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Over the past 20 years, researchers have used multi-omics techniques to study
microbial diversity and metabolic function on tobacco leaves. The unique
metabolic function of tobacco microorganisms has attracted extensive
attention from researchers, which is an important research field in tobacco
industry to improve the intrinsic quality of tobacco leaf with microbial agents.
The microorganisms are particularly rich on the surface of tobacco leaf, and their
metabolic function is closely related to the change of tobacco leaf chemical
composition. Some microorganisms have important metabolic functions, such
as: degrading macromolecular and harmful substances in tobacco leaves, and
they have different degradation rates and pathways for the substances. At
present, many functions of tobacco leaf microorganisms have not been fully
verified and analyzed. In the future, more novel culture methods are needed to
screen and isolate microorganisms on the surface of tobacco leaves, deeply tap
their metabolic potential, explore the application value of microorganisms in the
tobacco industry, and further promote the innovation and development of the
industry.
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1 Introduction

Tobacco (Nicotiana tabacum L.) is an important agricultural nonfood crop and serves
as the primary raw material for tobacco products (Zhang et al., 2020). Globally, China is the
largest producer of tobacco where it is extensively cultivated in regions of South China,
including Hainan and Sichuan (Xing et al., 2021). Tobacco products contain more than
6,000 chemicals, such as proteins, cellulose, starch, nicotine, tobacco-specific nitrosamines
(TSNA) and numerous other toxicants (Chopyk et al., 2017b). It is well established that
nicotine and TSNA, the predominant nitrogenous compounds in tobacco plants, play a
crucial role in driving smoking addiction (Wang et al., 2018a) and pose a substantial threat
to smokers’health (Chopyk et al., 2017b) (Figure 1).

The high concentration of starch, protein and other macromolecules causes an irritating
burnt odor in tobacco leaves during combustion and reduce sensory quality. These
macromolecules organic substances significantly affect the release of harmful substances
in the flue gas during incomplete combustion (Yuan et al., 2006). Therefore, reducing the
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content of macromolecules and harmful substances in cigarette
products can reduce the addiction and health hazards of
cigarettes to smoking consumers (Figure 1). Previous studies
have reported that the specific functional microorganisms are
highly effective in improving the quality (Huang et al., 2022a).
These microorganisms can enhance tobacco quality by improving
aroma, degrading harmful substances, such as nicotine (Liu et al.,
2015; Fitzpatrick, 2018; Xia et al., 2018; Mu et al., 2020; Zhang et al.,
2022), TSNA (Wang and Huang, 2006; Shan et al., 2011; Jiang et al.,
2021b), macromolecules (Li et al., 2006), and optimizing other
desirable characteristics for smoking products during the aging
process of tobacco leaves (Wang et al., 2018b).

Thus, the specific objectives of this review are: 1) to explore the
community composition of tobacco microorganisms. 2) to outline
the functions of tobacco microorganisms and discuss their
biodegradation 3) to recap the isolation and culture techniques
for tobacco-degrading microorganisms and recommend future
research avenues in tobacco microbiology. This review provides
an updated overview of the detailed description of microbial
community composition on tobacco and its relationship with
tobacco’s chemical composition, offering a more comprehensive
and detailed analysis than previous reviews.

2 The structure and determinants of the
tobacco microorganism community

2.1 The community composition of tobacco
microorganisms

The microbial species identified through molecular techniques
are abundant on tobacco leaves, in cigarettes, and across various
smokeless tobacco brands (Chopyk et al., 2017b). It has been found
that the number of culturable bacteria in tobacco leaves collected

from plantations ranges between 2 × 103 CFU/g and 7 × 105 CFU/g,
while those frommanufacturing plants range between 2 × 103 CFU/g
and 8 × 103 CFU/g (Larsson et al., 2008). Most existing research
concentrating on the microbial diversity during different aging
periods of tobacco leaves had been reported in the previous
studies (Huang et al., 2010; Chen et al., 2018; Wang et al., 2018a;
Zhang et al., 2020; Hu et al., 2021; Liu F. et al., 2021). High
throughput sequencing analysis has revealed that the dominant
bacterial communities on the surfaces of aging flue-cured tobacco
belong to 48 genera, 36 families, and 7 phyla (Wang et al., 2018b).
The predominant genera on flue-cured tobacco leaves include
Bacillus, Pseudomonas, Enterobacter, Sphingomonas, Pantoea and
Methylobacterium (Huang et al., 2010). And, cigar tobacco also
exhibits a higher relative abundance of Limnobacter,
Brevundimonas, unidentified_Cyanobacteria and Pseudomonas,
with most of these species classified within just two bacterial
phyla: Proteobacteria and Cyanobacteria (Xing et al., 2021). The
core bacterial operational taxonomic units (OTUs) identified in
cigarette tobacco comprise Bacillus pumilus, Rhizobium sp.,
Sphingomonas sp., unidentified members of Enterobacteriaceae,
Pantoea sp., Pseudomonas oryzihabitans and Pseudomonas putida
(Chopyk et al., 2017b). The bacterial communities in smokeless
tobacco are primarily dominated by the phyla Firmicutes,
Proteobacteria, Actinobacteria and Bacteroidetes (Han et al.,
2016; Tyx et al., 2016; Smyth et al., 2019). Additionally, some
bacterial endophytes have been identified in the leaves of
tobacco, such as Clostridium sp. (Saito et al., 2008). At present,
studies on the community composition of endophytic bacteria in
tobacco leaf are very limited. Future studies need to further explore
the diversity of endophytic bacteria in tobacco leaf and explore its
importance in the process of tobacco leaf quality improvement.

