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Introduction: In the field of human action recognition, the fusion of multi-modal
data from RGB and inertial modalities provides a valid technique for identifying
activities of daily life and falls.

Methods: Our approach uses two reference datasets: UR-Fall Detection and
UMA_Fall Detection for ADL and Fall Events. First, data preprocessing is
conducted for each sort of sensor individually, then the signals are windowed
and segmented properly. Key features are then extracted, where from RGB data
we get 2.5D point clouds, kinetic energy, angles, curve points, ridge features, and
inertial signals, giving GCC, GMM, LPCC, and SSCE coefficients. The second
method employed is Adam to improve the discriminant of the chosen features.
For classification, we employed a Deep Neural Network (DNN) for ADL and fall
detection over the UR-Fall dataset and the UMA_Fall dataset.

Results: The classification accuracy achieved on the UMA_Fall dataset is 97% for
ADL activities and 96% for fall activities, while for the UR-Fall dataset, it is 94% for
ADL activities and 92% for fall activities. This diversified classifier setting
compensates for the variety of data and optimizes the system for
differentiating between ADL and fall events.

Discussion: The above system provides outstanding results in recognizing these
activities on both datasets and illustrates that the multimodal data fusion can
boost the human activity identification system for health and safety purposes.
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1 Introduction

RGB and inertial sensor fusion has become a critical aspect of
human action recognition in monitoring precise ADLs and accurately
identifying falls (Padha et al., 2023). ADL surveillance also offers
valuable functional health information, whereby mobility shifts
suggesting impaired health, poor balance, or a higher risk of falling
can be identified at an early stage (Das, 2024; Kumar et al., 2021;
Mekruksavanich and Jitpattanakul, 2024). Falls are a common issue for
elderly people, and recently it has been discovered that almost 28%–
35%of people who are 64 years or older experience at least one fall every
year. This puts a lot of pressure on health systems and raises severe
dangers if medical assistance is not sought (Kakara et al., 2023). Falls are
detected with the help of wearable devices, and due to progress in
technological and sensor systems, alarms are received rapidly without
significant cost expenditure (Wang et al., 2023).

Our research further extends these innovations by using the UR-
Fall Detection and UMA_Fall Detection datasets with RGB and inertial
data to enhance the classification between ADLs and falls. DNNs have
been reported to provide reliable predictions on sequential data,
particularly those with temporal characteristics, such as activity
recognition. For instance (Keskin et al., 2020) employed DNNs to
analyze daily gait tasks, including standing, sitting, and walking, using
kinematic data obtained from sensors placed on the pelvis and spine.
Their work demonstrated that DNNs are capable of handling temporal
dependencies in sequence-based datasets, making them ideal for
tracking postural stress and spinal motion. Similarly, (Fridriksdottir
and Bonomi, 2020), used accelerometer data for activity recognition,
showcasing the flexibility of DNNs in addressing variations in sensor
inputs over time. As the datasets in this study are temporal rather than
stationary, the ability of DNNs to model temporal patterns makes them
a suitable and efficient choice for this research.

Deep Neural Networks (DNNs) are particularly effective in
multimodal sensor fusion tasks, achieving state-of-the-art results in
activity recognition, as shown in prior studies (Hossain et al., 2023). To
achieve accurate classification, we implemented a DNN model, with
both datasets undergoing systematic preprocessing, segmentation, and
feature extraction. Key features include 2.5D point clouds, kinetic
energy, angles and full-body curve, and full-body ridge. For inertial
sensors, we extracted Gammatone Cepstral Coefficients (GCC) and
Linear Predictive Cepstral Coefficients (LPCC). The robustness of the
DNN is demonstrated by its ability to generalize effectively across
datasets with diverse data distributions and feature variations. For
example, the classification accuracy on the UMA_Fall dataset is 97%
for ADL activities and 96% for fall activities, while on the UR-Fall
dataset, it is 94% for ADL activities and 92% for fall activities. These
results highlight the system’s effectiveness in addressing contextual
nuances between datasets.

To enhance feature discrimination, we applied the Adam optimizer
(Afsar et al., 2023), which further refines the DNN’s performance.With
the help of this proposed multimodal approach, the accuracy of our
system is high for recognizing ADLs and fall events. On the basis of
continuous healthmonitoring and support for elderly care applications,
the field of human action recognition is improved.

• This paper presents a novel feature extraction approach that is
specific to RGB and inertial data to achieve optimal
recognition rate of ADL and falls using Adam and

improvement of discriminant analysis of key features
comprising of the 2.5D point clouds, kinetic energy, and
inertial coefficients.

• For the UR-Fall and UMA_fall dataset, feature-specific DNN
classifier for ADL detection and fall detection is used. This
classifier diversity provides the highest system reliability when
working with different datasets.

• By integrating multimodal data from RGB and inertial
sensors, the system captures both visual and motion-based
information, offering a more comprehensive analysis of
human activities and advancing the capabilities of fall and
ADL detection frameworks.

• Preprocessing and segmentation techniques are applied to
both RGB and inertial data streams, standardizing the
input and reducing noise, which contributes to consistent
feature extraction and robust performance across varied
sensor orientations and settings.

• The research demonstrates the effectiveness ofmultimodal sensor
fusion in healthcare applications, particularly in continuous
health monitoring for elderly care, addressing the dual need
for precise ADL monitoring and rapid fall detection.

2 Literature review

2.1 Wearable healthcare monitoring systems

Real-time monitoring of physiological signals is facilitated by
wearable healthcare devices for self-management and earlier
diagnosis (Di Nuzzo et al., 2021; Kumar, 2024). Some recent
research has built upon this space using miniaturized and low-
cost designs. Zhuofu et al. (2023) refer to low-cost sensors in terms
of the benefits of monitoring heartbeat and temperature using them,
despite highlighting multisensor integration and real-time
sensitivity issues. Antony (2024) highlight biosensors’ diagnostic
capabilities in the absence of conventional bioreceptors, mentioning
data variability and security concerns. Arunkumar et al. (2023)
investigate post-intervention care through wearables for expedited
discharges and streamlined use of resources. Wu et al. (2024) suggest
self-powered wearable devices using a nanogenerator, minimizing
battery requirements while constrained by portability. These works
point toward hybrid, low-cost and real-time wearable devices.

This system builds upon this trend by combining RGB video and
inertial sensors for multimodal fusion to increase reliability in
activity recognition and fall detection.

2.2 MEMS healthcare monitoring systems

MEMS technology enhances diagnostic and monitoring capabilities
due to its compactness and sensitivity (Abdulaziz et al., 2021; Liou, 2019;
Haus et al., 2022; Shukla et al., 2022) explore MEMS microcantilever
arrays for environmental health monitoring, while (Pothala et al., 2024)
highlight the potential for miniaturized and biocompatible devices for
cancer diagnostics and neurotransmitter monitoring. Moise et al. (2023)
suggest a remote healthcare monitoring system for patients and
healthcare professionals. It augments real-time decision-making and
relieves hospital burden. Infrastructure reliability and data handling in
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high-volume environments, however, remain under researched. Padha
et al. (2023) discuss wearable smart sensors based on MEMS/NEMS
technologies, and particularly those embedded in fabrics for real-time
tracking of vital signs. Such sensors promote convenience and
portability, although durability, signal integrity, and ease of
integration in textiles remain research issues. According to Vaibhavi
et al. (2017), the usage of BioMEMS is promising for precision surgery
and drug delivery while more investigation is needed for other
applications, including those of microneedle patch and stent
production. Despite the progress made to demonstrate the utility of
MEMS in the field of healthcare, cost factors, infrastructure, and the
problem of design constraints continue to pose real challenges inMEMS
implementation. (Khan et al., 2021). also, discuss MEMS sensors in
pandemics including COVID-19 diagnostics. Based on this application,
it is unique to see how MEMS technology can be employed in remote
diagnostic and treatment, particularly useful during a
healthcare emergency.

