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Introduction: Bathing is a primary daily activity. Existing bathing systems are
limited by their lack of intelligence and adaptability, reliance on caregivers, and
the complexity of their control algorithms. Although visual sensors are widely
used in intelligent systems, current intelligent bathing systems do not effectively
process depth information from these sensors.

Methods: The scrubbing task of the intelligent bath assist system can be divided
into a pre-contact localization phase and a post-contact adaptive scrubbing
phase. YOLOv5s, known for its ease of deployment and high accuracy, is utilized
for multi-region skin detection to identify different body parts. The depth
correction algorithm is designed to improve the depth accuracy of RGB-D
vision sensors. The 3D position and pose of the target point in the RGB
camera coordinate system are modeled and then transformed to the robot
base coordinate system by hand-eye calibration. The system localization
accuracy is measured when the collaborative robot runs into contact with the
target. The self-rotating end scrubber head has flexible bristles with an adjustable
length of 10 mm. After the end is in contact with the target, the point cloud
scrubbing trajectory is optimized using cubic B-spline interpolation. Normal
vectors are estimated based on approximate triangular dissected dyadic
relations. Segmented interpolation is proposed to achieve real-time planning
and to address the potential effects of possible unexpected movements of the
target. The position and pose updating strategy of the end scrubber head is
established.

Results: YOLOv5s enables real-time detection, tolerating variations in skin color,
water vapor, occlusion, light, and scene. The localization error is relatively small,
with a maximum value of 2.421 mm, a minimum value of 2.081 mm, and an
average of 2.186 mm. Sampling the scrubbing curve every 2 mm along the x-axis
and comparing actual to desired trajectories, the y-axis shows a maximum
deviation of 2.23 mm, which still allows the scrubbing head to conform to the
human skin surface.
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Discussion: The study does not focus on developing complex control algorithms
but instead emphasizes improving the accuracy of depth data to enhance
localization precision.
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1 Introduction

The aging population trend places a substantial economic
burden on families and insurance systems, creating an increased
demand for specialized care, especially for bathing. Although
various bathing aids are available, such as anti-slip mats, grab
bars, and bath mats, most lack personalization, intelligent
functions, and integrated functionality. The intelligent bathing
assistance system offers a solution to caregiver shortages and the
high demands on caregivers by minimizing awkward interactions
and reducing potential risks for both users and caregivers. The
system supports older adults’ independence and quality of life while
advancing the intelligence and effectiveness of bathing assistance
technologies (He et al., 2019).

With the advancement of artificial intelligence, visual perception
has become one of the most prominent research areas, widely
applied in fields such as drones (Shi et al., 2023), industrial
robots (D’Avella et al., 2023), and service robots (Juang and
Zhang, 2019). Lin et al. employed an RGB-D camera and utilized
local feature descriptors of point clouds to achieve object recognition
(Lin et al., 2019). Martínez et al. constructed composite feature
vectors by integrating local and global features and employed feature
fusion techniques to achieve clothing classification and perception
based on an RGB-D camera (Martínez et al., 2019). Fu et al.
developed a machine vision system based on an RGB-D camera,
employing depth thresholding to remove background noise and
utilizing a convolutional neural network to identify apples from
RGB images (Fu et al., 2020). Luo et al. designed a vision perception
system based on deep learning, capable of rapidly identifying
wooden blocks within the field of view in industrial
environments (Luo et al., 2020). Jia et al. employed a template-
matching approach to automatically detect and segment cows from
RGB and depth images (Jia et al., 2021). Yu et al. eliminated
redundant information using depth images based on an RGB-D
camera and trained a random forest binary classification model
based on color and texture features to achieve lychee recognition (Yu
L. et al., 2021). Huang et al. investigated the visual perception
technology for assisting micro aerial vehicles in navigating stairs,
employing a front camera to detect stairway entrances and a bottom
camera to extract features of the stairs, walls, and railings (Huang
and Lin, 2021). Weng et al. developed a dual-arm mobile robot
visual perception system for human-robot interaction, using YOLO
for target recognition and localization (Weng et al., 2022). Li et al.
developed a tea-picking robot for field-based tea leaf recognition and
localization based on an RGB-D camera, detecting tea bud regions
with YOLO and employing point cloud data for 3D localization (Li
Y. et al., 2021). Common methods for calculating the three-
dimensional coordinates of targets often involve monocular
vision, binocular vision, and RGB-D cameras, with typical data

sources including RGB images, depth maps, and point clouds. The
advantages and limitations of these data sources, as well as the
sensors used, are summarized in Table 1. Bathing target localization
requires three-dimensional information about the target, and visual
sensors capable of generating depth information are the preferred
choice for this task. Vision-based target localization offers
advantages such as accessibility, universality, and the ability to
provide rich scene information. However, in the context of
bathing assistance, no template can represent all users, and
manual labeling is not feasible. Moreover, the high safety
requirements during scrubbing demand precise distance
information. Additionally, variations in environmental factors,
such as humidity and lighting conditions, pose challenges for
skin detection.

