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Diabetes is a widespread metabolic disorder that presents considerable
challenges in its management. Recent advancements in biomaterial research
have shed light on innovative approaches for the treatment of diabetes. This
review examines the role of biomaterials in diabetes diagnosis and treatment, as
well as their application in managing diabetic wounds. By evaluating recent
research developments alongside future obstacles, the review highlights the
promising potential of biomaterials in diabetes care, underscoring their
importance in enhancing patient outcomes and refining treatment
methodologies.
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1 Introduction

Diabetes mellitus is a chronic disease marked by prolonged hyperglycemia, which arises
from defects in insulin secretion, insulin action, or a combination of both (American
Diabetes Association, 2014; Chaudhury et al., 2017; Defronzo, 2009). The primary types of
diabetes include Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM).
T1DM is mainly an autoimmune condition leading to the destruction of insulin-producing
beta cells in the pancreas (Khaiz et al., 2025; Nyaga et al., 2018a; Nyaga et al., 2018b). In
contrast, T2DM is often linked to insulin resistance, influenced by lifestyle factors and
genetic predispositions (Dariya et al., 2019; Ghasemi and Norouzirad, 2019; Memon et al.,
2022). The incidence of diabetes worldwide has been on a steady rise, resulting in significant
public health implications, particularly as demographic trends lean towards aging
populations and lifestyle changes, including increased obesity rates (Cano-Ibanez and
Bueno-Cavanillas, 2024). The International Diabetes Federation reported that
approximately 537 million adults were diagnosed with diabetes in 2021, with
projections indicating a rise to 783 million individuals by 2045 (Klangjareonchai
et al., 2021).

Conventional diabetes management approaches include pharmacological treatments
such as insulin and oral hypoglycemic agents, as well as lifestyle changes encompassing diet
and exercise (Deng et al., 2018). Nonetheless, achieving optimal glycemic control remains a
challenge for numerous patients, often due to factors like medication adherence, the
complexity of treatment protocols, and the psychosocial burdens associated with the
disease (Al-Qerem et al., 2022; Summers-Gibson, 2021). These challenges highlight the
urgent need for innovative strategies in diabetes management (Kalra et al., 2022).

In recent times, the application of biomaterials has surfaced as a promising pathway for
the enhancement of diabetes treatment and management (Aldahish et al., 2024; Emad et al.,
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2024; Nemati et al., 2023). This review seeks to investigate the
diverse applications of biomaterials within the realm of diabetes
management, addressing their potential to mitigate the limitations
of existing treatment methodologies while improving the quality of
life for individuals with diabetes. The evolving role of biomaterials in
diabetes management marks a significant advancement in
addressing the complexities inherent to this chronic condition
(Iqbal et al., 2023).

2 Diagnosis of diabetes using
biomaterial-mediated strategies

Biosensors have become essential instruments across various
domains, particularly in healthcare. Within this sector, they provide
rapid and precise monitoring of biological parameters (Kim et al.,
2019; Li et al., 2023; Yoon et al., 2020). These sensors possess the
capability to detect specific biological markers molecules, delivering
crucial real-time information essential for the diagnosis,
management, and prevention of diseases (Kong et al., 2024; Xing
et al., 2024).

Conventional diagnostic approaches for diabetes, which largely
rely on fasting plasma glucose (FPG), oral glucose tolerance tests
(OGTT), and hemoglobin A1c (HbA1c) assessments, exhibit several
shortcomings. These techniques are susceptible to various
influences, such as stress, illness, and inconsistencies in
laboratory procedures, which may result in misdiagnosis or
delays in diagnosis (Young et al., 2023). For instance, HbA1c
levels may not provide an accurate representation of glycemic
control in specific populations, including those with
hemoglobinopathies or individuals who have recently received
blood transfusions (Bhatti et al., 2024). Traditional glucose
testing methods, primarily based on blood glucose meters,
encounter numerous challenges that hinder patient adherence
and effective diabetes management. Ahmadian et al. conducted a
comprehensive review of current technologies, comparing the
benefits and drawbacks of both invasive and non-invasive glucose
monitoring techniques (Ahmadian et al., 2023). Many of these
methods necessitate finger-pricking, which can be painful and
inconvenient, resulting in many patients opting to forgo regular
testing (Burge, 2001). Furthermore, the precision of blood glucose
meters can be influenced by several factors, including user error,
calibration discrepancies, and environmental conditions, leading to
variable readings (Tankasala and Linnes, 2019). Additionally,
conventional testing methods typically offer only a snapshot of
glucose levels at a single moment, failing to account for fluctuations
that occur throughout the day. The psychological strain associated
with diabetes management, including the stress from frequent
monitoring and apprehension regarding complications, highlights
the demand for reliable and minimally invasive glucose testing
methods (Xie et al., 2023).

The significance of glucose monitoring sensors in diabetes
management cannot be overstated. Recent advancements in
biosensor technology have facilitated the development of non-
invasive and continuous glucose monitoring systems that
enhance patient adherence and improve health outcomes (Dua
et al., 2024; Hina and Saadeh, 2020; Teymourian et al., 2020).
The integration of biosensors with mobile technology and data

analytics platforms has further increased their utility, allowing for
continuous monitoring and remote health management (Arun et al.,
2024; Bent et al., 2020).

2.1 Detection by sensors composed of
nanomaterials in conjunction with Raman
spectroscopy

Biomedical nanomaterials, particularly those engineered for
glucose sensing, have demonstrated promising advancements in
improving the sensitivity and specificity of diabetes diagnostics. For
example, electrospun nanofibers have emerged as a novel category of
functional nanocomposites exhibiting remarkable biosensing
capabilities (Du et al., 2022). The incorporation of nanomaterials,
such as gold nanoparticles and carbon nanotubes, has further
enhanced the efficacy of biosensors, enabled the simultaneous
detection of multiple analytes and accelerated response times
(Nisar et al., 2024; Otero and Magner, 2020; Putzbach and
Ronkainen, 2013). Moreover, when combined with
organometallic compounds, these nanomaterials can significantly
augment the performance of Raman spectroscopy, allowing for the
detection of subtle spectral variations related to diabetes biomarkers.
This synergistic approach not only improves detection sensitivity
but also extends the range of potential applications in clinical
diagnostics (Jagannathan et al., 2023).

The high surface area of these nanomaterials promotes increased
loading of recognition elements, leading to enhanced detection
capabilities. Enhanced performance of biosensors has been
documented (Mousavi et al., 2022). Furthermore, nanomaterials
can be tailored to respond to specific stimuli, facilitating the creation
of intelligent biosensors capable of real-time monitoring of
physiological variations (Scandurra et al., 2023). Recent
innovations utilizing DNA nanostructures have demonstrated
significant potential in biosensing applications, where they can be
engineered for the selective binding of target molecules, thus
improving detection specificity (Mohammad, 2024). Ongoing
investigations in this field continue to reveal novel opportunities
for the application of nanomaterials in biosensing, which may lead
to the development of groundbreaking diagnostic tools for
clinical use.

Raman spectroscopy operates on the principle of inelastic
scattering of monochromatic light, typically emitted by a laser.
When light interacts with the vibrations of molecules, it can
scatter with a shift in energy that corresponds to the vibrational
modes of those molecules. This characteristic renders Raman
spectroscopy a versatile instrument for both qualitative and
quantitative analyses across various applications, including the
identification of biomarkers for diseases such as diabetes (Xie
et al., 2023). A prominent example of this technique’s efficacy is
its application in measuring urinary albumin levels, a critical
biomarker for diabetic kidney disease. Research has illustrated
that Raman spectroscopy can effectively identify specific spectral
peaks linked to albumin concentrations in urine samples from
individuals diagnosed with type 2 diabetes, indicating its
potential for non-invasive monitoring of renal complications
related to diabetes (Flores-Guerrero et al., 2020). Moreover,
Raman spectroscopy has been employed to investigate retinal
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tissue for early indicators of diabetic retinopathy, offering insights
into the biochemical alterations occurring in the retina due to
prolonged hyperglycemia. The capacity of this technique to
distinguish between healthy and diseased tissues through
spectral analysis renders it an invaluable tool for early diagnosis
and timely intervention in diabetic patients (Chen et al., 2021).
Furthermore, advancements in machine learning algorithms
applied to Raman spectral data have bolstered the precision of
diabetes detection, highlighting the technology’s potential to
transform diabetes management and enhance patient outcomes
(Chen et al., 2024e).

The amalgamation of biomedical nanomaterials with Raman
spectroscopy presents numerous advantages while also posing
significant challenges (Oliveira et al., 2022). A primary advantage
of this integration lies in the enhancement of diagnostic accuracy
and sensitivity. For instance, a core-shell structure of Au nanorods@
Raman tags@SiO2@Ag nanocomposite has been synthesized and

employed for the surface-enhanced Raman scattering (SERS)
detection of insulin and C-peptide in trace serum (Zhang et al.,
2024b). This is illustrated in Figure 1.