Fungi are also an important group in the microbial composition
of tobacco leaves (Chen et al., 2020). Studies have reported that the
number of culturable fungi in plantation-grown tobacco leaves

FIGURE 1
Human exposure to tobacco and its health outcomes.
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ranges from 0.3 × 103 CFU/g to 3 × 103 CFU/g and can reach up to
8 × 103 CFU/g in the leaves collected from a manufacturing plants
(Larsson et al., 2008). The diversity of fungi in the phyllosphere of
tobacco leaves have been extensively studied using high throughput
sequencing technologies (Lv et al., 2013). These studies revealed the
existence of most abundant fungal genera including Alternaria,
Phoma, Cercospora, Aspergillus and Rhizopus on tobacco leaves
during curing (Chen et al., 2020). Whereas, genera such as
Cladosporium, Epicoccum, Trichoderma, Nigrospora, Penicillium,
Chaetomium and Fusarium are most frequently isolated and
cultured from flue-cured and non-flue-cured tobacco leaves
(Nagrale et al., 2016). Moreover, some fungal endophytes have
also been found in the leaves, stems and roots of tobacco plants.
At the phylum level, Ascomycota and Basidiomycota dominate
fungal endophyte communities (Yuan et al., 2018; Jiang et al.,
2021a). Genera such as Altermaria, Apiotrichum, Cladosporium,
and Microdium are particularly abundant in both ordinary and
“cherry-red” tobacco (Jiang et al., 2021a).

It is worth noting that tobacco-associated microorganisms also
include potentially pathogenic species such as P. putida (Chopyk et al.,
2017a; 2017b). And some fungi on tobacco leaves, such as Alternaria
(Wang H. et al., 2016), Phoma Rhizopus, Epicoccum (Guo et al., 2020),
are known plant pathogens. Up to now, the community composition of
pathogenic microorganisms in tobacco microorganisms has not been
reported, and the risk of ingestion and exposure to humans has not been
analyzed and discussed in depth.

2.2 Factors influencing the community
composition of tobacco microorganisms

The community composition of tobacco-associated
microorganisms is dynamic, and influenced by various
environmental factors, such as temperature, humidity and
pH (Chopyk et al., 2017b; Chen et al., 2020). In bacterial
community on the tobacco leaf of flue-curing procedure, the
abundance of Pantoea and Variovorax is positively correlated with
temperature and humidity, whereas the abundance of Nesterenkonia,
Staphylococcus, Chryseomonas, Rhodococcus, Paracoccus, Serratia and
Ralstonia shows a negative correlation with temperature and humidity
(Hu et al., 2021). In the fungal community of the tobacco leaf
phyllosphere during curing of leaves, the abundance of
Golovinomyces is significantly affected by temperature, while the
abundance of Alternaria, Phoma, Trichoderma, Leptosphaerulina,
Gibellulopsis and Candida is notably impacted by relative humidity
(Chen et al., 2020). One study also found that the fungal community
diversity presented an obvious negative correlation with temperature
and humidity during the flue-curing process (Hu et al., 2021).
Furthermore, the community composition and diversity of tobacco-
associated microorganisms are also influenced by fermentation
duration (Liu F. et al., 2021). For example, the relative abundance of
Klebsiella variicola, Klebsiella pneumoniae, Serratia, and Salmonella
initially increases, peaking after 16 h before subsequently decreasing as
the fermentation process continues to 24 and 36 h (Huang et al., 2024).
Additionally, spatiotemporal variations affect the community
composition of tobacco-associated microorganisms (Xing et al.,
2021). For instance, the fungal community structure on the surface
of tobacco leaves varies between different areas (Chen et al., 2018).