Zlatintsi et al. developed the I-Support, which primarily consists
of cameras, automatic scrubbers, and an electric shower chair
(Zlatintsi et al., 2020). This system uses point cloud data for
visual perception and employs predefined cleaning paths to
simplify the problem. However, it uses multiple RGB-D cameras,
leading to system redundancy, and involves complex control
algorithms. Furthermore, it fails to meet personalized needs and
cannot provide user-adaptive scrubbing capabilities.

Although previous studies have explored bathing assistance
systems, they have not fully addressed the potential negative
impact of depth value errors on bathing operations. To address
this issue, this study designs a bathing assistance system and
proposes a method to enhance the depth accuracy of visual
sensors. Utilizing high-precision depth data, the study achieves
accurate target localization and adaptive scrubbing functions. The
structure of this paper is organized as follows: In the “Materials and
Methods” section, the study provides a detailed discussion on target
localization before contact and adaptive scrubbing after contact,
with a focus on deep learning-based multi-region skin detection,
depth value correction, and adaptive scrubbing. The “Results”
section presents the outcomes of multi-region skin detection,
localization experiments, and scrubbing experiments. The
“Discussion” section offers an analysis of the experimental
results. Finally, the “Conclusion” section summarizes the main
findings and contributions of this research.

2 Materials and methods

The bathing tasks of the intelligent bathing assistance system can
be divided into two main phases: the pre-contact and post-contact
tasks. The goal of the pre-contact phase is to achieve high-precision
localization, ensuring that the end-effector accurately reaches the
target area. The post-contact phase involves planning the adaptive
scrubbing, ensuring that the end-effector conforms precisely to the
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surface of the human skin for scrubbing. As shown in Figure 1, after
completing tasks such as skin detection, depth correction, 3D
position and pose modeling, and hand-eye calibration, the system
can execute the target localization task before contact. Once the end-
effector reaches the target area, the system extracts and plans the
scrubbing trajectory while updating the end-effector’s pose to
perform adaptive scrubbing.

The experimental equipment is shown in Figure 2. TX2 has a low
price, low power consumption, and small size, making it suitable for
situations such as cost control and limited workspace. The scheme of
predicting depth by RGB increases the need for computational
power and raises the cost. An RGB-D camera capable of
generating depth information is preferred for this task. Due to
the presence of water vapor and liquid droplets, the RGB-D

TABLE 1 Advantages, limitations, and sensor types associated with various data sources.

Sensors Data sources Advantages Limitations

Monocular
vision

RGB images Simple structure and low cost Highly affected by lighting and unable to personally obtain depth
information

Binocular
vision

RGB images, depth images, and
point cloud information

It can obtain deep information Binocular matching is influenced by various factors, particularly its
ineffectiveness in textureless scenes

RGB-D sensors RGB images, depth images, and
point cloud information

Capable of obtaining depth information with a
variety of imaging principles available

Depth accuracy is closely related to the distance between the object
and the sensor, with significantly reduced precision for transparent
objects and reflective surfaces

FIGURE 1
High-precision positioning before end-effector contact with the target, followed by adaptive scrubbing post-contact.

FIGURE 2
The experimental equipment.
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camera based on the passive imaging principle is more suitable for
applications in the assisted bathing scenario. The Intel RealSense
D455 visual sensor demonstrates cost-effectiveness while
maintaining superior imaging quality compared to its
counterparts within the same product series. This device
preserves identical field of view (FOV) specifications for both
RGB and depth modalities, thereby enabling synchronized spatial
registration that facilitates precise depth value extraction
corresponding to individual RGB pixels. Considering the safety
requirements and the special bathing environment, the bathing
robotic arm needs to have force sensing and waterproof
capabilities. Therefore, a lightweight six-degree-of-freedom
collaborative robot arm RM65-6 F that meets the requirements is
selected, with a six-degree-of-freedom force sensor installed at the
end. The scrubbing head at the end-effector is capable of
autonomous rotation and is fitted with flexible bristles.

2.1 Vision-based high-precision 3D
localization before contact

2.1.1 Deep learning-based multi-region
skin detection

Skin detection plays a crucial role in diagnosing conditions such
as melanoma and skin cancer (Khan et al., 2021a). In a robotic
bathing system, the realization of different bathing modes
necessitates the precise positioning of body parts to activate the
appropriate mode for a specific body region. When using object
detection for multi-region skin detection, the focus is on
distinguishing between skin regions as opposed to classifying
each pixel individually. This approach reduces both the
annotation burden and computational complexity, thereby
facilitating real-time robotic control (Li et al., 2023).

