research efforts have extended to exploring human
intention during STS when utilizing wearable robots, employing 8-
channel EMG testing, (Kiguchi and Yokomine, 2015). Building
upon these endeavors, our previous studies have evaluated STS
assistance robots from diverse perspectives, including motion
coordination, center of mass (CoM), center of pressure (CoP),
and muscle synergy (Wang et al., 2017; Wang et al., 2018a;
Wang et al., 2018b, Wang et al., 2021). These investigations
collectively share the common theme of assessing robot
assistance from the standpoints of coordination and synergy.

Despite these advancements, a critical gap remains in the
understanding of the network of muscle synergy during STS
when assisted by healthcare robots. Given the interdependence
and varied synergies among STS-related muscles, this study seeks
to unravel the intricacies of the muscle synergy-based network
during STS transitions performed both with and without robot
assistance. The findings from this study are anticipated to offer
profound insights into the realm of human–robot interaction,
specifically for assistance robots in the context of STS.

The contributions of the present study are as follows:

• Network-based muscle synergy characterization in robotic
STS: while existing studies have focused on isolated muscle
activation patterns during STS, this work pioneers the
integration of network science with muscle synergy
analysis. By employing non-negative matrix factorization
and graph-theoretical metrics, we systematically reveal how
robotic assistance reconfigures the topological structure and
dynamic correlations within the muscle synergy network. This
approach provides a novel framework to quantify the
adaptability of neuromuscular control strategies under
external interventions.

• Spatial modulation of muscle coordination: beyond
conventional comparisons of synergy counts, this study
identifies region-specific modulation of muscle coordination
(shank, thigh, and trunk) induced by robotic assistance. The
observed hierarchical reorganization of activation
patterns—particularly the enhanced centrality of the vastus
lateralis in robot-assisted STS—uncovers compensatory
mechanics where humans prioritize proximal joint
stabilization during assisted motion.

• Design principles for adaptive robotic assistance: the study
establishes quantitative links between network-level synergy
properties (connectivity stability and node centrality) and
human–robot interaction during STS transitions. By
demonstrating that robotic assistance alters not just muscle
activation magnitude but also inter-muscular coordination

topology, our results propose a paradigm shift in assistive
robot design: rather than merely reducing biomechanical
loads, optimal assistance should preserve or enhance the
natural network properties of neuromuscular coordination.
This insight directly informs the development of human-in-
the-loop control strategies for personalized
rehabilitation robotics.

2 Methods

2.1 Subjects and experiment

Six healthy male subjects (age: 25.8 ± 2.5 y.o., height: 1.78 ±
0.02 m, BMI: 22.65 ± 3.14 kg/m2) volunteered to join in this study.
None of the subjects reported any lower-limb pathology,
neurological disease, low back pain, or use of medications that
could potentially influence their motor abilities. Approval for this
study was obtained from the Ethics Committee of the Division of
Health Science of the Graduate School of Medicine, Osaka
University ((No. 305, 20140821).

Figure 2a provides an overview of the STS support robot, as
developed in our prior work (Jeong et al., 2019). This robot is
composed of four main parts: a seat, four-bar links, a motor, and a
bottom base. The STS motion is facilitated through the vertical and
rotational movements of the robot seat. Trajectories of three
markers on the robot seat are visualized in Figure 2b. The
prototype of the robot and an illustrative example of STS
supported by the robot are presented in Figures 2c, d,
respectively.Figure 3a illustrates the experimental environment,
while Figure (b) highlights the muscles that were measured. To
assess and compare muscle coordination during STS movements
with and without robot support, two experimental conditions were
established. Participants were instructed to sit on the robot having
a seat height of 43 cm, maintaining an angle of 80° between the foot
and crus. Each participant then performed five STSs without
robotic assistance (self-STS) and five with robotic assistance
(robot-STS). This experimental design aimed to capture and
analyze the nuances in muscle coordination under both
conditions.