3 Functional roles of tobacco
microorganisms

Tobacco microorganisms play crucial metabolic roles (Huang
et al., 2024), which have a close connection with the chemical
components of tobacco leaves (Liu F. et al., 2021). Previous study
reported many attractive metabolic capacities in the aging flue-cured
tobaccos microorganisms, including those involved in amino acid
metabolism, carbohydrate metabolism, vitamin metabolism, the
biosynthesis of flavors and fragrances, and the degradation of
harmful compounds such as nicotine and nitrite (Wang et al.,
2018b). During the aging process of tobacco leaves, the metabolic
activities of microorganisms can consume protein and cellulose in
tobacco leaves (Mou et al., 2020). At the same time, the
macromolecular substances in tobacco leaf were decomposed into
small molecular flavor substances such as viololanone, damalone
and furfural (Mou et al., 2020). Moreover, it has been observed that
the introduction of fungal agents during the aging of tobacco leaves
can promote the co-regulation of chemical composition (Li et al.,
2009) and facilitate the conversion of compounds within the leaves
(Zheng et al., 2003).

Numerous reports have highlighted the crucial role of tobacco
microorganisms in degrading macromolecular substances and
harmful compounds (Chen et al., 2015; Liu F. et al., 2021;
Huang et al., 2022a; 2022b), including the degradation of both
types of hydrocarbons, i.e., aliphatic non-methane and aromatic
compounds and other harmful substances (Liu F. et al., 2021).
Several investigations have been published on the degradation of
substances such as β-carotenes, starch, protein, phytosterols, as
well as the harmful compounds like nicotine and TSNA (Table 1).
For example, Bacillus species are known to degrade cellulose (Li
et al., 2006), proteins (Chen et al., 2015), carotene (Huang et al.,
2022a) and other compounds, thereby reducing irritation,
bitterness, and astringency in tobacco during combustion.
Consequently, several Bacillus species, including Bacillus
subtilis, Bacillus coagulans, Bacillus circulans, Bacillus
megaterium and Bacillus thuringiensis, have been employed to
enhance the development of desirable aromas and improve the
smoking qualities of tobacco (Zhao et al., 2007; Wang et al.,
2018b). Sphingomonas sp. (Ma et al., 2016), P. putida HSM-C2
(Huang et al., 2022b), Agrobaterium tumefaciens sp. (Wang and
Huang, 2006) have also been employed to degrade other
substances, such as chlorogenic acid, coumarin, and TSNA. In
addition, some fungi, including Trametes versicolor (Su et al.,
2016), Trametes hirsute (Su et al., 2016), Phanerochaete
chrysosporium (Su et al., 2016), Moniliales Gliocephalias
sp. (Yang X. et al., 2014) have also shown effectiveness in
degrading materials such as hemicellulose, and cellulose (Table 1).

Furthermore, investigations into tobacco microorganism
isolates have confirmed that certain bacteria exhibit a high
degradation efficiency (>99%) for nicotine (Table 1). Notable
examples include Agrobacterium sp. S33 (Wang S. N. et al.,
2009), Acinetobacter sp. TW (Wang et al., 2011), Pseudomonas
sp. Nic22 (Chen et al., 2008), Pseudomonas sp. (Wang et al., 2004), P.
putida (Wei et al., 2008; 2009), Rhodococcus sp. Y22 (Gong et al.,
2009), and Sphingomonas sp. TY (Wang et al., 2011). Therefore, it is
of great scientific significance and practical value to search for
functional strains with high degradation ability to nicotine to
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TABLE 1 Summary of the tobacco components degradation by bacterial isolates and their culture media.

Strains Medium Substrate Sources Optimal
conditions
(pH and Tema)

Time Degrading
efficiency

References

Bacteria

Agrobacterium sp. S33 Liquid minimal
medium

Nicotine Tobacco soil pH 7; 30°C 6 h 100% Wang S. N. et al.
(2009)

Acinetobacter sp. ND12 Inorganic salt
medium

Nicotine Tobacco soil pH 6; 28°C 11 h 90% Li et al. (2011)

Acinetobacter sp. TW Inorganic salt
medium

Nicotine Tobacco wastes pH 7; 30°C 12 h 100% Wang et al. (2011)

Arthrobacter
sp. M2012083

— Nicotine Tobacco waste — — — Yao et al. (2012)

Arthrobacter sp. HF-2 Inorganic salt
medium

Nicotine Soil pH 7.5; 30°C 43 h 100% Ruan et al. (2006)

Arthrobacter sp. aRF-1 Inorganic salt
medium

Nicotine Soil pH 7; 30°C 72 h 93.8% Ruan et al. (2018)

Bacterium sp. J54 Liquid NIM
medium

Nicotine Tobacco leaf 30°C 54 h 85% Jiang et al. (2021b)