In recent years, object detection algorithms based on the deep
convolutional neural network (DCNN) have advanced rapidly
(Chen et al., 2024), utilizing large datasets to automatically learn
features, demonstrating strong robustness to challenges such as
steam, lighting, and target variations in bathing environments.
DCNN-based object detection algorithms can be categorized into
two-stage/single-stage approaches and anchor-based/anchor-free
methods (Li P. et al., 2021). Among these, single-stage
algorithms, which directly perform classification and regression,
are particularly notable for their excellent real-time performance
and have gained widespread attention in practical applications (Fang
et al., 2022). The YOLOv5s model is distinguished by its
minimalistic design, which is optimized for deployment on
hardware platforms with restricted computational and memory
footprints. It boasts an expedited inference rate, making it
particularly well-suited for time-sensitive object detection
scenarios (Lawal et al., 2023). YOLOv5s, with its ease of
deployment (Yu Y. et al., 2021), real-time capabilities, and high
accuracy, was selected as the preferred deep learning model for
multi-region skin detection in this study.

2.1.1.1 Construction of the datasets
To build diverse skin detection datasets, we collected images

containing skin regions, considering factors such as skin tone,
lighting conditions, and humidity. Using the annotation tool

LabelImg (Geng et al., 2024; Hu et al., 2024), we manually
delineated rectangular bounding boxes around each target and
labeled their categories and positions, generating XML files in
PASCAL VOC format. Each XML file includes the image
filename, the coordinates of the ground truth (GT) bounding
box, and the associated category labels. The datasets consisted of
seven categories: (1) Face_skin, (2) Trunk_skin, (3) Upperlimb_
skin, (4) Lowerlimb_skin, (5) Hand_skin, (6) Foot_skin, and (7)
Background, representing the skin of various body parts and the
background region. To address the issue of class imbalance and
improve skin detection performance, we applied offline data
augmentation techniques to ensure a more balanced distribution
of samples across categories (Hussain et al., 2024). More than
20 methods were implemented, including adding random pixels,
Gaussian noise, random rectangular occlusion, random pixel
zeroing, salt-and-pepper noise, Gaussian blur, motion blur,
adaptive histogram equalization, horizontal flipping, vertical
flipping, proportional scaling, non-proportional scaling, random
translation, HSV transformation, perspective transformation,
random contrast adjustment, edge enhancement, random
brightness adjustment, max pooling, average pooling, random
cropping and padding, etc. These techniques were applied to
images with limited sample sizes to generate new samples. In
total, the datasets included 2,266 images, as shown in Figure 3.

2.1.1.2 Model training settings and evaluation metrics
Training a network from scratch typically requires a

substantial amount of annotated data (Pattnaik et al., 2020).
However, collecting images containing skin is challenging,
making it difficult to construct large-scale datasets. Training
on small datasets poses a significant risk of model overfitting.
To address this issue, we employed a transfer learning approach
(Pratondo and Bramantoro, 2022), which enabled efficient
training of a model on small datasets with performance
comparable to training from scratch (Khan et al., 2021b;
Mayya et al., 2024). Specifically, the model was pre-trained on
the ImageNet dataset, and the resulting weight file served as the
initial weight for the model.

The model was trained using the PyTorch framework at the
Supercomputing Center of the University of Shanghai for Science
and Technology. The datasets were split into training, validation,
and test sets, with proportions of 60%, 20%, and 20%, respectively.
The initial learning rate was set to 0.001, with a decay rate of 0.01,
and the optimizer used was stochastic gradient descent (SGD).
During training, the parameters of the backbone network were
initially frozen, with only the remaining parameters updated.
Afterward, the backbone network was unfrozen, and all
parameters underwent trained. This strategy effectively enhanced
the convergence speed and training efficiency of the network.

Recall and Precision are critical metrics for assessing the
network performance, as shown in Equations 1, 2. Specifically,
TP denotes the number of true positives (correctly detected
targets), FP refers to the number of false positives, and FN
represents the number of undetected targets (Lu and Hong,
2024). By plotting Recall on the x-axis and Precision on the
y-axis, a Precision-Recall (P-R) curve can be generated. The area
enclosed by the curve and the axes corresponds to the average
precision (AP). The mean of the AP across all categories is defined as

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Li et al. 10.3389/fbioe.2025.1550875

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1550875


the mean average precision (mAP), which serves as an important
evaluation metric for multi-class object detection.

Recall � TP
TP + FN

(1)

Precision � TP
TP + FP

(2)

2.1.2 Depth correction algorithm
Upon localizing the region of the body part, acquiring

distance measurements becomes imperative to facilitate
accurate three-dimensional pose estimation. However, depth
data from RGB-D cameras often exhibit issues such as high
noise, low accuracy, and outliers (Alenya et al., 2014).
Additionally, geometric distortions and system biases may
affect these measurements (Yang et al., 2020), which can
degrade localization accuracy. To enhance the precision of
distance data, our study presents a depth correction algorithm
to achieve high-accuracy target localization.