In all, these studies validate the healthcare transformation
potential of MEMS and nanotech while reflecting existing
constraints—complexity of integration, scalability of systems,
regulatory adherence, and data security. Closing these gaps is
essential for achieving successful deployment of these
technologies to healthcare environments.

2.3 ECG, EMG, and EEG healthcare
monitoring systems

Continuously monitoring biomedical signals by ECG, EMG, and
EEG is paramount for neurological and cardiovascular diagnostics (Li
et al., 2022). A system based on IoT for continuous monitoring of
biosignals using ESP32 is offered by (Chakole et al., 2024; Nsugbe et al.,
2023) compare and contrast modalities for surgery, reporting ECG’s
high precision. Bhatlawande et al. (2024) explored multimodal fusion
for psychiatric rehabilitation use and found fusion to still be intricate.
EMG and ECG signals are utilized by Byeon et al. (2022) in secure
biometric systems and disease diagnosis using CNN, without inclusion
of EEG. Bhasker et al., 2022 offer a wireless bio-signal system using dry
electrodes to make it highly portable, at the expense of longevity.

The proposed system significantly extends these efforts by
integrating multimodal data fusion techniques, combining RGB
and inertial sensor features for a more holistic view of patient
activity. This approach addresses the privacy, security, and fusion
challenges of single-modal systems, ensuring robust classification
across heterogeneous data.

2.4 Video healthcare monitoring systems

Healthcare monitoring through video has greatly advanced
possibilities in the observation of patients at a distance, in patients’
psychological state, and in the care of elderly people with using both
online and offline analysis possibilities (Hadjar et al., 2020; Eswaran
et al., 2024; Gabriel et al., 2024) offer an AI-powered video monitoring
system for real-time hospital behavior monitoring, fall detection, and
role identification. Its precision is accurate, yet its performance is subject
to diverse camera configurations and finite dataset variety. Patel and
Biradar (2024) attain 88.60% accuracy in recognizing behavior based

upon HOG, Optical Flow, and SVM in IP webcam and thermal video,
although the specific use within the system of recognizing autistic
children restricts scalability. Lavanya et al. (2024) propose facial
recognition and voice-aided non-intrusive monitoring for
Alzheimer’s patients. In improving comfort, its use of vision-based
monitoring can overlook meaningful events. Rani et al. (2024) offer an
integrated IoT-AI-ML system for predictive diagnosis and healthcare
management, while noting infrastructure requirements and system
integration issues. Wang et al. (2024) demonstrate contactless vital
sign monitoring using video in ICUs and assisted-living units. Despite
their advantages, video-based systems face challenges in precision and
data privacy.

While video-based systems are noninferior to direct observation
through being non-invasive and continuous, these systems need further
enhancement in terms of precise detection and challenges in data
confidentiality. The proposed system surpasses these limitations by
integrating RGB video data with inertial sensor signals, improving
detection accuracy through innovative features like 2.5D point clouds,
body ridges, and kinetic energy metrics. This hybrid approach enables
precise fall detection and healthcare monitoring, ensuring enhanced
privacy and adaptability across diverse healthcare scenarios.

2.5 Human gait dynamics and
human–exoskeleton interaction

Recent work emphasizes the importance of human-exoskeleton
coupling for rehabilitation and mobility. Cheng et al. (2024) propose
a nonlinear interaction model using neural networks and GPR for
force prediction. Peng et al. (2023) integrate adaptive control with
dynamic modeling to minimize tracking errors in exoskeletons.
Mosconi et al. (2024) assess EMG responses under varying
assistance modes, highlighting the need for personalized control.
Yan et al. (2023) use damped-spring models to simulate elastic
interaction, optimizing comfort and feedback.

These studies underline the relevance of multimodal dynamics.
Our system builds on this by capturing comprehensive body
movement using hybrid sensor fusion, applicable to both
rehabilitation and assistive technologies.

3 Materials and methods

3.1 System methodology

The proposed system processes multimodal data from RGB video
and inertial sensors to classify Activities of Daily Living (ADL) and falls,
evaluated using UR-Fall and UMA_Fall datasets. RGB data was
denoised with a bilateral filter and converted to grayscale for
silhouette extraction, while inertial data was filtered using a Kalman
filter. Inertial sensors were segmented using Hamming windows for
temporal consistency. FromRGBdata, skeletal keypoints were extracted
to compute geometric features like triangles, along with 2.5D point
clouds, kinetic energy, and body ridges. Inertial features such as LPCC,
GMM, SSCE, and GCC coefficients were derived from windowed
signals. Features from both modalities were fused via a common
column approach, optimized using the Adam optimizer, and
classified using a Deep Neural Network (DNN). The system
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demonstrated high accuracy in distinguishing ADL and falls, validating
the effectiveness of multimodal data fusion. Figure 1 outlines the system
architecture used to classify activities of daily living (ADL) and falls by
integratingmultimodal data fromRGB videos and inertial sensors. Each
module is represented to demonstrate the preprocessing, feature
extraction, fusion, and classification stages.

3.2 Sensors filtration and noise removal

This stage involves preprocessing the inertial data with a Kalman
filter to enhance the signal and eliminate extraneous noise from the
raw accelerometer data. Kalman filter is utilized as best estimator
which decreases the mean square error and delivers the present
status working from past observation. This guarantees that the signal
parameters in noisy data are well retrieved. The filtering is applied to
each axis (X, Y, Z) of the accelerometer data, as specified by the state-
space model (Equation 1):

xk � A · xk−1 + wk, zk � H · xk + vk (1)
In this context, xk denotes the current state of the signal, zk

measured observation at time k, A represents the state transition
matrix (how the system evolves),H indicates the observation matrix
(how we observe the state), andwk and vk correspond to process and
observation noise (random variations), respectively. Filtered signals
for each axis are subsequently stored for further analysis. Figures
2a,b depict the raw and filtered inertial signals for ADL and fall
activities over the UMA_Fall dataset, respectively. A similar
representation is shown for the UR-Fall dataset in Figures 2c,d
for ADL and fall activities, respectively. The Kalman filter effectively
suppresses noise while preserving critical signal characteristics,
enhancing the clarity of activity transitions.

For visual sensor data, the system processes the video stream into
individual frames for analysis. All subsequent calculations rely on
individual images, not the entire video, necessitating this step. First,
RGB frames were converted into grayscaled frames and then bilateral
filter preprocess the frames to eliminate noise, thereby facilitating
further analyses. The bilateral filter is a non-linear picture smoothing
filter that keeps edge information by giving pixels’ different weights
based on how far apart they are and how bright they are. We can
mathematically represent the bilateral filter as shown in Equation 2.

BF Ix[ ] � 1
Wx

∑
y∈S

Gσd x − y
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣( )Gσr Ix − Iy

∣∣∣∣ ∣∣∣∣( )Iy (2)

Where, Ix represents the filtered intensity value at pixel x (the
pixel being processed), Iy is the intensity value at neighbouring pixel
y, Gσd(|x − y|) denotes spatial gaussian that gives more weight to
nearby pixels, and Gσr(|Ix − Iy|) range gaussian that gives more
weight to pixels with similar intensities, respectively, σd determines
this neighborhood size σr defines the edge amplitude threshold, and
Wx is a normalization factor to keep the intensity values within
bounds. S is the set of pixels in the neighbouring around x. Figures
2e,f, illustrate the original and filtered RGB frames for ADL and fall
activities in the UR-Fall dataset, respectively, while Figures 2g,h
present the same for the UMA_Fall dataset. The bilateral filter
significantly reduces noise while maintaining sharp edges,
essential for robust silhouette extraction and downstream analysis.