Ochrobactrum sp. 4-40 Inorganic salt
medium

Nicotine Tobacco
plantation soil

pH 7.0; 28°C 12 h 51.5% Ma et al. (2012)

Ochrobactrum
intermedium DN2

Utrient agar slants
medium

Nicotine Tobacco soil pH 7.0; 30°C–37°C 24 h 93.4% Yuan et al. (2007)

Pseudomonas
plecoglossicida TND35

Nicotine
inorganic medium

Nicotine Tobacco soil pH 7; 30°C 18 h 93.1% Raman et al.
(2014)

Pseudoxanthomonas
sp. 5-52

Inorganic salt
medium

Nicotine Tobacco
plantation soil

pH 7.0; 28°C 12 h 47.2% Ma et al. (2012)

Pseudomonas
stutzeri ZCJ

Inorganic salt
medium

Nicotine Tobacco leaf pH 7.4; 37°C 24 h 1.5 g/L Zhao et al. (2012)

Pseudomonas
sp. ZUTSKD

Inorganic salt
medium

Nicotine Tobacco leaf pH 7.0; 30°C 9 h 96.1% Zhong et al. (2010)

Pseudomonas sp. HF-1 Inorganic salt
medium

Nicotine Tobacco waste
soil

pH 7.0; 30°C 25 h 99.6% Ruan et al. (2005)

Pseudomonas sp. Nic22 Inorganic salt
medium

Nicotine Tobacco soil pH 6.5; 30°C–34°C 60 h 99.9% Chen et al. (2008)

Pseudomonas sp. Inorganic salt
medium

Nicotine Tobacco soil pH 7; 30°C 10 h 100% Wang et al. (2004)

Pseudomonas putida Nicotine medium Nicotine Tobacco soil pH 7; 30°C 12 h 100% Wei et al. (2008),
2009

Pseudomonas sp. CS3 Mineral salt
medium

Nicotine Tobacco soil pH 7; 30°C 24 h 98.6% Wang et al. (2012)

Pseudomonas sp. S-1 Mineral salts
medium

Nicotine Tobacco
powdery wastes

pH 7; 30°C 12 h 100% Pan et al. (2018)

Rhodococcus sp. Y22 Nicotine selective
medium

Nicotine Tobacco soil pH 7; 28°C 52 h 100% Gong et al. (2009)

Sinorhizobium sp. 5-28 Inorganic salt
medium

Nicotine Tobacco
plantation soil

pH 7.0; 28°C 12 h 72.5% Ma et al. (2012)

Sphingomonas sp. TY Inorganic salt
medium

Nicotine Tobacco wastes pH 7; 30°C 18 h 100% Wang et al. (2011)

Saccharomyces
cerevisiae sp.

Enrichment
medium

β-carotenes Tobacco leaf pH 8; 28°C 2 d 97.13% Jia et al. (2015)

(Continued on following page)

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Hu et al. 10.3389/fbioe.2025.1548323

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1548323


improve tobacco quality. However, some bacteria have low
degradation efficiency, such as Pseudoxanthomonas sp. 5-52
(47.2%), Ochrobactrum sp. 4-40 (51.5%) and Sinorhizobium
sp. 5-28 (72.5%) (Ma et al., 2012). Additionally, fungi also play
an important role in the degradation of tobacco macromolecular
substances, such as lignin and so on (Table 1), but the degradation
efficiency of lignin is relatively low, such as T. versicolor (37.70%) (Su
et al., 2016), T. hirsute (51.56%) (Su et al., 2016) and Bacillus
amyloliquefaciens SL-7 (28.55%) (Mei et al., 2020). The different
degradation efficiency may be related to the degradation

characteristics of strains and culture conditions (Ruan et al.,
2005; Gaekwad and Vinchurkar, 2018; Huang et al., 2022b). For
instance, the degradation efficiency of nicotine was increased within
the pH range (5.5–7.5) and decreased within the pH range (7.5–9.5)
(Ruan et al., 2005). Ruan et al. found that the rising of temperature
from 29°C to 41°C, could lead into profound decrease in the nicotine
degradation (Ruan et al., 2005). While, Huang et al. revealed that
variations in carbon or nitrogen source type, and ammonium nitrate
contents cause a significant impact on the degradation rate of
coumarin (Huang et al., 2022b).

TABLE 1 (Continued) Summary of the tobacco components degradation by bacterial isolates and their culture media.

Strains Medium Substrate Sources Optimal
conditions
(pH and Tema)

Time Degrading
efficiency

References

Pseudomonas
fluorescens sp.

Enrichment
medium

Nitrate Tobacco leaf pH 7.3; 30°C 10 d 68.77% Shan et al. (2011)

Pseudomonas
fluorescens sp.