The depth quality evaluation metrics are essential for
analyzing depth accuracy, developing depth correction
algorithms, and evaluating the effectiveness of the corrections.
Zaccuracy is used to assess the precision of depth data. The filling
rate is represented by the ratio of valid pixels to total pixels. The
root mean square error (RMSE) quantifies spatial noise. The
filling rate, a hardware-dependent parameter that cannot be

modified through algorithms, can be manually adjusted in
Intel® RealSense™ Viewer software. The Zaccuracy and RMSE
are used as depth quality evaluation indicators in depth
correction research. Their calculation methods are provided in
Equations 3, and 4, where i denotes the index of a point in the
point cloud, n0 represents the total number of points in the point
cloud, ji is the distance value at each point, GT denotes the
ground truth distance, and d0i is the distance from the ith point to
the fitted plane. Zaccuracy quantifies the proximity between the
measured depth values and the GT. It is calculated as the
difference between the average depth value of all pixels and
the GT. RMSE quantifies the intrinsic variation in depth
values, calculated by measuring the deviation of all valid
pixels from the best-fit plane (Gupta et al., 2023).

Zaccuracy � ∑n0
i�1 ji − GT
∣∣∣∣ ∣∣∣∣
n0

(3)

RMSE �
�������∑n0

i�1d0i
2

n0

√
(4)

The D455 not only captures RGB and depth images of the scene
but also outputs point cloud data simultaneously. Moreover, the
point cloud and depth images can be converted interchangeably.
The depth quality analysis of D455 reveals that the RMSE and
Zaccuracy increase gradually with distance, exhibiting a nonlinear
relationship. The depth measurement at each pixel deviates from the

FIGURE 3
Example images of the object detection datasets.
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GT, while the average depth measurement across a planar surface
also exhibits deviation from the GT. When capturing a flat wall, the
error is reflected in two aspects: the deviation of individual 3D points
from the true plane and the misalignment between the fitted plane
and the actual plane. To correct the errors, each 3D point must be
adjusted to align with the true plane, and the discrepancy between
the fitted and actual planes requires rectification. A chessboard
pattern is introduced for correction, leveraging its mature corner
detection algorithms to facilitate accurate identification of the
chessboard and its corresponding plane. As the error increases
with distance, an iterative approach is employed. The correction
begins at short distances, using parameters derived from these
distances as initial values to estimate the error correction
function for greater distances.

The depth correction algorithm is implemented in two stages:
(1) The function fl is utilized to correct depth errors at different
pixels. A specific function fl should be calculated for each pixel to
correct the 3D points of a flat wall surface, ensuring they align
onto a single plane. (2) The function fg is employed to correct the
average depth value, ensuring the plane from the previous stage is
aligned to its true position. In theory, the chessboard pattern
should form a planar surface (Fryskowska, 2019). The chessboard
plane observed within the RGB camera’s field of view is aligned
with the corrected point cloud plane from the first stage to
estimate the errors. Since the RGB image and the point cloud
are in different reference frames, there exists a rigid-body

transformation between the two. To perform function fitting,
the transformation matrix C

DM between the RGB image and the
point cloud must be obtained. Additionally, the process of
calculating the extrinsic parameters relies on the accuracy of
the intrinsic parameters (Zhang et al., 2020). To address the issue
of interdependence, a solution that simultaneously optimizes
both fg and

C
DM is adopted.

The depth correction algorithm is illustrated in Figure 4A. The
chessboard corner points are first extracted from the RGB image,
and a point cloud is generated from the depth image. Function fl is
estimated using the chessboard corner points, the corresponding
point cloud, and the factory-calibrated transformation matrix C

DM0.
Once fl is determined, it is applied to correct the point cloud. The
corrected point cloud, chessboard corner points, and a subset of the
wall point cloud data are then combined to calculate function
fg and

C
DM.

The process of estimating fl is illustrated in Figure 4B. A
chessboard is pasted on a flat wall, and the camera position is
progressively adjusted to increase the distance from the wall. Each
collected point cloud is processed iteratively. The current estimate of
fl is applied to the initial point cloud to correct the errors. Wall
points are extracted from the corrected point cloud, and a plane is
fitted to the subset to improve computational efficiency (Zhu et al.,
2021). The plane is then used to update fl. Data for fitting fl are
extracted through distance-based projection method, with each
processed corrected point cloud generating a set of data for

FIGURE 4
Depth correction (A) Two-stage depth correction algorithm (B) fl estimation methods (C) fg estimation methods.
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fitting fl. The iterative process continues for all point clouds,
resulting in the progressive refinement of fl.

The process of estimating fg is illustrated in Figure 4C. In the
same scene, the plane in the RGB image and the corresponding point
cloud can be aligned through specific rotational and translational
transformations. The rotation matrix and translation vector
represent the rigid-body transformation between the RGB camera
coordinate system and the depth camera coordinate system (Yang
et al., 2020). The transformation is estimated using the plane
equations derived from the RGB image and the corresponding
point cloud. This transformation is subsequently applied to the
plane equation in the RGB camera coordinate system to derive the
plane equation in the depth camera coordinate system, thereby
updating fg.