3.3 Signal windowing

To segment the continuous sensor data stream into overlapping
windows, the Hamming window was used. Moreover, a window size
of 100 samples was determined to meet the trade-off between

FIGURE 1
The system architecture of proposed model.
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FIGURE 2
Subplots (a,b) show the raw vs. filtered inertial signals for ADL and fall activities in the UMA_Fall dataset, while (c,d) depict the same for the UR-Fall
dataset. Subplots (e,f) present original vs. filtered RGB frames of ADL and fall activities in the UR-Fall dataset, and (g,h) show the same for the UMA_
Fall dataset.
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acquiring necessary information of activity in addition to
acknowledging realistic constraints on computing magnitude. A
smaller window size might not catch vehicle characteristics of the
activity or other key happenings, but a bigger size might overwhelm
the system with computing expenses or smoothen transitions
between activities. A 50% overlap between consecutive windows,
equal to a step size of 50 samples, was utilized to provide smooth
transitions and continuity in the signal, a standard approach in
windowing techniques to balance signal representation and
computational complexity. The Hamming window is
mathematically defined in Equation 3.

w n( ) � 0.54 − 0.46 cos
2πn
N − 1

( ) (3)

Where, wn represents the window weight at sample index n,
N is the total number of samples in the window. This reduces
artifacts caused by sudden edges in the signal. Figures 3a,b
showcase the windowed inertial data for ADL and fall
activities in the UR-Fall dataset, respectively and Figures 3c,d
show the same for the UMA_Fall dataset. The use of a Hamming

window ensures smooth signal segmentation while retaining
activity-specific details.

To empirically establish the ideal windowing setup, an ablation
study on different window sizes and overlap rates was performed. As
Table 1 indicates, applying a 100-sample window with 50% overlap
produced the highest F1 scores on both datasets consistently. It
effectively allows for proper temporal segmentation of steady ADLs
and sudden changes during falls without sacrificing computational
tractability.

3.4 Silhouette detection and skeleton
modeling

The silhouette segmentation was performed on preprocessed
grayscale frames. First, images were converted to the grayscale
images to make minor enhancements on the foreground by
reducing noise. For human silhouettes extraction from the
foreground, Otsu’s thresholding from the output with a binary
inversion was done. This method divides the image into two

FIGURE 3
Results of windowed inertial data with (a,b) show windowed signal of ADL and fall activities over UR-Fall dataset, respectively (c,d) show windowed
signal of ADL and fall activities over UMA_Fall dataset, respectively.
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regions, foreground region also known as silhouette and background
using a pixel distinction. The thresholding procedure is
mathematically stated in Equation 4.

T x, y( ) � 255, if I x, y( )≤Totsu

0, if I x, y( )>Totsu
{ (4)

Where, T(x, y) represents the output pixel intensity at location
(x, y), I(x, y) is the grayscale intensity of the input image, and
Totsu is the threshold value determined by otsu’s method. Binary

inversion ensures that the silhouette (foreground) is white (255)
and the background is black (0). Figures 4a,c show the extracted
skeleton models for ADL and fall activities: sitting and falling
forward in the UR-Fall dataset, and climbing downstairs and
walking in the UMA_Fall dataset. Whereas Figure 4b,d show
silhouettes for walking and falling activities in the UR-fall
dataset and for climbing down and falling backward in the
UMA_fall dataset. The Otsu’s thresholding method effectively
isolates the foreground (human silhouette) from the

TABLE 1 Internal ablation study: impact of window size and overlap on F1 score.

Window size (samples) Overlap (%) UMA_fall F1 score (%) UR_fall F1 score (%) Observations

50 25 90.2 88.9 Too short for full activity capture

50 50 91.7 89.8 Slight improvement but still incomplete
transitions

100 25 94.3 92.1 Better but misses boundaries

100 (used) 50 (used) 96.2 94.1 Best overall performance

100 75 96.3 94.0 Slightly better but increases computational cost

150 50 94.1 91.5 Over-smoothing transitions

150 75 94.6 91.7 High cost, no significant gain

Bold values indicate the window sizes (100, 50) used in the proposed model and the corresponding accuracies (96.2, 94.1) achieved with these settings.

FIGURE 4
Results of skeleton modeling and silhouette extraction with (a,b) show skeleton model and silhouette extraction over ADL and fall activities of UR-
Fall dataset, respectively (c,d) show skeleton model and silhouette extraction over ADL and fall activities of UMA_fall dataset, respectively.
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background, resulting in clear binary images for further
skeletal modeling.

Moreover, Skeletonization in visual sensor data requires the
MediaPipe Pose model (Hsieh, J.-T. et al., 2021) to determine
essential body features from RGB frames. The model defines
various locations such as the head, shoulders, elbow, hip, and
knee that constitute the framework we call a skeletal model.
Extra points are earned by finding the mean between consecutive
landmarks. For instance, the neck coordinates are determined as the
midpoint between the left and right shoulders, as in Equation 5:

xneck, yneck( ) � xL1 + xR1
2

,
yL1 + yR1

2
( ) (5)

Where, xL1, yL1 are the coordinates of the left shoulder, while
xR1,yR1 denotes coordinates of the right shoulder. This gives a
central neck location based on shoulder symmetry. Similarly,
forehead coordinates are determined as the midpoint between the
top of the head and face points, as indicated in Equation 6:

xforehead, yforehead( ) � xH + xF

2
, yH( ) (6)

Where, xH, yH denotes coordinates of the head, while xF, yF

shows coordinates of the face. Connections between landmarks (e.g.,
head-to-neck, shoulders-to-hips) are shown with various hues,
increasing pose estimation and enabling applications like motion
analysis and activity detection. The models include critical body
landmarks connected by lines, facilitating detailed motion analysis
and activity recognition.

3.5 Feature extraction for inertial-
based sensor

In the feature extraction phase of our study, we focused on
extracting relevant metrics from the UR-Fall Detection and UMA_
Fall datasets that effectively represent physiological processes.
Specifically, we identified GCC, GMM, LPCC, and SSCE
coefficients as essential features due to their robustness in
capturing and describing the spectral, statistical, and temporal
complexity present in human movement during ADL and fall
activities. GCC and LPCC capture the frequency dynamics of
sensor signals; GMM models their statistical distributions; and
SSCE quantifies movement irregularity. Together, they provide
complementary insights into controlled versus abrupt activities,
which are critical for real-world fall detection. The selection
balances discriminative performance with computational
efficiency to enable deployment in practical healthcare
environments. However, the framework remains adaptable, and
future work may incorporate raw time-series modeling, energy-
based descriptors, or deep-learned representations to further
enhance classification performance.

3.5.1 Gammatone cepstral coefficients (GCC)
The Gammatone Cepstral Coefficients (GCC) give an enhanced

adaptation of standard Mel Frequency Cepstral Coefficients
(MFCC), commonly utilized in speech processing. While MFCC
efficiently collects low-frequency information, it confronts
limitations in dynamic situations and inertial sensor data due to

noise sensitivity and limited adaptability. To overcome these
restrictions, the GCC is offered in terms of cubic rather than
logarithmic operations and employs Gammatone filters in the
place of triangular ones, so it can be suitable for using human
action recognition employing inertial information. At the beginning
of our technique, the signal is partitioned into overlapping frames.
We acquire the frequency spectrum using the Fast Fourier
Transform (FFT), and then employ the Gammatone filter bank
to perform spectral filtering within 26 gammatone filters. A cubical
procedure increases the higher frequency component, which shows
the fine features of the signal. The GCC coefficients are then
transformed using the Discrete Cosine Transform (DCT) for the
summed cubic energies, and the classification is robust.
Additionally, a logarithmic scaling promotes coefficient
interpretability while maintaining sensitivity to complicated
manipulations. The GCC coefficients C′

m are calculated using
Equation 7.