2.2 Detection via gas sensors composed of
biomedical metal oxides

Exhalation detection technology has attracted notable
interest due to its non-invasive and convenient nature,
particularly in the regulation of glucose levels, which is
essential for managing conditions such as diabetes. In breath
analysis, glucose is often detected indirectly through its metabolic
byproducts, including acetone, which is produced during the
metabolism of fatty acids when glucose levels are diminished
(Galassetti et al., 2005; Hwang et al., 2021; Li et al., 2015). The
well-established relationship between breath acetone and blood

FIGURE 1
Depicts the schematic representation of (A) the synthesis of the SERS probe and (B) the SERS-based immunoassay utilized for the detection of insulin
antibodies and C-peptide antibodies. Reproduced with permission from Zhang et al. (2024b).
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glucose levels provides a foundation for the development of
sensors capable of measuring glucose levels via breath analysis
(Kalidoss and Umapathy, 2019; Righettoni et al., 2013; Tanda
et al., 2014). The accurate and prompt identification of acetone is
vital for maintaining safety in industrial production and for the
clinical assessment of diabetes. Consequently, the advancement
of high-performance acetone sensors has become increasingly
significant (Guan et al., 2025) (Table 1). Analyzing breath can
facilitate real-time observation of metabolic alterations, enabling

timely interventions to avert conditions such as hyperglycemia or
hypoglycemia (Xie et al., 2023). Moreover, breath testing is
characterized by its convenience and discretion, which
enhances patient adherence and promotes ongoing monitoring
during daily activities (Vajhadin et al., 2021).

However, environmental factors substantially influence the
detection of glucose and its metabolites in exhaled breath,
impacting both the collection and analytical processes. Elements
such as humidity and the presence of competing volatile compounds

TABLE 1 Overview of gas sensors utilizing biomedical metal-oxides for acetone detection in 2024.

Composition of biomaterials Advantage Application References

α-Fe2O3-multiwalled carbon nanotube (MWCNT)
nanocomposite

detect acetone in exhaled breath under high
humidity

diabetes detection Ansari et al.
(2024)

a K/Sn-Co3O4 porous microsphere without the removing water vapor from exhaled
breath

diabetes detection Na et al. (2024)

porous 2D WO3 nanosheets 1. The rapid diffusion and adsorption of acetone
molecules
2. Higher charge activity and adsorption capacity

diabetes detection Guan et al. (2025)

biofluorometric acetone gas sensor (bio-sniffer)
using secondary alcohol dehydrogenase

Sub-ppbv Level Sensitivity (quantitative
characteristics in the concentration range of
0.5–1,000 ppbv)

continuous measurement of acetone gas released
through the skin

Iitani et al. (2024)

16 wt% N-CQDs/WO3 sensor 1. Real-time acetone detection
2. Portable human-exhaled gas sensors

diabetes detection Ni et al. (2024)

Al/CuO:Ni nanostructured thin films enhances the sensitivity and selectivity of acetone
sensors for practical applications as breath
detectors in biomedical diagnostics

1. Diabetes detection
2. Ensuring industrial safety by preventing
adverse health and environmental impacts of
acetone exposure

Litra et al. (2024)

bimetallic PtAu-decorated SnO2 nanospheres
(PtAu/SnO2)

1. Superior sensitivity to acetone of
0.166–100 ppm at 300°C
2. Remarkable gas response, rapid response and
recovery times, strong linear correlation,
excellent repeatability, long-term stability, and
satisfactory selectivity at 300°C

the early diagnosis and screening of diabetes Zhu et al. (2024)

ZIF-67-derived oxide cage/nanofiber Co3O4/
In2O3 heterostructure

1. Abundant reversible active adsorption/
reaction sites alongside a type-I heterojunction
2.ultrasensitive response to acetone
concentrations ranging from 954 to 50 ppm at
300°C
3. A low detection limit of 18.8 ppb, a swift
response time of just 4 s, commendable
selectivity and repeatability, acceptable resistance
to humidity interference, and sustained long-
term stability

environmental monitoring and the early
diagnosis of diabetes

Wu et al. (2024)

bimetallic Au@Pt core-shell nanospheres (BNSs)
functionalized-electrospun ZnFe2O4 nanofibers
(ZFO NFs)

Compared to pure NFs-650 analogue, the ZFO
NFs/BNSs-2 sensor exhibits a stronger mean
response (3.32 vs. 1.84), quicker response/
recovery speeds (33 s/28 s vs. 54 s/42 s), and
lower operating temperature (188°C vs. 273°C)
toward 0.5 ppm acetone

potential for diabetes diagnosis in individual
healthcare settings

Zhao et al.
(2024a)

Gd2Zr2O7 solid electrolyte and CoSb2O6 sensing
electrode

1. A low detection limit of 10 ppb, enabling linear
detection for acetone in an extremely wide range
of 10 ppb–100 ppm
2. Excellent selectivity, repeatability, and stability

diagnosis and monitoring of diabetic ketosis Jiang et al. (2024)

Porous Co(3)O(4) nanofoam 1. A low detection limit of 0.05 ppm and a high
sensitivity of −56 mV/decade in the acetone
concentration range of 1–20 ppm
2. Outstanding repeatability, acceptable
selectivity, effective resistance to O2 and
humidity, and long-term stability during
continuous measurements over a duration
exceeding 30 days

distinguish between healthy individuals and
patients with diabetic ketosis

Hao et al. (2024b)
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can hinder gas sensor performance (Esteves et al., 2022; Xie et al.,
2018). Therefore, it is essential to optimize the operating
conditions of sensors to mitigate these environmental effects.
Zhou et al. developed a self-designed condensation device for
exhaled breath, which allowed for the condensation and
collection of human exhaled breath, enabling the analysis of
glucose in the collected condensate via ion chromatography
using a pulsed amperometric instrument (Zhou et al., 2022).
For instance, custom-built exhaled breath collection devices that
regulate temperature and humidity have demonstrated potential
for enhancing the reproducibility of glucose measurements in
breath samples (Desai et al., 2025). A noninvasive blood glucose
detection apparatus that utilizes acetone sensing in exhaled breath

employs an α-Fe2O3-multiwalled carbon nanotube (MWCNT)
nanocomposite to accurately measure acetone levels, even in high
humidity conditions (Ansari et al., 2024). Furthermore, the
incorporation of nanostructured materials and composite
sensors has been shown to improve sensitivity and selectivity,
enabling more precise glucose detection in the presence of
interfering substances found in exhaled breath (K et al., 2025).
Notably, an ultrasensitive acetone gas sensor based on a K/Sn-
Co3O4 porous microsphere can accurately differentiate between
diabetic patients and healthy individuals based on variations in
acetone concentrations without the need to eliminate water vapor
from exhaled breath, highlighting its substantial potential for
diabetes diagnosis (Na et al., 2024).

FIGURE 2
Illustrates the continuous glucose monitoring (CGM) sensors employed for the assessment of various biological fluids and the nanomaterials
developed for tear glucose analysis in recent years, reproduced with permission from Zhou et al. (2024b).
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2.3 Detected by wearable sensors made of
biomaterials

Wearable sensors made from biomaterials designed for sweat
glucose detection have garnered significant interest due to their
capacity for continuous monitoring without the discomfort of
finger-prick tests. Zhou et al. conducted a thorough review of the
principles and advancements in electrochemical glucose sensors,
compiling findings on various innovative nanomaterials suitable for
continuous glucose monitoring (CGM) (Zhou et al., 2024b). The
work illustrated the applications and construction strategies of
diverse nanomaterials, including precious metals, nanometals,
their compounds, and nonmetallic nanomaterials. Figure 2 in
their study encapsulates these insights on CGM technology, while
Figure 3 traces the evolution of biosensor development for wearables
up to 2021.