The D455 camera was used to collect data from a flat wall
equipped with a chessboard pattern at varying distances and
orientations. RGB images, depth images, and point clouds were
captured for estimating fl and fg.

2.1.3 3D position and pose modeling of target
points in the RGB camera coordinate system

According to the camera model, if the distance Zc of the target
point and the camera intrinsic matrix Kint are known, the 3D
coordinates of the target point in the RGB camera coordinate
system can be derived from its pixel coordinates [u,v] in the
RGB image, as shown in Equation 5 (Konecny et al., 2024). This
enables 3D positional modeling of the target point in the RGB
camera coordinate system, denoted as [Xc,Yc,Zc].

Zc

u
v
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Kint

Xc

Yc

Zc

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (5)

As shown in Figure 5, O0-uv represents the pixel coordinate
system in the camera model. A circle is drawn with the target point
as the center and a predefined radius. By utilizing the pixel
coordinates and corresponding depth values, the 3D positions of
all pixels within the circle in the RGB camera coordinate system are
computed. These points define a surface on the target surface, and
the pose of the target point can be modeled through surface normal
vector analysis. The issue of visual occlusion can be addressed by
adjusting the circle’s radius.

2.1.4 Hand-eye calibration
The camera-robot calibration paradigm is conventionally

categorized into Eye-in-Hand and Eye-to-hand configurations.
In the Eye-in-hand system, the sensor is mounted on the robotic
end-effector, enabling complete observation of the target
workspace and facilitating precise visual servo control. This
configuration, however, presents inherent challenges including
motion-induced image degradation and compounded error
propagation from kinematic inaccuracies during calibration
procedures. Conversely, the Eye-to-hand system positions the
camera in a stationary configuration external to the robotic
manipulator, thereby eliminating motion artifacts while
achieving extended spatial coverage encompassing both the
target domain and manipulator workspace. This arrangement
introduces potential visual occlusion risks.

Considering operational reliability and environmental
factors such as humidity resistance requirements, the solution
adopted an Eye-to-hand configuration. During hand-eye
calibration, the D455 was mounted on the robot’s base, and
the calibration was performed using the ROS package easy_
handeye and an ArUco board attached to the robot’s end-
effector. The ArUco board was generated by the ArUco
markers generator with Marker ID 582 and Marker size
100 mm. The process provided the translation vector
components tx、ty, and tz, along with the quaternion
components x、y、z, and w representing the orientation. The
3D position and pose of the target point were then transformed
from the RGB camera coordinate system to the robot’s base
coordinate system (Ding et al., 2024). Subsequently, inverse
kinematics was applied to compute the joint angles, enabling
precise positioning and contact with the skin.

2.2 Post-contact adaptive wiping

When the end effector establishes contact with the target skin
area, we must plan a wiping trajectory to accommodate the
curvature of the human skin.

2.2.1 Point cloud-based optimization of scrubbing
trajectories and normal vector calculation

Cubic B-spline interpolation is utilized to optimize the point
cloud trajectory, ensuring a smooth wiping path. B-spline curves
have been extensively applied in trajectory fitting and discretization.
For a given degree k, a k-degree B-spline curve p(μ) is defined by
Equation 6, whereU = {μ0, μ1, . . . , μk, μk+1, . . . , μm-k-1, μm-k, . . . , μm}
represents the knot vector, and Nj,k(μ) denotes the j-th k-degree
B-spline basis function, as expressed in Equation 7 (Guo et al., 2024).
Using the deBoor algorithm (Kong et al., 2016; Wang et al., 2019),
we derive Equation 8. The arc length is approximated through step
size, yielding Equation 9 where ΔμiP represents the parameter
increment for the i-th interpolation step (i = 1, 2, 3, . . . , n), and
l denotes the interpolation step length. The μ-value corresponding to
the i-th interpolation point can be calculated through Equation 10.

p μ( ) � ∑i
j�i−k

djNj,k μ( ), μ ∈ μi, μi+1[ ], i � k, k + 1,/n (6)

FIGURE 5
Attitude modeling at the target point.
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Ni,0 μ( ) � 1, μi ≤ μ≤ μi+1

0, else

⎧⎨⎩
Ni,k μ( ) � μ−μi

μi+k−μi Ni,k−1 μ( ) + μi+k+1−μ
μi+k+1−μi+1 Ni+1,k−1 μ( )

set
0
0
� 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

d
dμ

p μ( ) � ∑i
j�i−k

dj
d
dμ

Nj,k μ( )
� ∑i

j�i−k
dj
Ni,k−1 μ( )
μi+k − μi

− Ni+1,k−1 μ( )
μi+k+1 − μi+1

, μ ∈ μi, μi+1[ ] (8)