C′
m � log 1 + Cm| |( ), Cm � ∑N−1

n�0
Ec n[ ] cos πm

N
n + 1

2
( )[ ] (7)

Where, Ec[n] represents the cubic energy output of the nth

Gammatone filter (i.e., Ec[n] � |H(fn) | 3). Cm is the intermediate
cepstral value obtained using DCT. M denotes index of the cepstral
coefficient.N shows the total number of filter banks. The logarithmic
scaling compresses dynamic range, improving robustness to
variations in sensor intensity. Figures 5a,b illustrate GCC
heatmaps for ADL and fall activities in the UR-Fall dataset, while
Figures 5c,d depict the same for the UMA_Fall dataset. The
heatmaps reveal distinct vertical patterns that represent spectral
characteristics, enhancing the separability of ADL and falls. This
approach provides dynamic feature extraction, employing frequency
scaling and complicated transformations for robust signal analysis,
as proven in our application to the UMA_Fall and UR-Fall datasets.

3.5.2 Gaussian mixture model (GMM)
Gaussian Mixture Model (GMM) is applied to the preprocessed

inertial data to obtain the mean, weight vectors, and covariance of
clusters N within the dataset. These parameters give a statistical
description of the signal’s underlying structure. The mean vector is
calculated using the Maximum Likelihood Estimation (MLE)
approach, while the weight vector is computed iteratively to
optimize the probability of the model. The covariance performs a
type of measure on how far apart the actual signal components have
deviated, to gain information on signal variability.

In our method, the combined X, Y, and Z-axis signals are
processed through a GMM with N = 3 components. The mean
(μ), weight (w), and covariance (Σ) of the GMM components are
retrieved as shown in Equation 8.

μi �
1
n
∑n
j�1
sj, wi � 1

N
∑n
j�1
P sj

∣∣∣∣i( ),Σi � 1
n
∑n
j�1

sj − μi( )2 (8)

Where, sJ is the signal sample, P(sj | i) represents the posterior
probability for cluster i, and n is the number of samples. Figures 6a,b
visualize the GMM components (mean, weight, and covariance) for
ADL and fall activities in the UR-Fall dataset, while Figures 6c,d
provide the same for the UMA_Fall dataset. The bar plots highlight
the statistical variability captured by the GMM across different
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activities. These extracted features produced from GMM accurately
encapsulate the mean and variance of the inertial data for
constructing a stable classification system within the UMA_Fall
and UR-Fall datasets.

3.5.3 Linear prediction cepstral coefficients (LPCC)
From inertial signals, Linear Prediction Cepstral Coefficients

(LPCC) are generated using the transfer function of the signal and
determining the first derivative over frequency bands. The LPCC, in
order to reflect signal dynamics, uses a sequence of recursive
calculations related with linear prediction coefficients a(x).The
LPCC coefficients are calculated using Equations 9, 10.

cx � ax +∑x−1
t�1

x
t

( )ctax−1,1≤x≤p (9)

cx � ax +∑x−1
t�1

x
t

( )ctax−1,p≤ x≤ d (10)

Where, cx represents the LPCC coefficient, ax is the linear
prediction coefficient, p is the prediction order, d is the total number

of coefficients, and
x
t

( ) is the binomial coefficient. These equations

recursively produce cepstral coefficients for each frame of the signal.
In this work, LPCC coefficients are retrieved for each axis with

an order of 12. The estimated LPCC features are shown as time-
series plots for the X, Y, and Z-axes, highlighting the temporal
fluctuations of the coefficients. This technique offers robust feature
extraction, as demonstrated on the UR-fall and UMA_Fall dataset.
Figures 7a,b show the temporal variation of LPCC coefficients for
ADL and fall activities in the UR-Fall dataset, while Figures 7c,d
present the same for the UMA_Fall dataset. The plots reveal distinct
patterns: falls exhibit more abrupt and irregular fluctuations
compared to the smoother transitions observed in ADL activities.
This indicates that falls are characterized by rapid, unstable
movements, which is critical for classification.

3.5.4 State space correlation entropy (SSCE)
Temporal structure and complexity of signals are examined

using SSCE to extract features from physical motion data. The time
delay is used to partition the signal into overlapping embedded

FIGURE 5
The results for GCC for (a,b) show GCC heatmap over ADL and fall activities of UR-fall (c,d) show GCC heatmap over ADL activities and fall activities
of UMA_fall dataset.
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vectors of the signal. These embedded vectors are then, in a pairwise
manner, output in the form of a distance matrix, where diagonal
terms represent the correlation of vectors to themselves and off-
diagonal terms represent vectors’ distances. We then utilize the
covariance matrix from these distances to evaluate the likelihood of
correlations, computing the SSCE as given in Equation 11.

SSCE � −log 1
M2

∑M
i�1
∑M
j�1
Θ ϵ − Xi −Xj

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣( )⎛⎝ ⎞⎠ (11)

where xi and xj are the time delay embedded vectors. ||Xi −Xj|| is
the euclidean distance, ϵ is a small distance threshold,M is the total
number of embedded vectors, and Θ(x) is the heavisible step
function. The SSCE values are generated for each window and
averaged to characterize the complexity of motion signals across
activity groups. The results are visualized as bar charts, showing the
variability in SSCE values for different activities in the UMA_Fall
dataset. This technique provides robust features for discriminating
across activity types based on signal dynamics. Figures 8a,b show the
SSCE values for ADL and fall activities in the UR-Fall dataset, while
Figures 8c,d present the same for the UMA_Fall dataset. The bar
charts highlight variability, with falls exhibiting higher SSCE values,
indicative of more complex and irregular motion patterns compared

to the controlled and repetitive movements of ADL activities. This
distinction is crucial for accurately capturing temporal complexity in
activity classification.

3.6 Feature extraction for vision-
based sensor

The feature extraction stage saw us acquire important visual
features from the UR-Fall and UMA_Fall datasets. The extracted
features—2.5D point clouds, kinetic energy, joint angles, curve
points, and full-body ridges—were selected meticulously based on
the spatial geometry capture, intensity of motion, direction and
quality of body orientation and shape changes necessary to identify
ADLs from fall activities clearly. Precisely, 2.5D point clouds capture
posture with awareness of depth and hence sudden vertical
displacements can be detected. Kinetic energy measures intensity
of frame-wise movement and assists with detection of sudden
changes. Joint angles provide insight into the coordination and
alignment of limbs and curve points and ridges provide capture of
deformities in outlines and contours particularly in occlusion or
poor illumination scenarios. Collectively, these features play
complementary roles synergistically to enable detection in diverse

FIGURE 6
Results of GMM plot (a,b) show GMM of ADL and fall activities over UR-fall dataset (c,d) show GMM of ADL and fall activities over UMA_fall dataset.
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FIGURE 7
LPCC plotted with (a,b) show LPCC plot over ADL and fall activities over UR-fall dataset (c,d) show LPCC plot over ADL and fall activities over UMA_
fall dataset.
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visual and occlusion environments typical to real-world eldercare
and healthcare monitoring environments. The current set of features
serves the dual purpose of interpretability and computational
efficacy; however, the system is extensible and can in the future
be extended to include sophisticated descriptors like optical flow, the
body’s path-wise metrics, or deep visual embeddings depending on
application needs.