Enrichment
medium

Nitrite Tobacco leaf pH 7.3; 30°C 10 d 45.57% Shan et al. (2011)

Bacterium sp. J54 Liquid NIM
medium

Nitrosamines Tobacco leaf 30°C 54 h 26.22% Jiang et al. (2021b)

Bacillus
amyloliquefaciens DA9

Liquid screening
medium

Nitrosamines Tobacco soil — 45 d 47% Wei et al. (2014)

Sphingomonas sp. Liquid mineral
medium

Chlorogenic
acid

Tobacco leaf pH 7.0; 37°C 6 h 100% Ma et al. (2016)

Pseudomonas putida
HSM-C2

Fermentation
medium

Coumarin Soil pH 7; 30°C 24 h 99.83% Huang et al.
(2022b)

Agrobaterium
tumefaciens sp.

Tryptic soy broth
medium

TSNA Tobacco leaf — 45 d 81.32% Wang and Huang
(2006)

Bacillus subtilis FYZ1-3 Starch selective
medium

Starch Tobacco waste
piles

— — — Ye et al. (2023)

Bacillus subtilis FYZ1-3 Protein selective
medium

Protein Tobacco waste
piles

— — — Ye et al. (2023)

Paenibacillus sp. Enrichment
medium

Phytosterols Tobacco leaf pH 7.0; 37°C 50 h 38.5% Ye et al. (2017)

Fungi

Aspergillus oryzae 112822 Tobacco leaf
extract medium

Nicotine Tobacco leaf pH 6.5; 28°C 40 h 2.19 g/L Meng et al. (2010)

Trametes versicolor — Lignin — — 15 d 37.70% Su et al. (2016)

Trametes hirsute — Lignin — — 15 d 51.56% Su et al. (2016)

Phanerochaete
chrysosporium

— Lignin — — 15 d 53.75% Su et al. (2016)

Bacillus
amyloliquefaciens SL-7

Rescreening
medium

Lignin Tobacco straw pH 7.0; 37°C 15 d 28.55% Mei et al. (2020)

Moniliales
Gliocephalias sp.

Enzyme-
producing
medium

Lignin Soil pH 6; 35°C 30 d 39.39% Yang X. et al.
(2014)

Phanerochaete
chrysosporium

— Hemicellulose — — 15 d 24.28% Su et al. (2016)

Trametes hirsute — Cellulose — — 15 d 28.19% Su et al. (2016)

Moniliales
Gliocephalias sp.

Enzyme-
producing
medium

Cellulose Soil pH 6; 35°C 30 d 36% Yang X. et al.
(2014)
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The role of microorganisms in the fermentation process of
tobacco leaves is closely related to the enzymatic reaction, as
microorganisms secrete various enzymes (e.g., alpha-amylase
(Ullah et al., 2021), protease (Yogesh and Halami, 2015),
cellulase (Araújo et al., 2021) and so on) to the exocytosomes
during their growth and development. These enzymes released
into the extracellular environment catalyze the decomposition or
synthesis of certain substances in tobacco leaves. Study reported that
the neutral aroma-enhancing compound was positively correlated
with the carbohydrate-active enzymes, such as glycoside hydrolase,
glycosyltransferase, polysaccharide lyase, carbohydrate esterase, and
auxiliary active enzyme (Huang et al., 2024). Based on the enzyme-
producing characteristics of different microorganisms, some hybrid
strains have also been utilized to optimize tobacco fermentation. For

example, co-cultivation of Bacillus amyloliquefaciens LB with high
alpha-amylase activity and Bacillus kochii SC with high neutral
protease activity has been used to improve sensory quality of flue-
cured tobacco (Wu et al., 2021). And the complementary culture of
Erwinia carotovora could effectively degrade pectin and cellulose by
producing pectin- and cellulose-degrading enzymes and then be
used for the production of the neutral aroma-enhancing compound
(Huang et al., 2024). Microorganisms on the surface of tobacco
leaves produce not only xylanase, cellulase, pectinase, protease and
amylase (Fan et al., 2013), but also nicotine-degrading
enzymes (Table 2).

In recent years, the metabolism of harmful substances in
prokaryotes, including the catabolic pathways for its degradation
and the enzymes involved during the pathways, has been

TABLE 2 The key enzymes and genes in the microorganisms for degradation of chemical components of tobacco.