ΔμPi � l�������������������������������
d
dμxi μ( )( )2

+ d
dμyi μ( )( )2

+ d
dμzi μ( )( )2

√ (9)

μPi � ∑i
i�1
ΔμPi (10)

To establish topological relationships between points in the cloud, we
employ approximate triangular tessellation to generate a triangular mesh,
as illustrated in Figure 6. Let {l1,l2, . . . ,ln} represent the set of wiping paths,
where Pi,j denotes a wiping point. Pi,j-1 andPi,j+1, located on the same scan
line as Pi,j, and Pi-1,j and Pi+1,j, which are the closest points to Pi,j on
adjacent scan lines, are identified. Using these points, four triangles are
constructedwith the following vertices: {Pi,j,Pi,j+1,Pi-1,j}, {Pi,j,Pi-1,j,Pi,j-1}, and
{Pi,j,Pi+1,j,Pi,j+1}. The coordinates of the triangle vertices are denoted as
(Px1, Py1, Pz1), (Px2, Py2, Pz2), and (Px3, Py3, Pz3), and the method for

calculating the normal vector is given by Equations 11, 12, 13. For the
shared vertex Pi,j, the normal vector ni,j is approximated as the weighted
average of the normal vectors of the four triangles, with the area of each
triangle serving as the weight. For boundary points, the normal vector is
calculated by taking theweighted average of the normal vectors of the two
adjacent triangles that share the vertex.

�nx � Py2 − Py1( ) Pz3 − Pz2( ) − Pz2 − Pz1( ) Py3 − Py2( )
�ny � Pz2 − Pz1( ) Px3 − Px2( ) − Px2 − Px1( ) Pz3 − Pz2( )
�nz � Px2 − Px1( ) Py3 − Py2( ) − Py2 − Py1( ) Px3 − Px2( )

⎧⎪⎪⎨⎪⎪⎩ (11)

δ �
������������
�nx

2 + �ny
2 + �nz

2
√

(12)

nx �
�nx

δ

ny �
�ny

δ

nz �
�nz

δ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

2.2.2 Real-time trajectory planning
When the wiping path becomes lengthy, the increasing number of

interpolation and fitting points elevates computational load, thereby
degrading real-time performance. Furthermore, unexpected human
movements during operation may alter the wiping path. To resolve
these issues, we propose a segmented interpolation real-time planning
method as illustrated in Figure 7. This method divides the wiping

FIGURE 6
Topological relationships between points.
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trajectory into several segments and performs interpolation for each
segment sequentially. The interpolation points are stored in a First-In-
First-Out (FIFO) queue, where the control function retrieves points to
guide the robot’s motion. With this approach, the robot can initiate
movement after first-segment interpolation. Both B-spline interpolation
and motion guidance processes are executed in separate threads for
concurrent execution. This method not only facilitates real-time
trajectory planning but also enhances adaptability to unexpected
movements. If unforeseen movements occur during the robot’s
wiping process, real-time adjustments can be made during the
fitting of the next trajectory segment. Increased segmentation
granularity enhances robustness against unexpected human motions.

2.2.3 Updating the pose of the scrubbing head
The pose of the wiping head must be updated in real-time

according to the dynamic changes in the wiping trajectory, which
ensures proper contact with the target surface, thereby improving
wiping efficiency and maintaining stable contact. As shown in
Figure 8, the pose at the scrubbing point P is [px, py, pz, φx, φy, φz],
and the scrubbing head vector is K = [-ax, -ay, -az]. Let the positive
direction of the I-axis represent the tangential direction at P, with the
tangential vector defined as I= [ox, oy, oz]. The J-axis is the cross product
of K and I, expressed as J = [mx,my,mz]. The transformationmatrix BPH
from the tool coordinate frame (defined by I, J, K) to the robot base
coordinate frame is given by Equation 14. The scrubbing pose is
transformed into the end-effector pose of the robot, as shown in
Equation 15. Here, B

ETP is the pose matrix of the robot during
scrubbing, H

PT denotes the transformation matrix from the
scrubbing tool coordinate frame to the local coordinate frame of the
scrubbing point, and E

HT is the transformation matrix from the tool
coordinate frame to the end flange coordinate frame. During scrubbing,
the tool coordinate frame coincides with the local coordinate frame of
the scrubbing point, i.e., HPT = I, which is the identitymatrix. The length
of the scrubbing head d = 10 cm; thus, E

HT is defined as shown in
Equation 16. Consequently, the robot’s pose matrix is expressed in

Equation 17. By integrating the inverse kinematics model, the joint
angles for the robot are calculated.