3.6.1 2.5D point cloud feature
The resulting 2.5D point cloud comprises both depth, and RGB

information to allow exact spatial analysis ofmotion. From the silhouette
images collected from theUMA_Fall dataset, depth valueswere retrieved
and projected onto corresponding RGB frames and then turned into the
3D points. The depth Z was computed using Equation 12.

x
y
z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 1
d
·

u − CX( )
F

v − Cy

F
( )

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· 255

SF
· 1 − v

H
( )( ) (12)

Here, (u, v) are pixel coordinates, (Cx, Cy) are the image center
coordinates, F is the focal length. d is the depth scaling factor, SF is
the scaling factor, andH represents the image height. This approach

integrates depth from silhouettes with RGB pixel data to form point
cloud coordinates (X,Y, Z) effectively modeling body geometry and
motion trajectories for robust activity recognition. Figures 9a,b
display 2.5D point cloud representations for ADL and fall
activities in the UR-Fall dataset, while Figures 9c, d show the
same for the UMA_Fall dataset. Falls demonstrate abrupt and
uneven distributions of points, reflecting sudden posture changes,
whereas ADL activities present smoother and more uniform spatial
patterns. This representation effectively integrates spatial and depth
information, aiding in robust activity recognition.

3.6.2 Kinetic energy
Kinetic energy preserves the intensity of motion between

subsequent frames and acts as an invariant attribute for activity
detection. Using the UR-Fall dataset and UMA_fall dataset, for
smoothening binary silhouette images of differing motions in
successive frames, pixel variation was derived that mirrored the
quantitative motion dynamics using Equation 13.

KE � ∑N
i�1

It i( ) − It+1 i( )( )2 (13)

Where, It (i) and It+1(i) are pixel intensities at the same
location in frames t and t+1, andN is the total number of pixels in

FIGURE 8
SSCE plotted with (a,b) shows SSCE of ADL and fall activities over UR-fall dataset (c,d) show SSCE of ADL and fall activities over UMA_fall dataset.
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the frame. This equation adds squared pixel intensity differences
to describe differences of motion patterns between two
successively collected frames. Figures 10a,b illustrate the
kinetic energy variations for ADL and fall activities in the UR-
Fall dataset, while Figures 10c,d show the same for the UMA_Fall
dataset. Falls are characterized by sharp spikes in kinetic energy,
corresponding to moments of impact, followed by a rapid
decrease. In contrast, ADL activities exhibit smoother energy
transitions, representing steady and controlled motion. These
variations make kinetic energy a reliable feature for
distinguishing between activities.

3.6.3 Geometric feature (triangles)
Joint angles concern the positions of some segments in relation

to other segments during particular activities and, as such, supply
information regarding dynamic movements. These angles alter
based on the activity, thus boosting the action recognition
accuracy. The essential body locations allowed twelve joint angles
to be determined in this investigation. Each angle was worked out
using three pits, and consequently a triangle was involved in the
assessment of each angle. The angles were determined with the
formula below in Equation 14.

∅ � arcos
v1
→ · v2�→
v1
→∣∣∣∣ ∣∣∣∣ v2→∣∣∣∣ ∣∣∣∣( )

� arcos
xB − xA( ) xC − xB( ) + yB − yA( ) yC − yB( )��������������������

xB − xA( )2 + yB − yA( )2√ ��������������������
xC − xB( )2 + yC − yB( )2√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(14)
Here, (xA, yA), (xB, yB), and (xC, yC) are the coordinates of the

three keypoints. While, u1
�→ � (xB − xA, yB − yA) and u2

�→ � (xC −
xB, yC − yB) are the vectors connecting the first to the second and
the second to the third points. And ∅ is the angle formed at
(xB, yB). This technique guarantees precise tracking of limb
direction, facilitating action recognition tasks. Figure 11a,b depict
geometric triangles for ADL and fall activities in the UR-Fall dataset,
while Figure 11c,d show the same for the UMA_Fall dataset. The
angles and shapes of these geometric triangles provide valuable
insights into posture and limb dynamics, aiding in accurate activity
classification.

3.6.4 Full-body curve
In our research, we achieved this by capturing the complete body

contour using canny edge detection and freeman chain coding,

FIGURE 9
(a,b) show 2.5D representations for ADL and fall activities in the UR-Fall dataset, while (c,d) display the same for the UMA_Fall dataset.
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whichmade it easy to recognize the most important contour regions.
Canny edge detection enhances the edges of an object, while
Freeman’s chain coding codes the object’s contour with a specific
directed direction. The utilized eight directional vectors are shown
in Equation 15.

D � 1, 0( ), 1, 1( ), 0, 1( ), −1, 1( ), −1, 0( ), −1,−1( ), 0,−1( ), 1,−1( )[ ]
(15)

The silhouette boundary points are specified in Equation 16:

C � P0, P1, P2, . . . , Pn{ } (16)

Here, P0 is the initial point on the silhouette boundary, and the
points proceed in a clockwise direction. Each point Pi corresponds
to a move in one of the eight directions. Changes in direction along
this contour indicate curvature, and are used to detect curve points
as represented in Equation 17.

Pc � Pi| Di−1 ≠ Di( ) ∨ Di ≠ Di+1( ){ },∀i ∈ 1, n − 1( ) (17)

The detected curve points were visualized on the original
silhouette by marking every nth point for clarity. Figures 12a,b
show the full-body curve points for ADL and fall activities in the
UR-Fall dataset, while Figures 12c,d present the same for the UMA_
Fall dataset. ADL activities display evenly distributed curve points,
indicating balanced body posture. In falls, the points cluster around
areas with rapid contour changes, highlighting irregular postures.

This distinction captures dynamic body shapes and supports robust
activity recognition. This technique efficiently captures the dynamic
properties of the human body’s shape for applications in motion and
posture analysis.

3.6.5 Full-body ridge
The ridge characteristics were created from binary edge data

acquired using Hessian matrix-based processing. Depth silhouettes
were applied to extract binary edges, which were subsequently
processed using the Hessian matrix to construct second-order
derivatives. Specifically, the matrix components Ixx, Iyy and Ixy
were computed to detect curvatures in the edges, enabling ridge
detection. Ridge response was determined by assessing eigenvalues
λ1, λ2 of the hessian matrix, isolating pixels where both eigenvalues
were negative. These ridges were modeled as interconnecting
sequences of pixels, the features of structural nature. The binary
edge extraction can be mathematically expressed in Equation 18.

Rridge � pϵI
∣∣∣∣ λ1 < 0, λ2 < 0{ } (18)

Where λ1, λ2 are eigenvalues of the Hessian matrix when
computed from edge pixels. Moreover, for clear differentiation,
ridges were arbitrarily colored with random colors. The resulting
ridge data Rridge, encapsulated within binary edges, approximates
skeletal-like features for further analysis. Figures 13a,b present ridge
features for ADL and fall activities in the UR-Fall dataset, while

FIGURE 10
Kinetic energy feature results over various fall and ADL activities from the UR-Fall and UMA_Fall datasets (a,b) illustrate kinetic energy variations for
ADL and fall activities in the UR-Fall dataset, while (c,d) show the same for the UMA_Fall dataset.
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Figures 13c,d show the same for the UMA_Fall dataset. Fall activities
exhibit sharp and discontinuous ridges, corresponding to sudden
and uncoordinated movements. ADL activities, on the other hand,
have smoother and more continuous ridges, reflecting stable and
coordinated movements. These features effectively capture
structural body changes and support activity differentiation.