In both experimental conditions, eight muscular activities were
recorded, encompassing two from the trunk (upper rectus
abdominis (RA) and erector spinae longissimus (ESL)), three
from the thigh (rectus femoris (RF), vastus lateralis (VASL), and
biceps femoris long head (BFL)), and three from the shank (tibialis
anterior (TA), soleus (SOL), and gastrocnemius lateral head
(GASL)). A biological amplifier (PL3516 PowerLab
ADInstruments) with a sampling frequency of 1,000 Hz was
employed for data acquisition (Wang et al., 2021). Electrode
placement adhered to the recommendations outlined by the
surface electromyography for the non-invasive assessment of
muscles (SENIAM) (Hermens et al., 1999). Raw EMG data
underwent pre-processing, including an 80–200 Hz bandpass
filter with a zero-leg fourth-order Butterworth filter, rectification,
and a 0.2 s moving average. Singular spectrum analysis (SSA) was
employed to eliminate the electrocardiographic signal at RA and
ESL. For each subject, EMG data were normalized to the maximum
amplitude observed during ten trials (five for self-STS and five for
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robot-STS) to eliminate the possible effect of bias due to subject-
independent factors such as height and weight. Synchronization
between muscle activities and STS movements was achieved using a
force platform beneath the subject’s feet (TF-4060, Tec Gihan Co.)
with a sampling frequency of 1,200 Hz. Time was
normalized to 100%.

2.2 Muscle coordination

In the muscle coordination model, muscle activation can be
represented as a linear summation of spatiotemporal patterns,
expressed as follows:

M ≈ W1 W2 / Wn( )
C1 t( )
C2 t( )
..
.

Cn t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (1)

where M represents the muscle activity; W is the relative activation
level (spatial pattern), namely, the relative activity ratio of multiple
muscles; C represents the change in muscle activation over time
(temporal pattern), which denotes the activation profiles of each
muscle coordination; i (i � 1, 2, . . . , n) is the number of muscles;
and t represents the time.

Non-negative matrix factorization (NMF) was employed for
extracting muscle coordination (Hanawa et al., 2017). Figure 4

FIGURE 2
Overview of the STS support robot. (a) Robot overview. (b) Robot seat trajectories. (c) Robot prototype. (d) Robot-assisted sit-to-stand transition.
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shows an example of muscle coordination analysis using NMF. The
fundamental concept of NMF is to establish an optimization process
to determine the matrices W and C by minimizing the
reconstruction error e � M −WC:

argmin
W≥0,C≥0

‖M −WC‖. (2)

The variance accounted for (VAF) is subsequently calculated to
determine the number of synergies, as follows:

VAF � 1 − ∑n
i�1∑tend

t�tstart ei,t( )2
∑n

i�1∑tend
t�tstart Mi,t( )2, (3)

where i (i � 1, 2, . . . , n) denotes the number of muscles and t
represents time. The determination of the number of synergies
during STS is based on a significant difference criterion (Wang
et al., 2021). Once the number of synergies is determined, the spatial
patterns of muscle coordination (muscle activation levelW) in each
STS condition under different synergies are utilized to construct and
analyze the network.

2.3 Spatial coordination network

In this study, we utilized the graphical model to study the
relation among different muscle groups involved in coordination.
In the graphical model G � (V, E), where V represents the nodes;
in our study, nodes are the spatial pattern of muscle coordination,
and E is the edge that represents the connections between two
nodes. Make X = {xi}i�1,...q, xi ∈ χ, where x is the muscle

coordination; then, the two muscles xi and xj are connected
with an edge only if they are conditionally dependent, given the
other nodes in the network (i, j) ∈ E (Yuan and Lin, 2007). By
modeling GM for spatial muscle coordination, we can acquire a
meaningful interpretation of the network as a roadmap
containing information regarding which muscles are directly
associated under a given human–robot interaction situation.
GM can be divided into two main parts, namely, the Ising
graphical model for binary data and the Gaussian graphical
model (GGM) for continuous variables. In this study, we
mainly focused on the GGM.

The GGM is based on the multivariate Gaussian distribution
holding the following density function:

p x|μ,Σ( ) � 1

2π( )n/2|Σ|1/2 exp −1
2
x − μ( )⊤Σ−1 x − μ( ){ }, (4)

where, without loss of generality, we assume μ � 0 and define Θ as
the inverse of the covariance matrix; Θ is also called the precision
matrix. Let μ � 0, Θ � Σ−1; then, Equation 4 can be written
as follows:

p x|μ � 0,Θ( ) � |Θ|1/2
2π( )n/2 exp −1

2
x⊤Θx{ }, (5)

where if θij � 0, there is no connection between node i and j; that is,
θij � 05xi ⊥ xj|x\{xi, xj}5(i, j) ∉ E. In the GGM, by estimating
the inverse of the covariance matrix Θ, we can evaluate the network,
known as covariance selection (Dempster, 1972). The most popular
approach for solving this question is to use log likelihood using the
extended Bayesian information criterion graphical least absolute

FIGURE 3
Experiment overview. (a) Experiment environment and (b) measured muscle.
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shrinkage and selection operator (EBICglasso) (Foygel and
Drton, 2010).