Degrading substance Strains Enzyme/gene References

Nicotine Arthrobacter sp. 6-hydroxy-L-nicotine oxidase (6Hlno); 2,6-
dihydroxypseudooxynicotine hydrolase (Ponh)

Huang et al. (2020)

Arthrobacter nitrophenolicus ND6 2,6-dihydroxypyridine 3-hydroxylase (Dhph); nicotine
dehydrogenase subunit (NdhA)

Wang et al. (2023)

6-hydroxypseudooxynicotine dehydrogenase subunit (KdhL);
nicotine blue oxidoreductase (NboR)

2-furoylCoA dehydrogenase (HmfB); (S)-6-hydroxynicotine
oxidase (NctB); nicotine oxidoreductase (Nod); aerobic carbon-
monoxide dehydrogenase (CodH); nicotinamidase (PncA);
molybdenum cofactor cytidylyltransferase (MobA)

Nicotine Pseudomonas sp. nicotine oxidoreductase (NicA); pseudooxynicotine amine oxidase
(Pnao)

Huang et al. (2020)

Pseudomonas putida S16 3-succinoylsemialdehyde-pyridne dehydrogenase (Sapd); 3-
succinoylpyridine monooxygenase (SpmABC)

Xia et al. (2018)

Pseudomonas sp. ZZ-5 6-hydroxy-3-succinoylpyridine hydroxylase (HspB); 2,5-
dihydroxypyridine dioxygenase (Hpo)

Hu et al. (2019)

N-formylmaleamate deformylase (Nfo); maleamate
amidohydrolase (Ami); maleate cis/trans-isomerase (Iso);
nicotinate hydroxylase (NicAB); 6-hydroxynicotinate
monooxygenase (NicC)

Thisted et al. (2019)

2,5-dihydroxypyridine dioxygenase (NicX); N-formylmaleamate
deformylase (NicD); maleamate amidohydrolase (NicF); maleate
cis/trans-isomerase (NicE)

Wei et al. (2017)

Nicotine Agrobacterium tumefaciens S33 nicotine dehydrogenase (ndhAB); 6-hydroxynicotine oxidase
(hno); aldehyde dehydrogenase (ald)

Huang et al. (2020)

Shinella sp. HZN7 6-hydroxy-3-succinoyl-pyridine hydroxylase (hsh); 6-
hydroxypseudooxynicotine dehydrogenase (pno)

Ochrobactrum sp. SJY1 N-formylmaleamate deformylase (nfo); maleate cis/trans-
isomerase (Iso); maleamate amidohydrolase (Ami)

Nicotine Bacillus subtilis FYZ1-3 nadE, gabD, yfkN, ppnK, pncC, deoD, cca, punA, nadD, nadA,
nadC, nadB, ppnK, pncB

Ye et al. (2023)

Starch Bacillus subtilis ZIM3 amylase amyE1 Dai et al. (2020)

Cellulose Bacillus subtilis ZIM3 cellulase celE1 Dai et al. (2020)

Pectin Bacillus tequilensis CAS-MEI-2-33 alkaline pectinase Zhang et al. (2019)

Nitrite Debaryomyces hansenii TOB-Y7 nitrite reductase (NiR) Vigliotta et al. (2007)

Nitrite Pseudomonas putida strain S16 nicA Tang et al. (2009)

Xylan Bacillus methylotrophicus sp. xylanase Fan et al. (2013)
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systemically investigated (Meng et al., 2010; Fitzpatrick, 2018;
Huang et al., 2020), and nicotine metabolism is one of the most
extensively studied pathways. (Fitzpatrick, 2018; Huang et al., 2020;
Mu et al., 2020). In bacteria, three nicotine degradation pathways
have been reported: the pyridine pathway, the pyrrolidine pathway
and the hybrid Pathway (a combination of pyridine and pyrrolidine
pathways, known as the VPP pathway) (Meng et al., 2010;
Fitzpatrick, 2018; Huang et al., 2020). In fungi, such as
Aspergillus oryzae, the demethylation pathway has been reported
to be employed, while the pathways in the eukaryote remain unclear
(Meng et al., 2010) (Figure 2). Key enzymes, such as Pnao, Pno and
Ponh, have been identified as the representative enzymes in the
pyrrolidine, pyridine, and VPP pathways, respectively (Table 2) (Mu
et al., 2020). The methylamine from pseudooxynicotine and 6-
hydroxypseudooxynicotine were removed by Pnao in the
pyrrolidine pathway and Pno in the VPP pathway, while 2,6-
dihydroxypseudooxynicotine was hydrolyzed to 2,6-
dihydroxypyridine and 4-methylaminobutyrate by Ponh in the
pyridine pathway (Mu et al., 2020). Additionally, amylase
amyE1 and cellulase celE1 can be produced by Bacillus subtilis
ZIM3, which can simultaneously degrade both starch and cellulose
(Table 2) (Dai et al., 2020). Compared to nicotine, the metabolism of
TSNA and macromolecule (such as starch, lignin and protein) has
not been fully resolved in the strains (Table 1). Therefore, this
situation limits the in-depth analysis to metabolism pathways and
functions of TSNA and macromolecule in the environment.