These sensors utilize cutting-edge materials and designs to
enhance sensitivity and selectivity, thereby enabling precise real-
time glucose detection (Dervisevic et al., 2022; Zafar et al., 2022;
Zhou et al., 2023). The hyaluronate (HA)-modified Au@Pt
bimetallic electrodes have been validated through animal trials
for their capacity to provide long-term, accurate, and robust
CGMs in smart contact lenses, paving the way for continuous
blood glucose monitoring (Han et al., 2023). In 2023, Zhang
et al. summarized the metallic nanomaterials employed in
wearable non-invasive glucose sensors, encompassing zero-
dimensional (0D), one-dimensional (1D), and two-dimensional
(2D) monometallic nanomaterials, as well as bimetallic
configurations (Zhang et al., 2023b). In addition, Govindaraj
et al. provided a thorough summary of various categories of non-
enzymatic glucose sensor materials, which encompass composites,

non-precious transition metals along with their respective metal
oxides and hydroxides, precious metals and their alloys, carbon-
based materials, conducting polymers, metal-organic framework
(MOF)-based electrocatalysts, as well as glucose sensors designed
for wearable devices (Govindaraj et al., 2023). Furthermore, enzyme-
free nanoparticle-based glucose sensors signify a noteworthy
advancement, presenting a more straightforward and cost-
efficient alternative for glucose monitoring (Boucheta et al.,
2024). Additionally, microfluidic devices have been engineered to
assess the performance of these sensors, thereby ensuring their
reliability in clinical environments (Yunos et al., 2021). Zhang
et al. introduced a handheld biosensor capable of detecting
acetone through fluorescence, utilizing the enzymatic reaction of
secondary alcohol dehydrogenase (S-ADH) in conjunction with β-
nicotinamide adenine dinucleotide (NADH, λex = 340 nm, λem =
490 nm). This device, characterized by its portability and high
sensitivity and selectivity, is anticipated to see extensive
application in clinical diagnostics as well as in the realm of
wearable biochemical sensors in the forthcoming years (Zhang G.
et al., 2025). As advancements in these technologies continue, they
hold the potential to revolutionize diabetes management, enabling
patients to achieve optimal glucose levels with enhanced
convenience.

3 Treatment of diabetes through
biomaterial-mediated strategies

Insulin plays a pivotal role in the management of diabetes,
necessitating effective delivery mechanisms. The utilization of
biomaterials, known for their exceptional biocompatibility,

FIGURE 3
Depicts the historical progression of biosensor development for wearable technology up to 2021, reproduced with permission from Zafar
et al. (2022).
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TABLE 2 The advantages of various insulin drug delivery vectors.

Vector Preparation
method

Advantage Treatment
object

Treatment
stage

References

Microneedle 3D printing and mold-based
methods

penetrates the outer
layer of the skin without
reaching the nerve
endings, facilitating
sustained insulin release

T1DM, T2DM, and in
some cases, used when
traditional injection
methods cause excessive
pain or skin damage in
diabetic patients

Initial treatment stage
to establish stable
insulin delivery, or
when patients have
difficulties with
traditional injection
methods

Jin et al. (2018), Xu
et al. (2024), Zhao
et al. (2024b)
Razzaghi et al. (2024)
Chen et al. (2019),
Lin et al. (2025a), Lin
et al. (2025b), Wang
et al. (2020)

ASMNs@PVP-INS antimicrobial sponge MNs
(ASMNs@PVP-INS)
modified with
polyvinylpyrrolidone (PVP)

excellent mechanical
strength, effectively
maintaining glucose
control without inducing
hypoglycemia, no
significant toxicity to
mice

T1DM, T2DM Not mentioned Zhang et al. (2025b)

insulin transmitter ultrasound, microjet method encapsulation
rate >80%, good
stability, strong
deformation and good
transdermal
performance

T1DM, T2DM,
especially suitable for
patients who are
reluctant to use
injection methods and
have relatively good
skin conditions

Any stage of diabetes
treatment where non-
invasive insulin delivery
is preferred

Jarosinski et al.
(2021)

biodegradable
polymer
material

Chitosan and its
derivatives

emulsification-chemical
crosslinking method, spray
drying, solvent volatilization
method, etc

good biocompatibility,
degradability, film-
forming or spheroidal
properties

T1DM, T2DM, and can
be used in diabetic
wound healing
scenarios

Drug delivery stage in
diabetes treatment, and
applied in wound care
for diabetic patients

Abozaid et al. (2023),
Lupascu et al. (2024),
Mohamed et al.
(2021), Morcol et al.
(2004)
Ali and Lehmussaari
(2006)
Baek et al. (2012)
Blagden et al. (2007)
Aldahish et al.
(2024), Ali et al.
(2009)

silk fibroin T1DM, T2DM, may
have potential in long-
term insulin storage and
delivery due to its
unique properties

Potentially used in the
stage of developing long
- acting insulin
formulations

polylactose T1DM, T2DM, might
be suitable for patients
with specific metabolic
requirements

May be involved in the
formulation of certain
sustained - release
insulin products

Hydroxyapatite T1DM, T2DM, can be
used in combination
with insulin for bone -
related diabetes
complications

Treatment stage for
diabetic patients with
bone - related problems

INS-NPs ionotropic pre-gelation
followed by polyelectrolyte
complexation technique

Strengthen drug stability
and improve
bioavailability; achieve
targeted drug release to
reduce the toxic and side
effects of drugs on the
body; control the
amount of drug release
to make the effect of
drugs in the body more
obvious

T1DM, T2DM,
especially useful when
precise control of
insulin release is needed

Advanced treatment
stage where more
refined insulin delivery
is required

Kassem et al. (2017)

Chitosan/cyclodextrin
nanoparticles

Ionic gel technology Stable for at least 4 h at
simulated intestinal fluid
pH 6.8 and 37° C

T1DM, T2DM,
beneficial for oral
insulin delivery
attempts

Exploratory stage of
developing oral insulin
delivery systems

Krauland and
Alonso (2007)

Methocel-lipid hybrid nanocarriers Methocel was added to solid
lipid nanoparticles (SLN) to
form

Good biocompatibility,
low cytotoxicity, good
drug protection, and good
interaction with cells,
while overcoming its key
limitations in effectively
encapsulating peptides

T1DM, T2DM,
applicable when
enhancing the
interaction between
insulin and cells is
necessary

Treatment stage focused
on improving the
efficacy of insulin at the
cellular level

Boushra et al. (2016)

(Continued on following page)
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TABLE 2 (Continued) The advantages of various insulin drug delivery vectors.

Vector Preparation
method

Advantage Treatment
object

Treatment
stage

References

6-O-vinyl sebacic acid-D-
galactopyranosyl ester block 3-
acrylamide phenylboric acid p
(OVNG-b-AAPBA)

block copolymer With optimal molecular
weight and thermal
stability, the prepared
nanoparticles can be
used in drug delivery
systems. The prepared
nanoparticles have good
morphology and their
safety has been verified
by MTT and chronic
animal toxicology tests.
The drug loading rate
and encapsulation
efficiency increase with
the increase of AAPBA
content in the polymer,
which can effectively
maintain blood sugar in
diabetic mice for 96 h

T1DM, T2DM, effective
in maintaining stable
blood sugar levels over
an extended period

Treatment stage aiming
for long - term blood
sugar control

Zhong et al. (2020)

chitosan nanoparticle/poly (vinyl
alcohol) (PVA) hybrid HGs
(CPHGs)

PVA and chitosan
nanoparticles (CNPs) are
cross-linked with a glucose-
responsive
formylphenylboronic acid
(FPBA)-based cross-linker in
situ

in vitro drug release
assay reveals size-
dependent glucose-
responsive drug release
from the CPHGs under
physiological conditions

T1DM T1DM rat model and
in vitro

Ali et al. (2023)

FIGURE 4
Demonstrates the various advantages of employing nanotechnology in diabetes management compared to traditional treatment methodologies.
Reproduced with permission from Sarkhel et al. (2024).
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degradability, and distinctive functional properties, is essential in
this context. Such materials significantly enhance insulin stability,
modulate its release kinetics, and facilitate targeted delivery, thereby
offering a safer and more efficient therapeutic option for individuals
with diabetes. Novel biomaterial carriers can transport antidiabetic
drugs to address different types of diabetes (Table 2).

3.1 Delivery via nanoparticles

Insulin is indispensable for managing T1DM and is often
required in numerous instances of T2DM. The engineered
characteristics of nanoparticles, such as toxicity control, stability,
and drug release mechanisms, allow for the delivery of higher drug
concentrations to targeted sites (Zaric et al., 2019). The capacity of
nanoparticle systems to improve insulin delivery through targeted
and controlled release mechanisms has attracted significant
attention (Cheng et al., 2021; Karimi et al., 2016; Zhang et al.,
2022). Nanocarriers present an innovative strategy by offering
advantages such as enhanced drug stability and absorption,
targeted delivery to specific tissues or cells, controlled or stimuli-
responsive drug release, increased bioavailability, minimized side
effects, and improved patient compliance (Figure 4). Sarkhel et al.
have encapsulated the diverse applications of nanomaterials in
diabetes management, emphasizing the distinctive attributes of
nano-based drug delivery systems and intelligent drug delivery
techniques (Sarkhel et al., 2024). These nanoparticles can be
customized to react to physiological conditions, such as
fluctuating glucose levels, thereby permitting a more personalized
approach to insulin administration (Karimi et al., 2016; Sharmah
et al., 2024). MSN-based nanocomposites have been used to deliver
therapeutic molecules like insulin, GLP-1, exenatide, DPP-4
inhibitor and plasmid-containing GLP-1 genes for managing
diabetes mellitus for the last decade (Sarkar et al., 2023). For
instance, innovative systems have emerged that leverage glucose-
responsive nanoparticles to release insulin during hyperglycemic
episodes, thereby effectively imitating the pancreas’s physiological
insulin secretion mechanism (Jeong et al., 2022; Volpatti
et al., 2021).