BPH �
mx ox
my oy

ax px
ay py

mz oz
0 0

az pz
0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

B
ETP

E
HT

H
P T � BPH (15)

E
HT �

1 0
0 1

0 0
0 0

0 0
0 0

1 d
0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

B
ETP � BPH

E
HT( )−1 (17)

The angles θi, formed by adjacent vectors Pi-1Pi and PiPi+1 within
the trajectory point sets {Pi,1,Pi,2, . . . , Pi,n}, are calculated. These angles
represent the rotation angle of the scrubbing head in the base coordinate
system, denoted as θz = θi. The calculation method for θi is shown in
Equation 18. To reduce computational complexity, a threshold angle
θ = 6°is set: if θz<θ, no adjustment is made to the scrubbing head’s pose.
The threshold value is determined through extensive scrubbing
experiments. When θi is below 6°, indicating minimal contour
variation, no pose adjustment is required. This approach reduces
computation while ensuring task completion.

θi � cos−1
Pi−1Pi · PiPi+1
Pi−1Pi| | · PiPi+1| |( ) i � 1, 2,/, n − 1( ) (18)

3 Results

3.1 Multi-region skin detection

Upon completion of training, YOLOv5s had a compact model
size of 27 MB, yet achieved a mAP of 90%. When deployed on the

FIGURE 7
First-in-first-out queue for interpolated points.
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TX2 platform, YOLOv5s demonstrated a frame rate of 42 frames per
second (FPS), enabling real-time detection performance.

The robustness test results are shown in Figure 9. YOLOv5s
demonstrates a certain level of robustness to variations in skin tone,
humidity, lighting, occlusion, and scene conditions. As shown in
panel (A), the model accurately detects skin across fair, medium, and
dark tones. Panel (B) illustrates the application of image processing
techniques on bathing scene images containing human models,
simulating the humid environment commonly encountered
during bathing. In such conditions, YOLOv5s still accurately
detects the skin across various body regions. Panels (C) (D), and
(E) further demonstrate the model’s robustness to occlusion,
lighting variations, and different scene contexts.

3.2 Localization experiments

Considering that the center of the detection boxwasmost likely to be
located within the skin region, the center point was selected as the target

point. The actual position in the base coordinate system was determined
using skin detection, depth information, camera intrinsic parameters,
and the hand-eye matrix. The ideal position was defined as the location
data displayed on the teach pendant when the six-dimensional force
sensor was adjusted to zero. The human model’s position was adjusted,
and eight localization tests were conducted. Localization errors were
computed based on Equation 19, where the subscript l represents the
theoretical position and s represents the actual position. The error along
each of the three axes was taken as the absolute difference between the
actual and theoretical positions. The impact of the depth correction
algorithm on localization performance was evaluated by comparing the
differences between the actual and ideal depth data. The actual data was
obtained from the teach pendant reading after the robot’s localization,
while the ideal data corresponded to the teach pendant reading when the
six-dimensional force sensor was set to zero. The error was calculated as
the absolute difference between these two readings.

ε �
���������������������������
xl − xs( )2 + yl − ys( )2 + zl − zs( )2

√
(19)

FIGURE 8
Scrubbing schematic.
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FIGURE 9
Robustness testing of the model (A) Detection results across different skin tones (B) Detection results in different humidity scenarios (C) Inference
results under occlusion (D) Inference results under different lighting conditions (E) Inference results across different scenarios.

TABLE 2 Results of the positioning experiment.

No. Theoretical
position (mm)

Actual
position
(mm)

Positioning
error (mm)

X-axis
error (mm)

Y-axis
error
(mm)

Z-axis
error
(mm)

Pre-correction
depth error (mm)

1 (251.04, 375.06, 763.69) (252.15, 376.14,
765.15)

2.128 1.11 1.08 1.46 21.02

2 (292.02, 272.92, 833.79) (292.91, 271.60,
832.45)

2.081 0.89 1.32 1.34 19.35

3 (242.42, 162.88, 725.62) (241.38, 164.74,
725.55)

2.132 1.04 1.86 0.07 14.87

4 (246.15, 344.01, 631.70) (247.87, 345.25,
632.40)

2.233 1.72 1.24 0.7 14.45

5 (246.56, 344.50, 631.16) (247.62, 343.40,
632.66)

2.141 1.06 1.1 1.5 16.34

6 (328.02, 148.08, 855.10) (329.41, 149.25,
856.70)

2.421 1.39 1.17 1.6 24.34

7 (253.3, 373.52, 762.91) (254.10, 375.28,
764.01)

2.224 0.8 1.76 1.1 17.28

8 (327.11, 147.31, 854.44) (328.25, 148.72,
853.32)

2.131 1.14 1.41 1.12 18.98
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The results were presented in Table 2. The robotic arm’s
localization error was relatively small, with a maximum value of
2.421 mm, a minimum value of 2.081 mm, and an average of
2.186 mm. The average errors along the x, y, and z-axes were
1.144 mm, 1.368 mm, and 1.111 mm, respectively. Before and after
depth correction, the mean errors were 18.329 mm and 1.111 mm,
respectively. These results indicated that the localization error and the
errors along the three axes were minimal, demonstrating high
localization accuracy. Moreover, depth correction was critical for
achieving high-precision localization.