Studies indicate that many bacteria possess all the essential
genetic elements for nicotine catabolism (Mu et al., 2020).
Nicotine-degrading genes annotated from the metagenome data,

include ndhA, nctB, kdhL, nboR, and dhponh are found to be actively
involved in the pyridine pathway, which play an important roles in
whole process of nicotine metabolism (Wang et al., 2023).
Interestingly, ndhA and nctB are also the critical genes in the
VPP pathway (Wang et al., 2023). Study reported that the ndhA
gene is annotated to encode the isoquinoline 1-oxidoreductase alpha
subunits, which can catalyze the hydroxylation of isoquinoline to 1-
oxo-1,2-dihydroisoquinoline (Table 2) (Li et al., 2016). Additionally,
genomic analysis of Bacillus subtilis FYZ1-3 revealed 14 functional
genes associated with nicotine metabolism, and primarily located on
the distinct genomic island of Bacillus subtilis FYZ1-3 (Ye et al.,
2023). The homologous genes involved in nicotine catabolism, such
as cup, ponh, kdhL, TR2, kdhM, kdhS, nit, ndhL, ndhS, ndhM, coxG,
dhph, pkc, mox, TR1, 6hlno have been identified in Nocardioides
sp. JS614 and Arthrobacter nicotinovorans (Ganas et al., 2008).
Furthermore, the genome of Bacillus. subtilis FYZ1-3 has been
shown to harbor multiple metabolic pathways and numerous
genes related to the degradation of carbohydrate and proteins.
These include pathways for starch and sucrose metabolism
(47 genes), glycolysis/gluconeogenesis (39 genes), amino sugar
and nucleotide sugar metabolism (43 genes), biosynthesis of
amino acids (122 genes), and alanine, aspartate and glutamate
metabolism (33 genes) (Ye et al., 2023). In recent years, some
organisms have been well utilized in the process of tobacco aging
and fermentation, but most of the functions of microorganisms have
not been developed and utilized. Therefore, developing more
tobacco microbial resources and understanding their ecological
functions have important guiding significance for the
improvement of tobacco quality.

FIGURE 2
The degradation pathways of nicotine by bacteria, fungi and eukaryotes (adapted from Meng et al. (2010); Huang et al. (2020); Ganas et al. (2008);
Ruan et al. (2006); Pan et al. (2018);Wang et al. (2012); Zhong et al. (2010); Tang et al. (2008); Chen et al. (2008); Ruan et al. (2006); Liu R. et al. (2021); Ruan
et al. (2018); Wang et al. (2011); Wang S. N. et al. (2009)).
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4 The application of functional
microorganisms

Previous studies have reported that the addition of functional
microorganisms can significantly improve the sensory quality of
tobacco, such as Arthrobacter sp. (Xu et al., 2021), Aureobasidium
pullulans, Stenotrophomonas maltophilia, H3-1. For example, the
addition of functional strains (Bacillus amyloliquefaciens LB, Bacillus
kochii SC and Bacillus subtilis subsp.) could promote an increase in
aroma, softness and a decrease in irritation (Wu et al., 2021; Huang et al.,
2022a). Klebsiella variicola H8 has the functions that increase neutral
aroma-enhancing compound production, decrease the nicotine level and
the water-soluble total sugar content in the reconstituted tobacco leaf
concentrate solution (Huang et al., 2024). And the combination of
aroma-producing yeast, Lactobacillus debrueckii, and Rhizopus had the
most significant improvement in aroma, taste and smoke. Furthermore,
some enzyme produced by microorganisms can significantly improve
the quality of tobacco leaves, such as protease, amylozyme, pectinase,
cellulase, which can catalyze the hydrolysis of corresponding substrates
to produce flavoring substances and the precursors, so the corresponding
catalytic hydrolysis mechanism has become one of the research hotspots
in the tobacco industry.