The main principle of EBICglasso mainly contains two parts.
First, glasso seeks to directly maximize the log likelihood by using a
regularizer (penalty function). Second, EBIC is used to decide the
tuning parameter. The glasso algorithm takes the covariance matrix
as the input and outputs the sparse precision matrix, here Θ, which
maximizes the log likelihood, as following:

Θ̂ � arg min
Θ

ln|Θ| − tr SΘ( ) − ρ‖Θ‖1{ }, (6)

where ln|Θ| − tr(SΘ) is the log-likelihood, and ρ‖Θ‖1 is the
regularizer. Then, the tuning parameter is tested using the
following EBIC:

BICλ E( ) � −2ln Θ̂ E( )( ) + |E|log n + 4|E|λlog p, (7)
E0 � arg min

E∈ε
BICλ E( ), (8)

where E is the edge of the graph, and ln(Θ̂(E)) represents the
maximized log-likelihood function. In this study, the tuning
parameter λ was set at 0.5. The EBIC with parameter λ

0.5 selects the smallest true model E0 when applied to any subset
of all decomposable models ε containing E0.

In this study, centrality measures including degree,
betweenness, closeness, and strength were also employed to
evaluate the network (Saxena and Iyengar, 2020). The degree
indicates the number of connections incident to the node of
interest, betweenness measures the importance of the node in
the average pathway between other pairs of nodes, closeness
quantifies the relationship to all other nodes, and strength

indicates how strong a node is directly connected to other
nodes, highlighting the node’s importance.

For a given graph G(V, E), V is the node, E is the edge, n is the
total number of nodes,m is the total number of edges, ku is the total
number of neighbors of the node u, and d(u, v) is the distance
between the nodes u and v.

Then, the degree centrality CD(u) is defined as follows:

CD u( ) � ku
n − 1

. (9)

The betweenness centrality CB(u) is defined as follows:

CB u( ) � Σs≠u≠t
∂st u( )
∂st

n − 1( ) n − 2( )/2, (10)

where ∂st(u) is the number of the shortest path between the nodes s
and t, with node u acting as an intermediate node in this
shortest path.

The closeness centrality CC(u) is defined as follows:

CC u( ) � n − 1
Σ∀v,v≠ud u, v( ). (11)

The strength S(u) is defined as follows:

S u( ) � Σvwuv. (12)
To assess the stability of edges and centrality, 200 non-

parametric bootstraps were conducted with a significance level
α = 0.01 (α � 2/Nb, Nb is the bootstrap). In addition, network
similarity was evaluated using the DeltaCon comparison for two
pairs (Koutra et al., 2013).

FIGURE 4
NMF concept for muscle coordination analysis.
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2.4 Statistical analysis

The VAFs and all spatial patterns of muscle synergy were
analyzed using JASP (version 0.18.1.0, Netherlands). The
Shapiro–Wilk test was employed as the normality test, and
Levene’s test was used to confirm the equality of variances. Based
on the results of appropriate tests, non-parametric one-way and
two-way ANOVA (Kruskal–Wallis test) were used to ascertain

significant differences in VAFs and muscle synergy, respectively.
Dunn’s post hoc comparison was performed if a significant
difference was observed. The significance level was set at 5%.
Network modeling, analysis of centrality, and stability
assessments were conducted using JASP network analysis.
Network comparison was performed using MATLAB
(version R2023a).

3 Results

3.1 Spatial muscle coordination

Figure 5 illustrates the results of the VAF. VAFs for all seven
analyzed synergies in both self- and robot-STS were higher than 0.9.
According to the Kruskal–Wallis test, for self-STS, there was a
significant difference between the first and second synergy (p <
0.05); for robot-STS, there was a significant difference between the
first and third synergy (p < 0.05). Thus, the number of synergies for
self- and robot-STS was determined to be 2 and 3, respectively.