Moreover, the inclusion of biocompatible materials in the
formulation of nanoparticles ensures safety and efficacy in
clinical applications (Tutty et al., 2022). Research has illustrated
that nanoparticles can successfully encapsulate insulin, providing
protection against degradation within the gastrointestinal tract
during oral administration (Ren et al., 2023). This pioneering
strategy not only enhances the stability of insulin but also
promotes its absorption, yielding improved glycemic control in
diabetic individuals. The integration of nanoparticles into insulin
delivery systems indicates substantial potential for the development
of more effective and patient-friendly diabetes treatments.

3.2 Delivery via transplantation of tissue-
engineered islets

Tissue engineering has emerged as a groundbreaking
technique in diabetes management, particularly in addressing
the complications associated with the disease (Kaviani and

Azarpira, 2016; Woo et al., 2023). This interdisciplinary domain
merges biological, mechanical, and engineering principles to
restore or enhance the functionality of damaged tissues and
organs. Considering the increasing prevalence of diabetes and
its complications, innovative strategies such as tissue
engineering provide promising avenues for regeneration and
repair, particularly in pancreatic and cellular contexts.
Advancements within this field possess the potential to
significantly enhance patient outcomes and offer alternatives to
traditional therapies like insulin administration and organ
transplantation.

3.2.1 Pancreatic tissue engineering
The domain of pancreatic tissue engineering is primarily

focused on the creation of functional pancreatic tissues or
bioartificial organs designed to restore insulin secretion in
diabetic patients (Figure 5). Recent investigations have
underscored the encouraging role of decellularized pancreatic
scaffolds, which maintain the extracellular matrix (ECM)
architecture and critical biochemical signals necessary for cell
attachment and functionality. The application of decellularized
pig pancreas has shown promise in establishing an optimal
environment for insulin-producing cells, thereby addressing the
impairment of beta-cell function in T1DM (Hao L. et al., 2024; Lim
et al., 2023). Research indicates that these bioengineered tissues
can effectively replicate the intrinsic architecture of the pancreas,
which may enhance both the survival rates and functionality of
transplanted islet cells (Lim et al., 2023). Furthermore,
advancements in 3D bioprinting technology have enabled the
fabrication of complex pancreatic structures, thereby improved
vascularization and facilitating the delivery of essential nutrients
required for maintaining cell viability (Soetedjo et al., 2021).
Additionally, the incorporation of bioactive materials, such as
silver nanoparticles, has demonstrated improved
biocompatibility of these scaffolds, further supporting their
clinical application (Qiu et al., 2022). In summary, pancreatic
tissue engineering holds significant promise in the advancement of
regenerative therapies for diabetes.

Cell transplantation, particularly the transplantation of islet
cells, remains a fundamental aspect of T1DM management, with
the primary objective of reinstating endogenous insulin production
(Loretelli et al., 2020; Ramesh et al., 2013). However, barriers such as
a limited supply of donors and the risk of immune rejection have
hindered broader implementation. Recent advancements in tissue
engineering have introduced innovative strategies aimed at
enhancing the success rates of cell transplantation. For example,
the application of interconnected toroidal hydrogels for islet
encapsulation has proven effective in protecting transplanted cells
from immune attacks. While still facilitating nutrient exchange
(Ernst et al., 2019).

Additionally, the engineering of pluripotent stem cells into
insulin-producing cells stands as a groundbreaking approach to
generate a continual supply of functional cells for transplantation
(Carvalho et al., 2022; Kasputis et al., 2018; Pagliuca et al., 2014).
Further research has examined the potential of regulatory T cells
that have been modified with insulin-specific chimeric antigen
receptors to promote tolerance and reduce the risk of rejection
during islet transplantation (Azad et al., 2024). These advancements
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in cell transplantation methodologies, when integrated with the
principles of tissue engineering, hold the promise of significantly
enhancing both the effectiveness and accessibility of diabetes
treatments.

3.2.2 Development of biomaterial scaffolds
The fabrication of biomaterial scaffolds constitutes a crucial

aspect of tissue engineering within the framework of diabetes
therapy, as they provide vital structural support for cellular
growth and tissue regeneration. These scaffolds emulate the
ECM and promote a three-dimensional structure that is
conducive to cell proliferation, differentiation, and development.
They may also be employed in the management of diabetic
wounds, a common complication associated with diabetes
(Tallapaneni et al., 2021). Scaffolds can be categorized into two
main types based on their origin: natural and synthetic polymer-
based scaffolds.

3.2.2.1 Natural biomaterial scaffolds
Natural biomaterials have garnered substantial interest in the

field of tissue engineering because of their intrinsic biocompatibility
and their capacity to facilitate cellular activities that are crucial for
tissue regeneration (Bagheri et al., 2020; Mei et al., 2023). These
materials, sourced from biological origins, include collagen, gelatine,
chitosan, and alginate, which replicate the ECM of native tissues,
thus fostering cellular interactions and enhancing healing processes
(Naranda et al., 2021; Sonmezer et al., 2023). This is illustrated in
Figure 6. For instance, collagen scaffolds are particularly recognized
for their excellent properties regarding cell adhesion and
biodegradability, rendering them suitable for applications in
wound healing and regenerative medicine (Chu et al., 2018;
Larijani et al., 2024). Chitosan, a natural polysaccharide, exhibits
remarkable biocompatibility, biodegradability, and antimicrobial
capabilities, positioning it as a promising candidate for wound
healing and tissue engineering applications (Wang J. et al., 2024).

FIGURE 5
Illustrates a diagrammatic representation highlighting the application of materials in human islet organoids. (A) Applications of materials for
production of human islet organoids, including strategies such as biomaterial coating, embedding, and encapsulation, plays a critical role in the
advancement of diabetes treatments. (B) Biomaterials serve as three-dimensional scaffolds that replicate the native interactions with the extracellular
matrix (ECM) essential for the generation of islet organoids. These scaffolds provide key factors such as mechanical forces, topographical features,
stiffness, and signaling from ECM components and soluble factors. (C) Themanufacturing process of decellularized ECM (dECM)materials is highlighted.
This content is reproduced with permission from Jiang et al. (2022).
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Moreover, the incorporation of bioactive molecules, such as
growth factors and peptides, into natural materials can
significantly enhance their regenerative capacity, leading to
improved results in tissue repair and regeneration (Ravoor
et al., 2021). Additionally, natural scaffolds can undergo
modifications to improve their mechanical strength and
degradation rates, thus allowing for customization tailored to
specific applications. The inherent bioactive characteristics of
natural biomaterials are further validated by their capacity to
promote angiogenesis and facilitate tissue integration, both of
which are essential for achieving favourable outcomes in tissue
engineering (Goonoo, 2022).

The degradation behavior of these natural materials serves as a
pivotal aspect concerning their application in biomedical contexts,
significantly affecting their longevity, biocompatibility, and overall
efficacy in tissue regeneration (Hu T. et al., 2024). Generally, natural
materials are preferred due to their ability to undergo in vivo
degradation, which permits a gradual replacement by newly
synthesized tissue. Specifically, chitosan-based hydrogels have
demonstrated a degradation process primarily governed by
hydrolytic mechanisms, with degradation rates that can be
modulated by varying the degree of crosslinking and the
molecular weight (Lv et al., 2023). This characteristic proves
particularly beneficial in scenarios such as drug delivery, where

FIGURE 6
Illustrative schematic of naturally derived polymers:origin, structures, fabrications, and applications. Reproduced with permission from Hu
et al. (2024a).
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the establishment of controlled release profiles is vital for achieving
therapeutic effectiveness.

The degradation byproducts of natural materials are frequently
non-toxic and can be metabolically processed by the body, thereby
minimizing the likelihood of adverse reactions (Xu et al., 2022). The
capacity to engineer natural materials with specific degradation
kinetics enhances their applicability across a range of uses,
including bone regeneration, where it is optimal for scaffolds to
degrade in synchrony with the formation of new bone (Koh et al.,
2022). In summary, the degradation characteristics of natural
materials not only contribute to their biocompatibility but also
are integral to their functionality and efficacy in the field of
regenerative medicine.