3.7 Feature fusion

In this work, we have used vision-based and inertial-based
sensor data to classify falls and Activities of Daily Living (ADL)
using a multimodal feature fusion method. Using Hamming
windows, inertial properties such as LPCC, GMM, SSCE, and
GCC coefficients were first extracted from segmented signals.
This process captured both temporal and frequency
characteristics. A generalized inertial model was then constructed
via intra-modality fusion. Features from the vision-based data,
including body ridges, kinetic energy, 2.5D point clouds, and
skeletal keypoints, were simultaneously recovered and
incorporated into the visual modality. Last but not least, the two
modalities were integrated by inter-modality fusion using a well-
liked column fusion technique enhanced by the Adam optimizer.
The column fusion approach entailed horizontal concatenation of
modality features, which were normalized together. All windows

were kept consistent in dimensions, and adaptive weights were
handled by the DNN model without requiring manually defined
fusion weights. To preserve interpretability and modality-specific
variance, no explicit dimensionality reduction (e.g., PCA) was
applied. Instead, feature selection and optimization were
embedded within the dense layers of the DNN, allowing the
model to learn modality interactions and eliminate redundancy.
This produced a high-level multimodal feature set for ADL and fall
classification, which was saved for further use.

3.8 Feature optimization

In this work, we employed the Adaptive Moment Estimation
(Adam) optimizer to train a Deep Neural Network (DNN) for the
classification of Activities of Daily Living (ADL) and falls. Adam
dynamically adjusts the learning rate based on the first and second
moments of gradients, computed using Equations 19, 20

mt � β1mt−1 + 1 − β1( )gt (19)
vt � β2vt−1 + 1 − β2( )g2

t (20)
where mt and vt represent the first moment (mean) and second
moment (uncentered variance) estimations, respectively, and gt

denotes the gradients at time t. These values are used in adaptive
learning rates that produce faster convergence through

FIGURE 11
Triangle feature results over various fall and ADL activities from the UR-Fall and UMA_Fall datasets for (a,b) depict triangle representations for ADL
and fall activities in the UR-Fall dataset, while (c,d) show the same for the UMA_Fall dataset.
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optimization. Using the Adam optimizer with a learning rate of
0.001 the sparse categorical cross-entropy loss was minimized. The
parameters β1 and β2, which determine how quickly the optimizer
updates its estimates for the mean and variance of the gradients, were
set to β1 � 0.9 and β2 � 0.999. These values are widely accepted in
modern optimization tasks and have consistently shown strong
performance across different machine learning problems (Schmidt
et al., 2021; Chavan et al., 2023). To ensure these settings were suitable
for the multimodal data in this study, we performed a sensitivity
analysis to confirm their stability and effectiveness. Figure 14
illustrates the optimization results for the UMA_Fall dataset. The
post-optimization visualization demonstrates improved clustering
and feature reparability compared to pre-optimization results. ADL
and fall activities formdistinct clusters, showcasing the effectiveness of
the Adam optimizer in enhancing classification performance by
minimizing feature overlaps.

3.9 Rationale for choosing deep neural
network (DNN) classifier

The choice of Deep Neural Networks (DNNs) for this research was
informed by their better ability to learn non-linear and complex
patterns in multimodal and temporally dynamic data—abilities basic

to our fused RGB and inertial sensor data. In contrast to conventional
classifiers like Support Vector Machines (SVMs), Decision Trees, and
k-Nearest Neighbors (k-NN), which frequently use manually chosen
features and have poor performances in modeling high-dimensional or
temporal data, DNNs provide automatic hierarchical feature
abstraction suitable for our heterogeneous features such as 2.5D
point clouds, kinetic energy, ridges features, and inertial coefficients
such as LPCC, GCC, and GMM. Although classical models perform
better on low-keyed or static data, their performance breaks downwhen
handling multimodal time-series data due to the inability to model
temporal correlations and inter-modality relations basic to human
activity recognition tasks. Ensemble models like Random Forests,
although good for categorization in general, do not generalize well
when feature space is non-homogeneous and temporally inconstant,
such as in the cases of ADL and fall events. In contrast, DNNs capture
such dynamics intrinsically and performed well in terms of
generalization across UR-Fall and UMA_Fall datasets, outperforming
other models such as CNN-SVM and CNN-LSTM hybrids
documented in earlier research (Modak et al., 2024; Nooyimsai
et al., 2022). In addition, integrating the Adam optimizer improved
training stability and convergence of DNN, rendering it
computationally efficient and highly accurate. In particular, DNNs
have been used effectively for similar tasks in human activity
identification by using body-worn sensors and video streams,

FIGURE 12
Full-body curve point feature results over various fall and ADL activities from the UR-Fall and UMA_Fall datasets. (a,b) show the full-body curve
points for ADL and fall activities in the UR-Fall dataset, while (c,d) present the same for the UMA_Fall dataset.
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substantiating our selection by drawing upon empirical evidence
(Fridriksdottir and Bonomi, 2020; Keskin et al., 2020; Hossain et al.,
2023). With such capabilities, DNNs represent an effective and scalable
solution for intricate healthcare monitoring platforms, especially those
demanding accurate identification of minimal-motion movements and
transitions in activities.

3.10 Classification

In our research, we used Deep Neural Network (DNN)
architecture that is designed to recognize multi-dimensional data
points obtained from wearable sensors. This design incorporates
several dense layers in the structure of the dropout, which is useful
for too many sophisticated sensor data inputs like the accelerometer
and gyroscope data. The full architectural configuration of the DNN
is detailed in Table 2. Subsequently, each layer performs increasingly
pervasively higher-order feature extraction and enables
identification of complicated correlations associated with varied
activities. The early levels remove recognized and articulated
patterns completely and involve just the fundamental intuitive
aspects of acceleration, velocity vectors, and direction. It is in this
hierarchical structure that it becomes advantageous to Filter for
vocations that have similar motion profiles but different contextual
subtleties. For this reason, the DNN is adaptable and easy to apply
globally with users, especially when other users with a different

structure are introduced. Using a wide and balanced set of activities
for the training of the network, our architecture produces both
accurate and semantically sound categorization results. Specifically,
the classification accuracy for UMA_fall ADL activities is 97%, while
for UMA_fall fall activities, it is 96%. Additionally, the accuracy for
UR-fall ADL activities is 94%, and for UR-fall fall activities, it is 92%.
During the training process, such parameters as runtime and
memory reveal that the proposed technique works nicely with
real datasets. During training, performance metrics such as
runtime and memory usage demonstrated that the proposed
model handles real-world data efficiently. To further validate the
real-time applicability of our model, we evaluated inference latency
and memory footprint on a standard computing system: Intel Core
i7-10510U (1.80 GHz), 8 GB RAM, Windows 10, using Python in
PyCharm without GPU acceleration. The model’s performance
demonstrated an average inference latency of about
13.5 milliseconds per instance and maximum memory utilization
around 310 MB when evaluated. The outcomes confirm the system
to be deployable in real-time or near real-time in healthcare-
oriented embedded environments.

4 Performance evaluation

The system in question was examined using two common
benchmark datasets. Its performance was thoroughly investigated

FIGURE 13
Full-body ridge feature representations with labeled body parts for various ADL and fall activities in (a,b) the UR-Fall dataset and (c,d) the UMA-
Fall dataset.
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by confusion matrices, precision and recall metrics, F1 scores, and
Receiver Operating Characteristic (ROC) curves, collectively
highlighting its usefulness.

4.1 Dataset description

4.1.1 UMA_fall dataset
The UMA_Fall Detection dataset contains data from 19 people

aged between 18 and 52 years old; all subjects were of various height,
ranging from 155 cm to 195 cm, and weight, ranging from 50 kg to
93 kg. This was done through video participants doing falls and
accomplishing ADLs while wearing five internal sensors
(gyroscopes, accelerometers, and magnetometers in cellphones)
and four external IMUs. The ADLs covered such functions as

bending, moving up and down stairs, hopping, mild jogging,
reclining and sitting down/getting up from bed/a chair, and
walking at a flat rate. Additionally, the dataset covers three fall
types: There are mechanical movements, namely,: backward,
forward, and lateral. Figures 15c,d represent live examples of dataset.