Figure 6 presents the results of spatial muscle synergy.
According to the Dunn’s post hoc comparisons, the spatial
muscle synergy exhibited a significant difference when the STS
was supported by the robot compared to self-STS, except for
GASL and ESL. In the shank muscles, for the SOL muscle, the
weight coefficients for robot-STS synergies 2 and 3 were smaller than
those for self-STS (robot 2: 0.074 ± 0.094; robot 3: 0.074 ± 0.080; self

FIGURE 5
Results of VAFs. The number of synergy is determined through
statistically significant differences.

FIGURE 6
Results of spatial muscle synergy. Data are ordered by each muscle (shown at the human model), plotted using raincloud plots. The horizontal axis
indicates different STS synergies, and the vertical axis represents the weight coefficient of spatial muscle synergy. All spatial muscle synergies are tested
using the Kruskal–Wallis ANOVA test. Dunn’s post hoc comparisons are carried out when significant differences are reported.
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1: 0.149 ± 0.135; self 2: 0.176 ± 0.202, and all p < 0.05). There was no
significant difference between self-STS and neither between robot-
STS synergies 2 and 3 compared to synergy 1. For the TA muscle,
self-STS synergy 1 had the highest weight coefficient compared to
other synergies (0.511 ± 0.436). Self-STS synergy 2 had a higher
coefficient than robot-STS synergies 2 and 3 (self 2: 0.219 ± 0.249;
robot 2: 0.183 ± 0.240; robot 3: 0.164 ± 0.223, and all p < 0.05).
There was no significant difference between self-STS, and neither
between robot-STS synergies 2 and 3 compared to synergy 1. In the
muscles at the thigh, for the RF muscle, although there was no
significant difference between self-STS, synergies in self-STS were
significantly higher than all robot-STS synergies (self 1: 0.202 ±
0.156; self 2: 0.125 ± 0.083; robot 1: 0.085 ± 0.106; robot 2: 0.105 ±

0.130; robot 3: 0.083 ± 0.095, and all p < 0.05). There was no
difference among the three robot-STS synergies. Spatial muscle
synergy 1 under self-STS at the VASL muscle was significantly
higher than all robot-STS synergies (self 1: 0.346 ± 0.288; robot 1:
0.190 ± 0.214; robot 2: 0.140 ± 0.136; robot 3: 0.180 ± 0.183, and all p
< 0.01). Self-STS synergy 2 (0.234 ± 0.202) showed a higher value
than robot-STS synergy 2. There was no difference among the three
robot-STS synergies. For the BFL muscle, robot-STS synergy 2 was
significantly lower than self-STS synergies (robot 2: 0.041 ± 0.040;
self 1: 0.086 ± 0.059; self 2: 0.138 ± 0.139, and all p < 0.01). Robot-
STS synergy 1 (0.065 ± 0.080) was smaller than self-STS synergy 1.
There was no difference among the three robot-STS synergies. For
the RA muscle at the trunk, synergy 1 under self-STS was higher
than synergy 2 and robot-STS synergy 2 (self 1: 0.577 ± 0.436; self 2:
0.166 ± 0.239; robot 3: 0.139 ± 0.179, and p < 0.001). Synergy
2 under self-STS was significantly smaller than robot-STS synergies
1 and 2 (robot 1: 0.642 ± 0.434; robot 2: 0.393 ± 0.315; and p < 0.01).
Robot synergy 1 had the highest value in the robot-STS, and robot
synergy 2 had higher value than robot synergy 3.

3.2 Muscle coordination network

Table 1 summarizes the estimated networks. The network for
self-STS synergy 2 had the most non-zero edges among all networks,

TABLE 1 Summary of the network.

Network Nodes Non-zero edges

Self-synergy 1 8 17/28

Self-synergy 2 8 20/28

Robot synergy 1 8 18/28

Robot synergy 2 8 18/28

Robot synergy 3 8 19/28

FIGURE 7
Results of the node weight matrix. Node weight is plotted with a heat map.
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FIGURE 8
Results of graphical network structures. The graphical network at the left part is plotted according to the results shown in Figure 7, and the graphical
network at the right part indicates the muscle coordination network under different experimental conditions with the muscle position.

FIGURE 9
Results of corresponding centrality indices. Data are shown as standardized z-scores.
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and the sparsity was smaller than that of other networks. Spatial
muscle synergy networks did not dramatically change for the
robot-STS.