5 Isolation and culturing strategies of
tobacco microorganisms

Traditional microbiological methods have played a crucial role
in successfully isolating numerous microorganisms of interest and

continue to be invaluable tools for cultivation (Lewis et al., 2021).
During the isolation and cultivation of tobacco microorganisms, a
variety of traditional techniques are employed (Figure 3).
Common media, such as LB medium and inorganic salt
medium, are typically used for this purpose (Chen et al., 2008;
Mei et al., 2020). Additionally, selective nutrient media containing
specific substrates, such as proteins, starch, and nicotine, are used
to enrich specific microbial taxa (Raman et al., 2014; Ye et al.,
2023). It is worth noting that successful isolation of strains using
these approaches requires considerable time and patience, as well
as meticulous optimization of media compositions and different
physicochemical conditions (Lewis et al., 2021). Despite these
refined efforts, the vast majority (>99%) of the microorganisms
in the natural environment remained uncultured under laboratory
conditions (Wang et al., 2021; Hu et al., 2022). To overcome the
limitations of traditional culture methods, several innovative
techniques have been developed to enhance microbial isolation
and cultivation. For instance, single-cell sorting Via flow
cytometry have been employed to isolate a greater diversity of
strains from the tobacco microbial community, and two functional
strains, Bacillus amyloliquefaciens LB (with high alpha-amylase
activity) and Bacillus kochii SC (with high neutral protease
activity) were successfully cultured (Wu et al., 2021). While
other advanced techniques such as size selection, and dilution-
to-extinction, have yet to demonstrate their universal applicability
across different species and environments, they have already
shown promise in culturing the marine bacteria (Figure 3) (Hu
et al., 2022). For example, size selection, also referred as filtration,
has been combined with flow cytometry to culture the small-sized

FIGURE 3
Isolation and culturing strategies and methods of tobacco’s microorganisms.
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bacteria (Hu et al., 2022). Similarly, dilution-to-extinction has
been used to culture the marine bacterium, Candidatus
Fonsibacter ubiquis LSUCC0530) in the previous study (Henson
et al., 2018). In addition, bacteria with low nucleic acid content
have been successfully cultured by using a combination of size
selection, dilution-to-extinction and flow cytometry (Wang Y.
et al., 2009), highlighting the potential and advantages of these
key techniques in the isolation and culture of previously
uncultured microorganisms (Wang Y. et al., 2009; Henson
et al., 2018; Hu et al., 2022). In future studies, these innovative
methods can be applied to the isolation and cultivation of
uncultured tobacco microorganisms, paving the way for new
discoveries and advancements in microbial research.

6 Challenges and future perspectives

Based on the above review and discussion, several challenges and
perspectives should be considered in future research:

Although some tobacco microorganisms have been cultured,
the number of strains capable of degrading large molecular
substances and harmful compounds remains very limited. To
date, only a few strains with a high efficiency in nicotine
degradation have been reported. However, it is crucial to
isolate or discover more functional strains, particularly those
capable of degrading macromolecular substances and the
harmful compounds. This will definitely develop a more
precise understanding to accurately determine microbial
characteristics including their metabolism and physiology as
well as their ecological roles.

Although the previous studies have reported the intermediate
degradation products and metabolic mechanisms of nicotine in the
different strains, the comprehensive pathways, metabolic
mechanisms and associated genes involved in the degradation of
TSNA, β-carotenes, starch, protein and other compounds in tobacco
microorganisms remain to be elucidated. In tobacco leaves,
microorganisms are in a state of coexistence, displaying a
competitive or symbiotic relationship with respect to substance
utilization. Therefore, it is essential to conduct in-depth studies
on the dynamic and long-term interactions between different
microbial communities and their impact on improving
tobacco quality.

Currently, the genetic mechanisms underlying the
degradation of many tobacco-associated substances are not
well understood. The integration of genomics, metagenomics,
proteomics and systems biology represents a powerful approach
to uncover the bacterial degradation mechanisms and provide
valuable insights for further development of functional enzymes
and genes. Additionally, advancing molecular biology
techniques for the isolation and cultivation of functional
tobacco microorganisms would be a crucial area for
future research.

7 Conclusion

Tobacco microorganisms play a crucial role in enhancing
tobacco quality, which represent a diverse group, primarily

consisting of bacteria and fungi with marked metabolic
capabilities, including amino acid metabolism, carbohydrate
metabolism, vitamin metabolism, and the biosynthesis of
flavors and fragrances. Additionally, these microorganisms
secrete a variety of enzymes into the exocytosomes that can
catalyze the decomposition or synthesis of certain substances
in tobacco leaves. Tobacco microorganisms display remarkable
degradation functions on the substances such as nicotine, TSNA,
β-carotenes, starch, protein, and phytosterols, and contribute an
important role in the enhancement of tobacco quality. Up to now,
some organisms have been well utilized in the process of tobacco
aging and fermentation, but most of the functions of
microorganisms have not been explored and elucidated.
Therefore, it is necessary to develop more microbial
separation and culture methods for tobacco leaves, further
explore the influence of microorganisms on the chemical
composition of tobacco leaves, reveal the specific mechanism
of their regulation and improvement of tobacco leaf quality, and
provide a new scientific perspective and potential application
path for the high-quality production of tobacco industry in
the future.
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