3.2.2.2 Synthetic biomaterial scaffolds
Synthetic biomaterials, such as polycaprolactone (PCL),

polylactic acid (PLA), and polyvinyl alcohol (PVA), have been
engineered to address certain limitations associated with their
natural counterparts (Deng et al., 2022). Research indicates that
PCL scaffolds can effectively support the proliferation of
mesenchymal stem cells and promote wound healing in models
of diabetes (Abdollahi et al., 2024b). These synthetic materials
provide customizable mechanical properties, controllable
degradation rates, and can be fabricated into various forms,
including fibers, films, and hydrogels (Lim et al., 2023; Li et al.,
2020). This flexibility enables the optimization of material
properties to better align with the mechanical characteristics of
natural tissues, which is critical for applications involving implants
and wound dressings. Investigations have shown that by adjusting
the cross-linking density and the composition of the polymer
network, researchers can develop hydrogels with tailored
mechanical properties that are conducive to enhancing cell
adhesion and proliferation in tissue engineering (Huang
et al., 2023).

The adaptability of synthetic biomaterials facilitates the
integration of bioactive agents, including growth factors or
therapeutic drugs, allowing for their controlled release to foster
healing and tissue regeneration (Guo et al., 2022b). Furthermore,
the incorporation of nanomaterials into synthetic polymers has
significantly improved their mechanical attributes, yielding
materials that not only exhibit enhanced strength and durability
but also demonstrate bioactivity that supports healing and
integration with surrounding tissues (Abdollahi et al., 2024b).
The integration of conductive materials within scaffolds has
been explored to enhance the functional capacity of engineered
tissues through improved electrical signalling, which is particularly
important for insulin secretion in pancreatic cells (Wang and Jin,
2024). Moreover, advancements in three-dimensional printing
technologies have facilitated the creation of intricate scaffold
architectures that accurately replicate the structure of native
tissues, thereby further augmenting the effectiveness of these
biomaterials. The enhancement of integration and functionality
in biomaterials has been highlighted by (Metwally et al., 2023). The
adaptability of these mechanical properties is crucial for the
effective incorporation of synthetic materials in clinical
applications, as it enables the design of substances capable of
enduring physiological stresses while supporting biological
activities.

By amalgamating various functionalities within a single
biomaterial, researchers are equipped to tackle diverse therapeutic
challenges simultaneously. Such biomaterials can facilitate the
controlled release of therapeutic agents, thereby promoting
localized healing and reducing systemic side effects (Heidari
et al., 2023). Additionally, these multifunctional materials can
embed antibacterial characteristics to mitigate infections, which
commonly arise in chronic wounds (Renuka et al., 2022).

Despite the considerable benefits offered by synthetic materials,
significant concerns regarding their degradation and
biocompatibility persist as critical hurdles in their utilization. For
instance, materials engineered for temporary implants must degrade
in synchronization with tissue healing to prevent complications
linked to either premature breakdown or prolonged presence in the
organism (Li et al., 2022). Moreover, ensuring the biocompatibility
of synthetic materials is vital, as those that provoke adverse immune
responses can incite chronic inflammation and result in implant
failure (Ciatti et al., 2024; Kzhyshkowska et al., 2015). Recent
progress has concentrated on the creation of biodegradable
polymers that preserve their mechanical strength while
systematically decomposing into non-toxic byproducts (Guo
et al., 2022b). Addressing these concerns surrounding
degradation and biocompatibility is essential for the successful
transition of synthetic materials from laboratory settings to
clinical implementations, guaranteeing that they offer safe and
effective solutions for patients.

3.3 Delivery by transdermal delivery

Microneedle technology has emerged as a groundbreaking
approach for insulin delivery, providing a minimally invasive
alternative to conventional injection techniques (Bigham et al.,
2025; Hong et al., 2022; Zong et al., 2022). The mechanism of
insulin release from microneedles is depicted in Figure 7. These
micro-scaled needles, which typically range in length from 25 to
1,000 μm (Figure 8), can penetrate the outer layer of the skin
while circumventing nerve endings, thus minimizing discomfort
and pain for patients (Chen et al., 2019; Luo et al., 2023; Wang
et al., 2020). Recent advancements in the manufacturing
technologies for microneedles, including 3D printing and
mold-based methods, have enabled the creation of arrays
capable of delivering precise dosages of insulin (Razzaghi
et al., 2024). Evidence suggests that these microneedle arrays
achieve bioavailability levels that are comparable to those
obtained from traditional subcutaneous injections while
significantly enhancing patient adherence due to their ease of
use and reduced pain perception (Li et al., 2022; Queiroz et al.,
2020). Furthermore, the incorporation of biodegradable
materials in microneedle design has allowed for sustained
insulin release, presenting a viable solution for long-term
diabetes management (Chakraborty et al., 2023; Rajput et al.,
2021). A nanoparticle-loaded microneedle (MN) patch, designed
for transdermal drug delivery, aims to achieve blood glucose
control and reactive oxygen species (ROS) scavenging for the
synergistic treatment of diabetic nephropathy, thereby enhancing
the efficiency of transdermal drug delivery while extending the
duration of insulin action (Zheng et al., 2025). In summary,
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microneedle technology stands as a promising strategy for
advancing insulin delivery systems and subsequently
enhancing the quality of life for individuals with diabetes.

3.4 Smart delivery systems for diabetes
management and treatment

The Smart delivery systems represent the cutting edge of insulin
administration technology, merging innovative biomaterials with
responsive mechanisms to develop dynamic delivery platforms.
These systems are engineered to release insulin in a controlled
manner, guided by real-time blood glucose monitoring, thereby
providing a customized approach to managing T1DM (Condren
et al., 2019; Latham, 2019; Moser et al., 2025; Renard, 2023). For
example, hydrogels that expand or contract in response to changes
in glucose concentrations have been developed, enabling on-
demand insulin release as required (Ali et al., 2022;
Annicchiarico et al., 2024). Furthermore, the incorporation of
wearable technology within these smart delivery systems
facilitates continuous glucose monitoring, which allows for
automatic insulin administration in reaction to fluctuations in
glucose levels (Renzu et al., 2024). This heightened level of
responsiveness not only improves glycemic control but also
reduces the risk of hypoglycemia, a prevalent issue in diabetes
management. As research progresses, the potential for intelligent
delivery systems to transform insulin therapy becomes increasingly
evident, paving the way for more effective and user-friendly diabetes
care solutions.

4 The role of biomaterials in diabetic
wound healing

Current practices in managing diabetic wounds are based on
four essential principles: (1) debridement, (2) infection control, (3)
offloading, and (4) revascularization (Hu et al., 2022). In the context
of diabetic wounds, particularly foot ulcers, the primary factor
contributing to delayed healing is the diminished synthesis of
collagen. This reduction adversely affects the solubility of the
extracellular matrix (ECM) and provokes an exaggerated
inflammatory response (Nirenjen et al., 2023). The inflammatory
phase is marked by the secretion of pro-inflammatory cytokines
such as IL-1, IL-6, and TNF-α. The subsequent proliferative phase is
characterized by impaired angiogenesis and vasculogenesis, whereas
in the remodeling phase, an increase in matrix metalloproteinases
(MMPs) results in further degradation of the ECM, thereby
exacerbating the challenges associated with wound healing
(Figure 9). These factors present considerable hurdles for clinical
management. Although traditional dressings have historically been
essential in wound care, their effectiveness in treating diabetic
wounds is significantly limited (Saco et al., 2016; Wang et al., 2024).

4.1 Limitations of traditional dressings for
diabetic wound treatment

Diabetic wounds exhibit a complex pathophysiological profile
that includes impaired angiogenesis, a weakened immune response,
and an increased vulnerability to infections (Rodriguez-Rodriguez

FIGURE 7
Mechanism of insulin release from the microneedles. (A) shows a soluble insulin microneedle that releases insulin through polymer dissolution. (B)
shows a microneedle loaded with insulin nanoparticles, and insulin is released through the biodegradation of the shell or matrix. (C) shows a
biodegradable insulinmicroneedle, and insulin is released after enzymatic hydrolysis. (D) shows a hydrogel insulinmicroneedle that continuously releases
insulin after entering the dermis. Reproduced with permission from Starlin et al. (2024).
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et al., 2022). A significant limitation of conventional dressings,
including gauze and hydrogels, is their singular functionality,
which fails to adequately address the diverse challenges
associated with diabetic wounds (Venkatesan and Rangasamy,
2023; Zhang et al., 2023a). These traditional dressings often lack
the incorporation of bioactive agents that could facilitate healing,
and their capacity to prevent bacterial proliferation is insufficient,
leading to a heightened risk of infection (Zhou et al., 2024a).
Furthermore, issues with adherence and retention of these
dressings can necessitate frequent changes, which may disrupt
the healing process and inflict additional pain and discomfort on
patients (Jiang et al., 2023).