The proposed depth correction methodology utilized a multi-
modal dataset comprising synchronized RGB images, depth maps,
and 3D point clouds. A comparative analysis was conducted against
the framework presented in the literature (Herrera et al., 2012),
which similarly employed a checkerboard-based correction
paradigm and the same dataset. The experimental results
demonstrated comparable correction accuracy between both
methods at proximal ranges (<0.3m). However, the proposed
algorithm exhibited superior performance at distal ranges
(>0.9m). This enhanced long-range accuracy was attributed to
the iterative optimization framework, which provided improved
initial parameter estimation through successive approximation,
thereby reducing error propagation in depth correction.

3.3 Scrubbing experiment

The experiment was conducted to quantitatively evaluate the
system’s performance during simulated and executed scrubbing
tasks. It focused on the system’s ability to ensure the scrubbing

head maintained the correct trajectory while moving along the
target area.

The scrubbing trajectory was sampled along the end-effector’s
x-axis with a point spacing of 2 mm to complete the adaptive
scrubbing task. By comparing the actual movement of the scrubbing
head with the desired trajectory, the trajectory error in the y-axis was
obtained, as shown in Figure 10. The maximum error was 2.23 mm.
Given that the adjustable length of the scrubbing head’s brush was
10 mm, the error did not affect the fitting of the scrubbing head to
the human skin surface.

4 Discussion

Visual perception was frequently employed in robotic
perception systems; however, the involvement of skin detection
could raise privacy concerns among users. To address these
concerns, the following privacy protection strategies were
implemented based on practical requirements: 1) A color image
encryption scheme based on vector representation was adopted; 2)
Noise, such as Gaussian noise and salt-and-pepper noise, was added
to the image to obfuscate private information; 3) Data processing
occurred exclusively on the local embedded platform, ensuring that
no data was transmitted to the cloud for processing; 4) During
operation, the visual scenes captured by the sensor were not
displayed, and only topics published via ROS were output; 5)
Due to the limited storage capacity of the embedded platform,
visual data in the bathing scenario was not stored; 6) The system
was not connected to the internet, eliminating data
transmission risks.

FIGURE 10
The trajectory error in the y-axis.
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In this study, the six-dimensional force sensor played a crucial
role in ensuring safety during emergencies. When the detected force
exceeded a predefined threshold, the robot retracted the end-effector
and returned to its initial pose. Achieving precise force control
typically required more complex control algorithms, particularly
when adjustments to all three forces and moments were necessary.
However, by utilizing the high-precision distance information
fromdepth correction in this study, combined with the safety
guarantees provided by the force sensor, the adaptive scrubbing
task could be completed without relying on complex control
algorithms. The innovation of this work lay primarily in
developing an algorithm for enhancing depth quality, which
demonstrated excellent performance in both localization and
scrubbing. Additionally, the study contributed by creating skin
detection datasets, providing valuable data support for
related research.

The biological characteristics of the human model differed from
the skin properties of real human subjects. Future research will
involve experiments on real human participants under ethically
approved conditions. Additionally, the current system employed a
seated posture with a collaborative robot for bathing tasks, which did
not allow effective cleaning of the buttocks region. In future
developments, a stand-to-sit posture transition mechanism could
be designed to enable buttocks cleaning in a standing position.
Furthermore, a user intent recognition module could be
incorporated to fully account for the preferences of users, thereby
enhancing the system’s intelligence and human-robot interaction
experience.

The proposed system demonstrated significant advancements
over conventional bathing systems through three key innovations.
First, it incorporated a visual perception module to enhance
operational intelligence. Second, compared with existing vision-
enabled systems, it achieved superior depth measurement
accuracy and utilized precise depth information for reliable
positioning and scrubbing. Third, the implementation of a
motorized rotating seat mechanism reduced the number of
required vision sensors while ensuring complete body coverage.

5 Conclusion

Acquiring depth information was a critical step for enabling
accurate robotic target localization. The intelligent bathing
assistance system employed an RGB-D camera to collect depth
data and utilized deep learning techniques to detect different skin
regions in RGB images, enabling an intelligent selection of bathing
modes. The system demonstrated robustness against variations in
skin tone, lighting, and humidity. This study proposed a depth
correction algorithm to achieve high-precision target localization.
During contact, the system did not rely on constant-force control;
instead, it leveraged high-accuracy visual data and an adjustable-
length scrubbing head to implement strategies including scrubbing
trajectory optimization, normal vector estimation, segmented
interpolation for real-time planning, and end-effector pose
updates. The system’s high-precision localization and adaptive
scrubbing capabilities were primarily attributed to the precise
visual information obtained through depth correction,
eliminating the need for complex force control algorithms.
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