4.1.2 UR fall detection dataset
The UR Fall Detection dataset was generated by gathering data

from two Kinect cameras connected via USB and an IMU device
worn on the waist and paired via Bluetooth. Activities of Daily
Living (ADLs) were collected using camera 0 and an accelerometer,
while devices such as the PS Move and x-IMU captured additional
sensor data. Five participants participated, undertaking
70 sequences that included 30 falls and 40 ADLs within an office
scenario. Falls were done onto a carpet approximately 2 cm thick,
with the x-IMU positioned at the pelvis. Each volunteer conducted
forward, backward, and lateral falls at least three times, as well as
ADLs such as standing, sitting, squatting, bending, picking up
goods, and resting on a sofa, as shown in Figures 15a,b. All
deliberate falls were properly detected, with rapid sitting
movements categorized as ADLs despite their similarity to falls
when evaluated with an accelerometer or a combination of
accelerometer and gyroscope. The dataset also includes falls from
standing positions and while sitting on a chair. Raw accelerometer
data and depth and RGB image sequences collected by two Kinect
cameras were kept for each incident. Additionally, a threshold-based
fall detection system was implemented, with images obtained using
Microsoft Kinect cameras.

FIGURE 14
Shows optimization results over UMA_fall dataset.

TABLE 2 Parameter configuration for DNN algorithm.

Parameters name Values

Initial Learning rate Dynamic (adjusted by Adam)

Epochs 50

Batch size 32

Dataset split N-fold cross-validation

Activation function ReLU (dense layers), softmax (output layer)

Optimizer Adam
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Although the proposed system functions reliably on both
datasets, there exist data collection-related limitations that should
be noted. Firstly, the datasets are predicated on fixed sensor
placement, which may not directly translate to practical
deployments and could impact signal quality. Secondly, although
the UMA_Fall dataset contains participants with diverse height and
weight ranges, both datasets are confined to healthy adults and
exclude elderly, pediatric, and physically challenged participants to
restrict generalizability. Finally, data were acquired under
constrained conditions, with real-world environments potentially
bringing extraneous issues like sensor movement, occlusion, or
unmodeled activities to the fore. Remedying these concerns is
critical to future clinical or home-based deployments.

5 Results and analysis

In this section, various experiments were conducted to evaluate
the proposed system. The evaluation utilized metrics such as the
confusion matrix, precision, recall, F1 score, and Receiver Operating
Characteristic (ROC) curve. A comprehensive discussion and
analysis of the results are provided below.

5.1 Experiment 1: confusion matrix

In the first experiment, we plotted the confusion matrix for both
datasets. The confusion matrix gives a concise visual representation
of the classifier’s performance, emphasizing its strengths and

limitations in terms of how it handles different classes. Tables 3
and 4 exhibit the confusion matrix for the UMA_fall ADL and fall
activities, respectively. While tables 5 and 6 show confusion matrix
for the UR-fall dataset over ADL and fall activities, respectively.

5.2 Experiment 2: precision, recall
and F1 score

In this experiment, the proposed system undergoes a thorough
evaluation, accompanied by an in-depth analysis of its specific
implications in certain domains. Table 7 presents the evaluation
matrics, including precision, recall and F1 score for both datasets.

5.2.1 Discussion and analysis
The analysis of the fall detection and activity recognition

performance using the UMA_Fall and UR_Fall datasets
demonstrates strong reliability across various activities. The
precision, defined as the rate of accurate identification of
activities, is notably high for some activities such as ‘Lying
Down,’ ‘Jogging,’ and ‘Sitting Down’ in the UMA_Fall dataset,
exceeding 96. This indicates the reliability of the method for
monitoring essential everyday activities in elder care and
rehabilitation. Similarly, activities that resemble falling, such as
‘Fall Forward,’ ‘Fall Backward,’ and ‘Fall Lateral,’ exhibit
exceptionally high precision and recall, specifically 95, so
affirming the adequacy of the proposed model for real-time fall
detection. In the context of the UR_Fall dataset, the ‘Standing’ and
‘Sitting’ categories exhibit precision and recall exceeding 93,

FIGURE 15
Shows various ADL and fall activities across the UR-Fall and UMA_Fall datasets: (a,b) show ADL and fall activities from the UR-Fall dataset, while (c,d)
show ADL and fall activities from the UMA_Fall dataset.
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indicating the model’s adaptability across various sensors.
Nonetheless, certain movement transitions exhibit marginally
reduced accuracy, as evidenced by a recall of 89 for the state ‘Get
up (from chair)’ in the UR_Fall dataset; this aspect could be
improved to better capture significant, albeit occasionally subtle,
movements for various applications, such as physical therapy or
workplace ergonomics. The F1 score, which measures the average of
precision and recall, remained elevated in most tasks, reflecting the
model’s overall competence. Notable favorable connections exist

between health monitoring and fall prevention, while there are
places where the system’s effectiveness regarding activity
transitions might be enhanced.

A significant factor in the detection of falls is false positives
caused by high-velocity ADLs like sudden sitting or lying down.
Such actions can cause motion signatures that are very similar to
falls when using only accelerometer or gyroscope signals. Our
system’s sensor fusion, however, through visual and inertial
features like body posture modeling, curve dynamics, and 2.5D
point cloud transition allows successful discrimination to be
performed. As exemplified by the confusion matrices (Tables 4
and 5), activities like “Getup (chair)” and “Sitting” are differentiated
well from fall events, verifying the learning system’s capability to
break down motion similarities through semantic and context clues.

5.3 Experiment 3: ROC (receiver operating
characteristic curve)

The Receiver Operating Characteristic (ROC) curves presented
in Figures 16a,b depict the performance of a categorization system of

TABLE 3 Confusion matrix calculated over the ADL activities of UMA_fall Dataset.

Obj. Classes BD CD CU HP JG LD SD WK

BD 97 1 0 0 0 0 1 1

CD 0 97 1 0 0 1 1 0

CU 0 0 97 1 0 0 1 1

HP 0 1 1 96 1 0 0 1

JG 0 1 0 0 97 1 0 1

LD 0 1 1 1 0 96 0 1

SD 1 0 0 0 1 1 97 0

WK 0 0 1 0 1 0 1 97

Mean Accuracy = 97%

BD , bending; CD , climbing downstairs; CU = climbing upstairs; HP = hopping; JG = light jogging; LD , lying down (and getting up) on (from) a bed; SD , sitting down (and up) on (from) a

chair; WK = walking.

TABLE 4 Confusion matrix calculated over fall activities of UMA_fall
Dataset.

Obj. Classes Fall
backward

Fall
forward

Fall
forward

Fall backward 95 3 2

Fall forward 2 94 4

Fall lateral 3 2 95

Mean Accuracy = 96%

TABLE 5 Confusion matrix calculated over ADL activities of UR-fall Dataset.

Obj. Classes ST SI LD BD CR WLK PR OT

ST 95 2 1 0 0 0 1 1

SI 1 94 1 0 0 2 1 1

LD 0 1 95 2 0 0 1 1

BD 0 2 2 93 2 0 1 0

CR 1 1 0 1 94 1 1 1

WLK 2 1 1 1 0 94 0 1

PR 1 1 1 0 1 1 94 1

OT 1 0 2 1 1 0 1 94

Mean Accuracy = 94%

ST, standing; SI, sitting; LD, lying down; BD, bending; CR, crawling; WLK, walking; PR, praying; OT, others.
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various health related activities. The AUC under the ROC curve
provides a single metric summarizing the performance. The closer
the AUC gets to 1, the better the model is at distinguishing the
positive class (the specific activity) from the negative class (all the
other activities).