Moreover, the healing duration associated with conventional
dressings can be extended, raising concerns for diabetic individuals
who are predisposed to complications such as foot ulcers and
potential amputations (Andrews et al., 2015; Sahu et al., 2018).
The absence of advanced features in these dressings means they do
not support critical physiological processes, such as angiogenesis
and collagen deposition, which are essential for effective wound
repair (Zhang et al., 2024). Consequently, there exists a pressing
need for the formulation of more effective wound care solutions that
integrate bioactive materials along with multifunctional attributes to
enhance the healing of diabetic wounds (Cai F. et al., 2023). Various
types of dressings, including conventional, bioactive, and interactive
dressings, as well as skin substitutes, are being employed to treat
wounds (Alven et al., 2020) (Figure 10).

In conclusion, while traditional dressings have played a crucial
role in wound management, their inadequacies in addressing
diabetic wounds underscore the necessity for a transition towards
more innovative treatment strategies that can effectively tackle the
distinct challenges they present. The diabetes patients can benefit
significantly from the incorporation of sophisticated biomaterials
and innovative technologies, which may prove instrumental in
addressing existing challenges and enhancing patient outcomes in
the management of diabetic wounds (refer to Table 3).

4.2 The utilization of innovative wound
dressings in diabetic wound healing

Recent innovations in wound dressing technologies have
culminated in the creation of multifunctional dressings that
incorporate biocompatible materials along with bioactive agents
(Figure 11). According to a systematic review conducted by Vargas
et al., bioactive glass (BG)-based materials show promise in
expediting all phases of diabetic wound healing and improving
the overall quality of wound recovery (Vargas et al., 2024). For
example, electrospun nanofibers and hydrogels are employed to
fabricate dressings that not only provide a protective barrier but also
deliver therapeutic agents directly to the wound site (Fahimirad and
Ajalloueian, 2019; Hong et al., 2023; Yang and Xu, 2023).
Furthermore, the integration of electrical stimulation within

FIGURE 8
Hollowmicroneedles created from silicon and polymers. (A, B)Hollowmicroneedles with a tapered shape. Mukerjee et al. (2015), Wilke et al. (2005)
(C) Hollow silicon microneedles with sharp tips Ma et al. (2006). (D) cylindrical microneedles with a side-opening orifice Zhang et al. (2009) (E) Hollow
silicon microneedles with sharp tips Baron et al. (2008) (F) Hollow microneedles by exposing X-ray through a mask onto PolyMethylMetaAcrylic. Moon
et al. (2005) (G) A micro-gear pump Amirouche et al. (2009) (H) Microneedles with on-board fluid pumps Lin and Pisano (1999) (I) Flow of liquid
through glass hollow microneedles controlled by CO2 gas pressure Martanto et al. (2006) (J) An electrical microneedle applicator Verbaan et al. (2008)
(K) Flow of liquid through hollow microneedles controlled by a syringe pump Gupta et al. (2009). Reproduced with permission from Kim et al. (2012).
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wound dressings has revealed potential for enhancing healing rates
by fostering cellular activities and optimizing blood circulation to
the affected regions (Asadi and Torkaman, 2014; Fan et al., 2024; Hu
Y. W. et al., 2024). Additionally, the incorporation of antimicrobial

additives into wound dressings is increasingly gaining traction,
providing an additional layer of defense against infections, which
are a common complication in diabetic wounds (Chen et al., 2024d;
Firoozbahr et al., 2023; Li et al., 2024; Rozman et al., 2020). In

FIGURE 9
Schematic diagram of diabetic wound repair. Reproduced with permission from Aldahish et al. (2024).
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summary, advancements in wound dressing technologies signify a
considerable leap forward in the effective management of diabetic
wounds, offering tailored solutions.

4.2.1 Biocompatible materials
The biocompatibility of materials is a crucial factor in the

development of biomaterials for biomedical applications,
particularly in the context of diabetic wound healing
(Nandhakumar et al., 2022; Ren et al., 2022; Xu et al., 2023).
These materials are specifically designed to interact positively
with biological systems, thereby reducing adverse reactions while
facilitating healing processes (Chan et al., 2023; Naahidi et al., 2017).
Recent studies have underscored the promising potential of various
biocompatible materials, such as chitosan, alginate, and hyaluronic
acid, which have shown encouraging outcomes in promoting the
healing of diabetic wounds (Peng et al., 2022). Although clinical
trials remain limited, chitosan has emerged as a highly effective
alternative for modulating local inflammatory responses and
promoting wound healing, especially in patients with comorbid
conditions that hinder typical skin healing processes, such as
diabetes and vascular insufficiency (Maita et al., 2022). Chitosan-

based biomaterials have gained recognition for their efficacy in
wound healing, characterized by their antibacterial properties and
ability to enhance cellular proliferation, rendering them suitable
candidates for applications in wound care (Cai and Li, 2020;
Rajinikanth et al., 2024). Systematic reviews and meta-analyses
have established that, relative to the standard of care (SOC),
patients receiving placenta-derived biomaterial treatments
demonstrate a superior rate of complete wound healing in cases
of diabetic foot ulcers (DFUs) (Ruiz-Munoz et al., 2024). Chen et al.
corroborated that placenta-based tissue products exhibited the
highest likelihood of wound healing (p-score = 0.90), followed by
living cell skin substitutes (p-score = 0.70), acellular skin substitutes
(p-score = 0.56), and advanced topical dressings (p-score = 0.34)
when measured against standard DFU care (Chen L. et al., 2024).

Angiogenesis and cellular migration are fundamental processes
in wound healing, which are frequently disrupted in diabetic wounds
(Yang et al., 2024). Consequently, an optimal biomaterial should
facilitate the development of new blood vessels to enhance blood
flow and oxygen supply at the wound site. Achieving these
characteristics necessitates the engineering of physico-chemical
properties at both chemical and molecular levels, ensuring

FIGURE 10
Classification of wound dressings. Reproduced with permission from Alven et al. (2020).
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alignment with the required bioactivity for wound healing in
diabetic conditions (Sharma and Kishen, 2024) (Figure 12). This
necessity highlights the importance of comprehending the
structure–function relationship within biopolymers.

Moreover, integrating natural compounds into these materials
can enhance their biocompatibility and therapeutic efficacy, as
demonstrated by the incorporation of honey and plant extracts
in wound dressings (Prasathkumar and Sadhasivam, 2021; Yasin

et al., 2023). The advancement of nanomaterials also presents novel
opportunities for improving biocompatibility and functionality
(Barhoum et al., 2022). Research has shown that these materials
can enhance cellular responses and tissue integration (Bai et al.,
2020). Overall, the creation of biocompatible materials is crucial for
developing effective treatments for diabetic wounds, ensuring that
they not only promote healing but also seamlessly integrate with the
body’s biological systems.

TABLE 3 A selection of biomaterial products for clinical management of diabetic wounds.

Product name Main features Clinical application
status

Treatment
Stage

References

Codfish Skin (After
Decellularization and
Freeze-drying Treatment)

1.Excellent biocompatibility
2.Abundant in collagen and growth
factors
3.Natural antibacterial properties
4.Economical and readily available

In the Odinn Phase III clinical trial Diabetic foot ulcer complication
stage, especially suitable for deep
diabetic foot ulcers (UT grade 2 or
3), that is, ulcers penetrating to the
tendon or joint capsule (UT grade
2) or deep into the bone or joint
(UT grade 3)

Esmaeili et al. (2023), Pei
et al. (2023)

“Subiyi®” Xianglei Diabetic
Foot Ointment

1.Modulates macrophage activity
2.Enhances inflammation resolution
and promotes tissue repair
3.Reconfigures the wound
microenvironment

Utilized in Taiwan (China),
Singapore, Malaysia, etc.,; has
received Fast Track Certification
from the US FDA

Diabetic foot ulcer complication
stage, applicable to patients with
Wagner grade 1 diabetic foot
ulcers and wound cross-sectional
area less than 25 cm2

(Chinese Society of
Endocrinology, 2024)

Chitosan Pressure Ulcer and
Diabetic Foot Dressing

1.Forms an artificial skin for
protection and enhancement of
wound healing
2.Free from antibiotics, analgesics,
or anesthetics
3.No delayed hypersensitivity
reactions or irritation to skin and
mucous membranes

Aids in alleviating edema, pain,
ulceration, and other complications
associated with Stage I, II, and III
pressure ulcers and diabetic foot
ulcers

Diabetic foot ulcer complication
stage, can be used to relieve
complications such as stage I, II,
and III pressure ulcers and
diabetic foot ulcers

(Huang et al., 2023;
Mirbagheri et al., 2023; Ren
et al., 2022)

Mandabang Diabetic Foot
Wound Cleaning Liquid
Dressing

1.Highly efficient sterilization with a
safety profile
2.Broad antibacterial spectrum
3.Acts within 15–30 s, achieving a
99.9999% kill rate
4.Exhibits antibacterial properties
even at minimal concentrations

Applicable for wound care and
debridement across various
departments

Diabetic foot ulcer complication
stage

From the internet (http://
www.chinamsr.com/2021/
0108/116520.shtml)