Heat maps in Figure 7 illustrate the results of the weight matrix
for each muscle synergy network. For all synergies under both self-
and robot-STSs, the network weight between muscles 1 and 3 (SOL
and GASL) had the highest values, i.e., self 1: 0.636, self 2: 0.598,
robot 1: 0.436, robot 2: 0.592, and robot 3: 0.564, indicating that
nodes 1 and 3 hold the strongest positive correlation. The TAmuscle
at self-STS synergy 1 and all robot-STS synergies showed the highest
negative correlation between RA (self 1: –0.593, robot 1: –0.256, and
robot 2: –0.164) and GASL (robot 3: –0.192). In self-STS synergy 2,
the highest negative correlation was between BFL and RA (−0.136).
Then, the graphical network can be plotted using the node weight. In
the graphical network, each node represents one muscle, and the line
between two nodes indicates the edge, namely, the node weight. Blue
lines indicate a positive correlation, and red lines indicate a negative
correlation. Thin lines represent a weak association, and thick lines
represent a strong association. The spatial muscle synergy networks
are plotted in Figure 8.

Results of centrality of networks are plotted in Figure 9. All
measured muscle synergies showed different centrality both for self-
and robot-STSs. Muscle No. 5, VASL, showed higher betweenness,
closeness, and strength on average (all values > 0), indicating that
VASL played an essential role in the muscle synergy dynamic
correlation. Specifically, the VASL muscle was important in the
average pathway, shared the most shortest pathway from other
nodes, and had a strong direct connection to other nodes.

Figure 10 illustrates the results of edge stability. Sizable
bootstrapped confidence intervals (CIs) indicated that many edge
weights did not significantly differ from other nodes. Compared to
self-STS synergy 2 and all robot-STS synergies, the bootstrap CI in
self-STS synergy 1 was narrower, indicating higher edge-weight
accuracy in self-STS synergy 1. Edge weights between SOL and
GASL muscles were the strongest in all synergy networks. From the

top five strongest edge-weights, self-STS synergy 1 had stronger edge
stability in the thigh (RF-BFL and VASL-BFL), while self-STS
synergy 2 had stronger edge stability between the shank and
thigh (TA-RF, SOL-VASL, and GASL-BFL). In the robot-STS
synergy 1, strong edge-weight stability was found more in the
lower limbs than in the trunk. In the robot-STS synergy 2, edge
weights correlated to the trunk (ESL muscle) were stronger than that
of other nodes (RF-ESL, GAL-ESL, and TA-ESL). In the robot-STS
synergy 3, strong edge-weight stability was found at the muscles at
the shank (SOL-GASL, TA-RF, SOL-VASL, and GASL-BFL).

Figure 11 illustrates the results of centrality stability. Most
nodes’ betweenness and closeness for both self- and robot-STS
synergy did not show a significant difference from those of other
nodes. The TA muscle, with the strongest node strength, is
significantly larger than ESL.

Table 2 summarizes the network similarity results with two pairs
of comparison. As can be observed from Figure 8, no obvious
difference was observed in all networks; however, self-STS
synergy 2 and robot-STS synergy 1 showed the highest similarity
value, indicating that these two networks were the most different
compared to the other two pairs of comparison.

Self-synergy 2 exhibits more connections and lower sparsity,
suggesting stronger node communication. On the other hand, there
is not much difference between robot synergies, indicating that the
synergy connections did not change significantly during robot use.
However, they are slightly less sparse than self-synergy 2, possibly
due to the strategy of robot assistance. In summary, the network
analysis shows an increase in the edge density and a decrease in the
sparsity. Higher sparsity indicates weaker node communication.

4 Discussion

The study delves into the intricate dynamics of muscle synergy
networks during the STS transition, comparing self-executed STS

FIGURE 10
Results of bootstrapped confidence intervals of edge weights. Black lines represent the mean value after bootstrap, red lines indicate the sample
value, and gray areas are the bootstrap CIs. Data are ordered from the edge with the highest edge-weight to the edge with the lowest edge-weight.
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FIGURE 11
Results of Centrality Stability with bootstrap difference tests (α = 0.01). (a) Self-STS Synergy 1, (b) Self-STS Synergy 2, (c) Robot-STS Synergy 1, (d)
Robot-STS Synergy 2, (e) Robot-STS Synergy 3. First column is betweenness, second column is closeness, third column is degree. Black boxes indicate
nodes or edges that significantly differ from one other, gray boxes represent nodes or edges that do not significantly differ from one other, white boxes
show the value of strength. Data are ordered from the muscle with the highest degree strength to it with the lowest degree strength.
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with robotic assistance. The primary aim is to contribute insights
into the human–robot interaction domain, specifically within the
context of STS assistance. The results of this study shed light on key
aspects of muscle coordination, spatial synergy, and network
properties during STS under different conditions.