5.3.1 Discussion and analysis of ROC curve
In Figure 16a, by considering the ADL dataset of the UMA_fall

dataset, it is clear that the ‘Walking’ and ‘Sitting’ activities
demonstrated the maximum model efficiency with
approximately 100 percent accuracy as seen by the AUC values
equal to 0.98. The other movements, such as ‘Climbing
downstairs,’ ‘Bending,’ ‘Climbing upstairs,’ ‘Hopping,’ ‘Jogging,’
and ‘Lying down,’ also exhibit remarkable model performance with
an AUC of 0.98 for all. These outcomes illustrate the capacity of the
model to recognize a large variety of ADLs utilizing a decreased
quantity of misclassification. In Figure 16b, which examines fall-
related activities, the model likewise performs robustly, reaching
AUCs of 0.96 across all three fall scenarios: These include ‘Falling
Backward, Falling Forward’, and ‘Falling Lateral’. This is
significant in fall detection systems and shows that the
suggested model is capable of identifying falls with sufficient
reliability across the different types of falls. The AUCs, albeit
high, are slightly lower than those obtained by the identical
activities in ADLs, which hint to the prospective opportunity
for development in dealing with more sophisticated fall
detection circumstances.

5.4 Experiment 5: comparisons with state of
the art (SOTA)

In (Modak et al., 2024), the UMA_Fall dataset, with its 25 hand-
engineered features, enabled the delopment of hybrid models
combining 1D CNNs and classifiers like Xception and SVM,
achieving 92% accuracy. Its sensor-based approach is effective for
mobility applications but poses compliance challenges, especially for
elderly users. (Hafeez et al., 2023). integrated inertial sensors and
RGB features, combining accelerometer data with skeletal tracking
from Kinect to achieve high accuracy in ADL and fall detection.
However, synchronization challenges between sensors remain.
Another study used the URFall datasets, leveraging histogram
and motion vector features to achieve 92.83% accuracy,

respectively. While highly accurate, distinguishing between
similar activities remains an issue.

In (Nooyimsai et al., 2022), a CNN-LSTM ensemble model
classified falls into non-fall, pre-fall, and fall states using UMA_Fall
dataset, achieving state-of-the-art accuracies of 96.16%. The
approach combined temporal modeling and feature extraction,
demonstrating strong real-world potential. Finally, a novel
macro-feature-based method in (Beddiar et al., 2022) utilized
Le2i and UR-FD datasets to calculate body posture angles and
distances, achieving high performance with LSTM, TCN, and
SVM models, though improvements in annotation and posture
differentiation are needed. Together, these works demonstrate the
strengths of sensor-based (e.g., UMA_Fall and UR-Fall) datasets.
Combining these approaches through hybrid systems, such as multi-
sensor fusion and CNN-LSTM ensembles, could enhance
robustness, accuracy, and applicability in diverse fall detection
scenarios. Table 8 shows the comparison of proposed method
with state-of-the-art methods.

6 Implication of proposed system

There are many implications of the proposed system since the
strong performance of the metrics for both the UMA_Fall and UR_
Fall datasets. The AUC of ROC curves show that the algorithm
performs well for ‘Walking’ and ‘Sitting’ as well as falling activities
such as ‘Falling Backward, Falling Forward,’ and ‘Falling Lateral.’
From these results, it can be concluded that the system indeed
possesses an excellent true positive detection rate in both the daily
actions and autumn events with low false positive rates of the
algorithm. Precision, recall and F1 score are also used to give
more information about the reliability of the system. In the
UMA_Fall dataset, the ‘Lying Down’ F1 score is 97, ‘Jogging’
F1 score is 97, and ‘Sitting Down’ F1 score is 97, it shows that
the proposed model works effectively in accurate classification of
regular movements. Typical fall actions such as “fall forward,” “fall
backward,” and “fall laterally” reliably achieve F1 scores of 95,
illustrating the system’s resilience in principal fall scenarios. With
the UR_Fall dataset, the basic activities – ‘Standing’ (F1 = 95) and
‘Walking’ ((F1 = 95) demonstrate that the system functions well with
multiple sensors; ‘Get up (from chair)’ results demonstrated
somewhat lower accuracy (F1 = 91) which could be fine-tuned.
Such findings clearly suggest the possibility of the use of the system

TABLE 6 Confusion matrix calculated over fall activities of UR-fall Dataset.

Obj. Classes Fall forward Fall backward Getup (chair) FWS FWST

Fall Farward 92 4 2 1 1

Fall Backward 3 91 4 1 1

Getup from (chair) 2 2 92 2 2

FWS 1 2 3 92 2

FWST 1 1 2 3 93

Mean Accuracy = 92%

FWS, falling when seated; FWST, falling when standing.
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TABLE 7 Precision, Recall, and F1 score for ADL and Fall activities over UMA_fall and UR-fall Datasets.

Classes UMA_fall ADL activities UMA_ fall Fall activities UR-fall ADL activities UR-fall fall activities

Activities Precision Recall F1 score Precision Recall F1 score Precisiom Recall F1 score Precision Recall F1 score

BD 99 97 98 — — — — — — — — —

CD 96 97 97 — — — — — — — — —

CU 96 97 97 — — — — — — — — —

HP 97 96 96 — — — — — — — — —

JG 97 97 97 — — — — — — — — —

LD 98 96 97 — — — — — — — — —

SD 96 97 97 — — — — — — — — —

WK 96 97 97 — — — — — — — — —

Fall forward — — — 95 95 95 — — — — — —

Fall backward — — — 95 94 94 — — — — — —

Fall lateral — — — 94 95 95 — — — — — —

ST — — — — — — 94 95 95 — — —

SI — — — — — — 93 95 94 — — —

LD — — — — — — 92 94 93 — — —

BD — — — — — — 96 92 94 — — —

CR — — — — — — 95 94 95 — — —

WLK — — — — — — 95 94 95 — — —

PR — — — — — — 94 95 95 — — —

OT — — — — — — 96 92 94 — — —

Fall forward — — — — — — — — — 93 92 93

Fall backward — — — — — — — — — 91 91 91

Getup (from chair) — — — — — — — — — 89 92 91

FWS — — — — — — — — — 93 92 93

FWST — — — — — — — — — 94 93 94
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in a myriad of fields such as elder care, emergency response, and
smart homes among others.

7 Conclusion

This work introduced a new and extremely efficient paradigm for
human action identification based on information fusion from RGB
and inertial sensors, state-of-the-art machine learning methods, and
DNN. The proposed system achieves high accuracy in distinguishing
ADLs and falls using optimized features: 2.5D point cloud, kinetic
energy, and inertial coefficients. Higher levels of preprocessing and
accurate segmentation improved the quality and trustworthiness of
features in various datasets. The performance and flexibility given by
the system recommend it as a suitable option for long-term health
checks and fall detection in aged care and practical healthcare settings.

Evaluations on the UMA_Fall and UR-Fall datasets showcased
the system’s ability to generalize effectively, achieving high
classification accuracies and demonstrating robustness to
variations in working conditions such as sensor placement,

participant diversity, and environmental noise. Techniques such
as regularization, data augmentation, and cross-validation ensured
the stability and reliability of the method across different scenarios.

The performance and flexibility offered by the system make it a
promising option for long-term health monitoring and fall
detection, particularly in elderly care and practical healthcare
applications. By leveraging advanced multimodal data fusion and
robust feature extraction, the system provides a dependable solution
for real-world healthcare challenges, paving the way for improved
patient outcomes and proactive health management.
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