Recombinant Lysozyme-
Antibacterial Peptide Fusion
Protein

1.Secrete growth factors to achieve
self-repair
2.Accelerate the formation of micro
vessels
3.Exhibits low toxicity and minimal
irritation
4.no inflammatory exudation

Under research Diabetic complication stage Chen et al. (2018)

Hairun Biology Anti-
Infection Dressings

1.Exhibits anti-infection capabilities
2.Reduces dressing change
frequency

Widely implemented in the clinical
management of diabetic foot ulcers
and other wound surfaces

Diabetic foot ulcer complication
stage

From the internet (https://
ylqx.qgyyzs.net/user/
web7105/)

Recombinant Growth
Factor Gel

1.Promotes wound healing
2.Aids in expediting the repair of
diabetic foot ulcers

Extensively employed in the
adjunctive treatment of wound
surface repairs, including diabetic
foot ulcers

Diabetic foot ulcer complication
stage

Das et al. (2023)

PDA@Ag/SerMA
microneedles

1.safe, effective, painless and
minimally invasive medication
administration through the skin
2.promote cell mitosis
3.accelerate wound healing
4. The wound healing rate of mice
reached 95% within 12 days
5.approximately 100% antimicrobial
efficacy against Staphylococcus
aureus and Escherichia coli under
808 nm near-infrared irradiation

Only in mice Diabetic foot ulcer complication
stage

Chen et al. (2024d)
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4.2.2 Bioactive molecules
Bioactive molecules play a critical role in the wound healing

process, especially for individuals with diabetes, where natural
healing mechanisms are often hindered (Moses et al., 2023;
Oprita et al., 2023; Sultana et al., 2024). These molecules can be
integrated into biomaterials to bolster their therapeutic effects. For
instance, growth factors, cytokines, and antimicrobial peptides are
currently being studied for their capacity to stimulate essential
cellular activities, including migration, proliferation, and
angiogenesis (Takahashi et al., 2021; Umehara et al., 2022; Yue
et al., 2022). Recent research indicates that the incorporation of
bioactive molecules into hydrogels and scaffolds can markedly
improve healing outcomes for chronic wounds (Chen et al.,
2024b; Rathna and Kulandhaivel, 2024; Yusuf and Adeleke,
2023). Figure 13 provides a schematic representation of various
biomaterial dressings. Additionally, studies have highlighted the
potential of metal nanoparticles as bioactive agents in diabetic
wound therapy, offering antimicrobial properties while facilitating
tissue regeneration (Zheng et al., 2024). The development of
intelligent biomaterials capable of controlling the release of these
bioactive molecules represents a promising research area, enabling
targeted delivery and enhanced therapeutic effectiveness (Huang
et al., 2023). Therefore, the strategic incorporation of bioactive
molecules alongside biomaterials marks a significant
advancement in diabetic wound treatment, fostering a more
effective healing process.

5 Challenges and future directions

The utilization of biomaterials in diabetes management
represents a promising Frontier with significant potential,
particularly in the domains of diabetes treatment and wound
healing. Nonetheless, the deployment of biomaterials for diabetes
management, especially in the context of wound healing, embodies a
dual-edged sword characterized by both benefits and drawbacks.

From a positive perspective, biomaterials such as hydrogels,
nanoparticles, and scaffolds present enhanced characteristics that
can markedly improve outcomes in wound healing (Fadilah et al.,
2022; Leng et al., 2022; Zhang Z. et al., 2024). These biomaterials can
be meticulously engineered to facilitate controlled drug release,
encourage angiogenesis, and amplify cellular responses, effectively
addressing the complex, multifactorial nature of diabetic wounds.
The integration of bioactive agents, including growth factors and
exosomes derived from stem cells, into these materials has the
potential to further stimulate tissue regeneration and enhance
healing rates (Jing et al., 2023). Furthermore, biomaterials can be
customized to exhibit antibacterial properties, thereby diminishing
the risk of infection, a frequent complication associated with diabetic
wounds (Zheng et al., 2024).

Conversely, the application of biomaterials is not devoid of
challenges. A notable concern is the risk of immune rejection or
adverse reactions, particularly in relation to synthetic materials
(Tripathi et al., 2023). The biocompatibility of these materials is

FIGURE 11
Presents a diagrammatic representation illustrating the various classifications and therapeutic mechanisms associated with biomaterials utilized in
the management of diabetic wounds. This illustration is reproduced with permission from Qin et al. (2022).
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a critical aspect that necessitates thorough evaluation to prevent
complications that could impede rather than promote healing
(Zhao et al., 2023). Additionally, the intricate environment of
diabetic wounds may hinder the effective performance of
biomaterials. Elevated levels of reactive oxygen species (ROS)
within diabetic wounds can undermine the efficacy of specific
biomaterials, highlighting the need for the development of
advanced formulations capable of alleviating oxidative stress
(Cai et al., 2023a; He et al., 2023; Yao et al., 2019). Moreover,
the cost and accessibility of sophisticated biomaterials may present
an obstacle to their wide-scale adoption in clinical settings (Ansari
and Darvishi, 2024; Chen and Liu, 2016). While these materials
exhibit considerable promise, their incorporation into standard

diabetes management requires a meticulous assessment of their
long-term effects, potential complications, and overall cost-
effectiveness.

In summary, although biomaterials present exciting prospects
for improving diabetes management and wound healing, it
remains imperative to weigh their benefits against potential
drawbacks. Critical factors regarding biocompatibility, safety
profiles, and long-term efficacy of biomaterials necessitate
further exploration to guarantee their safe integration into
clinical practice. Ongoing research and clinical trials will play a
vital role in identifying the most effective and safe applications of
biomaterials in this context, ultimately striving to enhance patient
outcomes in diabetes care.

FIGURE 12
Illustrates the structure–function paradigm as represented in Equation concerning biopolymers such as alginate, chitosan, hyaluronic acid, and
collagen, which target the critical features of chronic wounds. Reproduced with permission from Sharma and Kishen (2024).
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5.1 Safety and efficacy of biomaterials

The safety and efficacy of biomaterials are of paramount concern
as their use in clinical applications continues to expand (Kantak and
Bharate, 2022). These materials must engage positively with
biological systems, facilitating healing while minimizing adverse
reactions (Knopf-Marques et al., 2016). The challenge lies in
ensuring that these biomaterials do not provoke toxic responses
or incite chronic inflammation, which could compromise their
intended function. Advances in the understanding of the
interaction between biomaterials and the immune system have
paved the way for the design of materials capable of favorably
modulating immune responses, thereby enhancing their therapeutic
potential (Salthouse et al., 2023). Furthermore, the advancement of
nanotoxicity evaluations is essential, as nanoparticles employed in
biomaterials may pose risks distinct from their bulk forms (Akcan
et al., 2020). As this discipline progresses, it is imperative for
researchers to prioritize the creation of standardized protocols for
assessing the safety of biomaterials to streamline regulatory approval
processes and enhance clinical translation (Josyula et al., 2021).

In the last decade, a significant concentration of clinical research
on biomaterials has emerged, closely linked to advances in
fundamental research. Nonetheless, the findings derived from
basic research may not necessarily translate directly to human
applications (Socci et al., 2023). As previously noted in this
manuscript, the biocompatibility and efficacy of certain
established biodegradable biomaterials have been validated
through clinical trials (Arrizabalaga and Nollert, 2018). The
academic community broadly recognizes the potential for

biomaterials to be integrated with agents such as stem cells and
bioactive factors (Wilems et al., 2019). However, challenges such as
ethical considerations and the variability in source materials hinder
seamless clinical translation. Moreover, most animal models utilized
in fundamental research are rodents, which, while advantageous due
to their availability and established modeling techniques, present a
significant limitation: their wound-healing mechanisms differ from
those in humans (Nuutila et al., 2016). Several clinical trials have yet
to achieve the anticipated outcomes in human subjects, causing
stagnation in clinical translation efforts (Shamshad et al., 2023).

Consequently, it is crucial for basic research teams to foster close
collaboration with clinical departments. By aligning with genuine
clinical needs, they should conduct focused basic research aimed at
facilitating clinical translation, thereby identifying safer and more
effective biomaterials for application in clinical settings.

5.2 Possibility of personalized treatments

The capacity for real-time monitoring and data analysis marks a
significant evolution in the domain of biosensors. With the
progression of data analytics and machine learning, the
interpretation of biosensor data has become increasingly
sophisticated, enabling predictive insights and tailored healthcare
solutions (Childs et al., 2024; Zhang et al., 2021; Schackart and Yoon,
2021). Real-time health monitoring systems can amalgamate data
from various biosensors, offering a holistic view of a patient’s health
status (Paganelli et al., 2022; Wu et al., 2023; Li et al., 2021). This
integration allows for timely interventions and enhanced

FIGURE 13
A visual representation illustrating antibacterial dressings, nanodressings, and hydrogel dressings. Reproduced with permission from Jiang
et al. (2023).
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TABLE 4 Summarized some diabetes management systems that have obtained clinical approval.