The examination of VAF in both self- and robot-assisted STS
revealed high VAF values for all seven synergies, signifying effective
coordination of muscle activities in both scenarios. Notably, the
determination of the number of synergies revealed distinctions
between self-STS and robot-STS, with two synergies identified for
self-executed STS and three for robot-assisted STS. This finding
implies nuanced variations in muscle coordination strategies when
individuals perform the STS task with and without robotic support.

Spatial muscle synergy analysis further underscored the impact
of robotic assistance on muscle coordination. Significant differences
in spatial muscle synergy between self-STS and robot-STS
conditions were observed, indicating alterations in muscle
activation patterns induced by the assistance provided by the
robotic system. These findings contribute valuable insights into
the adaptability and modulation of muscle coordination in
response to external assistance during the STS transition.

Detailed analysis at the muscle level provided a comprehensive
understanding of the impact of robotic assistance on specific muscle
groups. At the shank muscles (SOL and TA), differences in weight
coefficients between self-STS and robot-STS synergies underscored
the modulatory effect of robotic assistance on lower-limb muscles.
Similarly, at the thigh muscles (RF, VASL, and BFL), the study
revealed significant differences in synergy values, emphasizing the
intricate adjustments in muscle activation induced by robot
assistance. The examination of trunk muscles (RA and ESL)
further highlighted the differential impact of robotic assistance
on muscle synergies. Synergy 1 under self-STS exhibited higher
values than synergy 2 and robot-STS synergy 3 in the RA muscle,
emphasizing the role of robotic assistance in altering trunk muscle
activation patterns.

The network analysis provided a holistic view of the muscle
coordination dynamics during STS. The construction of muscle
coordination networks revealed variations in the number of non-
zero edges, with self-STS synergy 2 exhibiting the most extensive
connectivity. The analysis of edge stability indicated differences in
the robustness of edge weights, emphasizing the distinct stability
profiles of self-executed and robot-assisted STS synergies. Centrality
measures further highlighted the importance of specific muscles,
with VASL demonstrating higher betweenness, closeness, and
strength on average. This suggests the critical role of VASL in

facilitating dynamic correlations within the muscle coordination
network during the STS transition.

The findings of this study have implications for the design and
implementation of robotic assistance in STS tasks. The observed
variations in muscle coordination patterns and network dynamics
underline the adaptability of the human motor system to external
assistance. Understanding these adaptations is crucial for refining
robotic assistance strategies to align with natural human movement
patterns. The identification of specific muscles, such as VASL, as
central nodes in the synergy network highlights potential targets for
enhancing the effectiveness of robotic assistance. Tailoring
assistance strategies to leverage the centrality of key muscles
could lead to more intuitive and user-friendly robotic systems.

While this study provides valuable insights, certain limitations
should be acknowledged. The sample size is relatively small, and the
study focused on healthy male subjects. Future research could
explore a larger and more diverse participant pool, including
individuals with varying levels of mobility and potential users of
robotic assistance. Janssen et al. identified three primary factors
influencing STS performance: subject-related factors (e.g., age and
medical condition), chair-related factors (e.g., chair with or without
armrest), and strategy-related factors (e.g., speed and arm use)
(Janssen et al., 2002). In this study, all participants performed the
STS transition at their self-selected comfortable speed for both self-
STS and robot-STS conditions. However, to the best of our
knowledge, no studies have specifically investigated whether
variations in STS speed influence the muscle coordination
network. Understanding the impact of different STS speeds on
muscle coordination patterns presents an interesting avenue for
future research. Additionally, the study primarily focused on lower-
limb robotic assistance during STS. Exploring the nuances of upper-
limb support and diverse robotic designs could contribute to a more
comprehensive understanding of human–robot interaction in
STS tasks.

5 Conclusion

In conclusion, the presented findings contribute to the growing
body of knowledge in the field of human–robot interaction,
shedding light on the intricate dynamics of muscle coordination
networks during the STS transition. The study opens avenues for
further research and refinement of robotic assistance strategies to
enhance the quality of life for individuals facing challenges in
performing daily STS tasks.
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