Official title Conditions Intervention/Treatment ClinicalTrials.gov
ID

Study
completion

A Randomized Cross-over Trial Evaluating
Automated Insulin Delivery Technologies on
Hypoglycemia and Quality of Life in Elderly
Adults With Type 1 Diabetes

T1DM • Device: Tandemt: slim X2 with HCL or PLGS NCT04016662 2024–01

Use of the Guardian™ Connect System With
Smart Connected Devices

T1DM • Device: Guardian™ Connect system, InPen™
Basal smart cap, smart insulin pens, and
InPen™ Diabetes Management app

NCT04809285 2023–09

Individualized Planned Eating Patterns to
Improve Glycemic Management in
Adolescents With Type 1 Diabetes: A Pilot
Clinical Trial

T1DM • Behavioral: “MyPlan” -Individualized Planned
Eating Pattern

NCT05147324 2023–04

Randomized Controlled Trial To Assess the
Benefits of Dexcom Continuous Glucose
Monitoring With Glucose Telemetry System
for the Management of Diabetes in Long-term
Care Setting: The CGM-GTS in Long-term
Care

T2DM • Device: Dexcom G6 CGM with GTS
• Diagnostic Test: POC Blood Glucose Test +

Blinded CGM

NCT04818242 2022–10

ABC [Afrezza With Basal Combination]: A
Phase 4 Study of Mealtime Control With
Afrezza in Adult Subjects With Type
1 Diabetes Mellitus in Combination With an
Automated Insulin Pump or Insulin Degludec

T1DM • Biological: Afrezza (insulin human)
Inhalation Powder

• Biological: insulin degludec
• Device: Continuous Subcutaneous Insulin
Infusion (CSII) pump with Automatic Insulin
Delivery (AID)

NCT05243628 2022–10

Hybrid Closed Loop Therapy and Verapamil
for Beta Cell Preservation in New Onset Type
1 Diabetes (CLVer)

T1DM • Device: HCL
• Drug: verapamil 120 mg tablet
• Device: non-HCL
• Drug: placebo

NCT04233034 2022–09

Automated Insulin Delivery for INpatients
With DysGlycemia (AIDING) Feasibility
Study

DM • Device: The Omnipod 5/Horizon HCL system NCT04714216 2022–08

Feasibility of Outpatient Automated Blood
Glucose Control With the iLet Bionic
Pancreas for Treatment of Cystic Fibrosis
Related Diabetes

Cystic Fibrosis-
related Diabetes

• Device: Bionic Pancreas
• Other: Usual Care

NCT03258853 2022–06

Demonstration Study of the Interest of the
MEDTRUM A7+ TouchCare Insulin Patch
Pump Versus INSULET Omnipod® Patch
Pump

DM • Device: Medtrum A7+ insulin Pump
• Biological: Lab A1C

NCT04223973 2021–06

QBSAfe: A Novel Approach to Diabetes
Management Focused on Quality of Life,
Burden of Treatment, Social Integration and
Avoidance of Future Events

DM • Other: QBSAfe Toolkit NCT04514523 2020–09

Assessment of a Novel Sensing Catheter
During Automated Insulin Delivery in
Patients with Type 1 Diabetes

T1DM • Device: Artificial Pancreas Control system
(APC)

• Device: Pacific Diabetes Technologies CGM
Insulin Infusion system

NCT03528174 2018–07

ACCU-CHEK Connect Personal Diabetes
Management Study (PDM)

T1DM • Device: ACCU-CHEK NCT02600845 2017–02

AMulticenter Study of Outpatient Automated
Blood Glucose Control With a Bihormonal
Bionic Pancreas

T1DM • Device: Bionic Pancreas
• Device: Insulin pump with or without CGM

NCT02092220 2016–12

The Mobile Insulin Titration Intervention
(MITI) Study: Innovative Chronic Disease
Management of Diabetes

DM • Other: Mobile Insulin Titration Intervention NCT01879579 2015–06

Diabetes Remote Care Management System DM • Device: DRMS NCT01354015 2014–09

Sensor and Software Use for Improved
Glucose Control in MDI Managed Diabetes

DM • Device: FreeStyle Navigator
• Device: Standard SMBG

NCT01713348 2013–07
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management of chronic ailments, including diabetes and
cardiovascular conditions. Additionally, the emergence of mobile
applications that connect with biosensors empowers patients to
conveniently monitor their health metrics, thus promoting
greater involvement in their own care (Gecili et al., 2020). The
future of biosensors is poised to enhance patient outcomes and
healthcare efficiency through the provision of actionable insights
derived from real-time data analysis.

The shift towards personalized medicine signifies a
groundbreaking approach within healthcare, particularly
regarding biomaterials. Individual patients exhibit variability
in their financial resources and a range of personal factors. A
systematic analysis conducted by Maria et al. revealed no
statistically significant differences in HbA1c values among
patients with type 1, type 2, or gestational diabetes when
utilizing different diabetes monitoring systems (DMS). Future
endeavors in personalized medicine will necessitate more
extensive research to assess the effectiveness, cost-
effectiveness, and comparative efficacy of DMS, allowing for

stratification into the most suitable subgroups of diabetic
patients (Kamusheva et al., 2021). Table 4 lists some diabetes
management systems that have obtained clinical approval. By
customizing treatments to individual patient profiles, which
include genetic, environmental, and lifestyle factors, healthcare
providers can enhance therapeutic outcomes and reduce adverse
effects (Kalra et al., 2022). This concept is illustrated in Figure 14.
The incorporation of artificial intelligence and machine learning
into the analysis of patient data can substantially improve the
accuracy of personalized treatment strategies (Clinton and
Cross, 2023).

Nevertheless, challenges still exist in terms of the accessibility of
personalized therapies and the need for solid clinical evidence to
support their efficacy across diverse populations (Varela-Moreno
et al., 2021). Future research must concentrate on developing
scalable models for personalized interventions that can be
effectively implemented in clinical practice, ensuring that all
patients can benefit from these advancements (Chen et al., 2024c;
Huckvale et al., 2019; Lydiard and Nemeroff, 2019).

FIGURE 14
Depicts the Cycle of Integrated Personalized Diabetes Management, which comprises six iterative steps and forms a continuous revolving circle,
applicable to each patient over differing timeframes. Reproduced with permission from Kalra et al. (2022).
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5.3 Importance of multidisciplinary
collaboration

Multidisciplinary collaboration is essential for tackling the
intricate challenges associated with the development and
execution of biomaterials and personalized treatments. By uniting
expertise from various fields, including engineering, biology,
medicine, and data science, researchers can foster innovation and
accelerate the application of scientific breakthroughs in clinical
settings. Effective collaboration not only enhances research
quality but also addresses the complex dimensions of health
issues, leading to more holistic solutions (Errecaborde et al.,
2019). For instance, collaborative initiatives in bioimage analysis
have demonstrated the potential to enhance diagnostic precision
and treatment planning (Schlaeppi et al., 2022). Furthermore,
establishing standards for interprofessional collaboration can
improve communication and cooperation among healthcare
providers, ultimately leading to better patient outcomes (Bowman
et al., 2021). As the healthcare landscape evolves, nurturing a culture
of collaboration will be critical in overcoming obstacles and
advancing the disciplines of biomaterials and personalized medicine.

6 Conclusion

The prevalence of diabetes, a prevalent metabolic disorder, is
escalating globally. Conventional treatment modalities, such as
pharmacological interventions and lifestyle modifications, often
fall short of achieving optimal glycemic control due to issues like
poor patient adherence and complex treatment protocols. There is
an urgent need for innovative approaches.

The integration of multidisciplinary strategies will be vital for
advancing biomedical research in the future. By merging
perspectives from materials science, biomedical engineering,
and clinical medicine, researchers can devise innovative
solutions to tackle the multifaceted challenges posed by
diabetes. Biomaterials encounter hurdles such as immune
rejection, biocompatibility, and high costs in diabetes
management applications. It is imperative to synthesize these
findings through systematic reviews and meta-analyses, which
can elucidate which materials and delivery systems are most
likely to yield favorable outcomes for patients. This
collaborative effort can facilitate the design of biomaterials that

not only enhance insulin delivery and foster tissue regeneration
but also prioritize patient safety and comfort.

In the future, it is necessary to strengthen research on the safety and
effectiveness of biomaterials and establish standardized evaluation
protocols; promote personalized treatment and formulate precise
treatment plans according to individual differences of patients;
strengthen multidisciplinary cooperation and promote the
transformation of biomaterials from laboratory to clinic to improve
the treatment effect and quality of life of diabetic patients.
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