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Servicemembers and law enforcement personnel are frequently exposed to blast
overpressure during training and combat due to the use of heavy weaponry such
as large-caliber rifles, explosives, and ordnance. The cumulative effects of these
repeated low-level (<4 psi) blast exposures can lead to physical and cognitive
deficits that are poorly understood. Brain organoids—human stem cell-derived
three-dimensional in vitro culture systems that self-organize to recapitulate the
in vivo environment of the human brain—are a promising alternative biological
model to traditional cellular cultures and animal models, offering a unique
opportunity for studying the mechanisms of mild blast-induced traumatic
brain injury (mbTBI) resulting from repeated exposure. In this article, we
review the current state of brain organoid models and discuss future
directions for advancing their physiological relevance for studying mbTBI.
These will be presented within a framework for developing next-generation
platforms that integrate relevant loading devices, as well as non-invasive
technologies for assessing the brain organoid’s response while increasing
throughput. These next-generation platforms aim to accelerate the
development of new interventions for mbTBI.
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1 Introduction

During training and combat, military and law enforcement personnel are frequently
exposed to repetitive low-level blast (rLLB) from heavy weaponry, including artillery,
mortars, shoulder-fired weapons, stun grenades, and breaching explosives (Kamimori et al.,
2017; Skotak et al., 2019; Thangavelu et al., 2020; Belding et al., 2021; Boutté et al., 2021;
Wiri et al., 2023; Gilmore et al., 2024). These blasts can generate overpressures which exceed
90 kPa during military training exercises (Wiri et al., 2023), surpassing the current safety
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standard of 28 kPa (or 4 psi) based on human tympanic membrane
rupture (Hicks, 2024). Compounding this issue, personnel may
experience over a hundred low-level blast overpressure events
during a single training exercise (Wiri et al., 2023) and many
more over the course of their career. While severe blast-induced
traumatic brain injury (bTBI) from high-level blast explosions has
been extensively investigated (Rosenfeld et al., 2013), growing
evidence suggests that rLLB exposure can result in subconcussive
or mild blast-induced traumatic brain injury (mbTBI) (Belding et al.,
2021; Siedhoff et al., 2022). This form of bTBI is associated with
chronic issues, including psychiatric disorders, motor and cognitive
impairment, sleep disorders and pain (Siedhoff et al., 2022).

Preclinical models are essential for elucidating the underlying
mechanisms of mbTBI, which remain poorly understood. This
knowledge gap hinders the advancements in preventative measures
(e.g., safe standoff distances, weapons modifications, personal
protective equipment (PPE), and prophylactics), diagnostics (e.g.,
molecular biomarker assays and medical imaging), and treatments
(e.g., pharmaceuticals). In the past decade, there has been an
increasing number of animal studies that focus on rLLB (Ravula
et al., 2022). These studies have provided important insights, revealing
pathophysiological changes such as neuroinflammation, axonal damage,
and glial activation, as well as behavioral deficits (Ravula et al., 2022).
However, animal models face several challenges—such as low
throughput, difficulties in generating rLLB exposure with appropriate
mechanical boundary conditions, issues with reproducibility, and limited
relevance to human neuroanatomy and neurophysiology—all of which
are critical considerations when studying mbTBI.

In vitro cell culture models have also been extensively used to
study bTBI. These models offer the advantage of isolating specific
variables that would otherwise confound results. For example,
in vitro models are easier to manipulate than in vivo models and
offer the opportunity to independently study the effects of primary
(i.e., from pressure wave), secondary (i.e., from tearing), or tertiary
(i.e., from inertia or blunt forces) loading mechanisms, which are
biomechanically distinct. Additionally, in vitro models are more
accessible for a broader range of analytical tools, such as advanced
imaging modalities, diverse assays for studying molecular pathways
such as RNA sequencing and gene editing techniques to identify and
manipulate specific genetic factors that influence injury responses
and degenerative pathways (Chen et al., 2009; Beltrán et al., 2023; Lai
et al., 2024). However, even with these advantages, these models do
not capture the complexity of the in vivo human brain environment,
even with more complex three-dimensional cellular cultures (Cullen
et al., 2007; Bar-Kochba et al., 2016; Sawyer et al., 2017; 2018;
Snapper et al., 2023; González-Cruz et al., 2024).

Recent advances in the generation of three-dimensional (3D)
brain-like structures, called brain organoids, offer immense
potential as a new in vitro model of the human brain (Smirnova
and Hartung, 2024). These brain organoids are differentiated from
human induced pluripotent stem cells (iPSCs) and form to resemble
the cellular composition, diversity, and architecture of different
anatomical regions of the human brain, e.g., midbrain, thalamus,
and cerebral cortex (Susaimanickam et al., 2022). Brain organoids
mimic key features of the human brain including myelination,
synaptic connections, and patterns of gene expression (Vanvliet
et al., 2007; Chesnut et al., 2021b; Modafferi, 2021). Functionally,
brain organoids have shown spontaneous neural activity and the

formation of neural circuits (Trujillo et al., 2019). Due to these
unique properties, brain organoids have been used to study various
neurodegenerative diseases and neurodevelopmental disorders
(Pamies et al., 2017; 2022; Chesnut et al., 2021b; Modafferi, 2021;
Eichmüller and Knoblich, 2022; Ravula et al., 2022; Susaimanickam
et al., 2022; Smirnova and Hartung, 2024).

Studies have shown that brain organoids are able to recapitulate the
key pathological changes associated with various TBI exposures
(Zander et al., 2017; Ramirez et al., 2021; Silvosa et al., 2022;
Beltrán et al., 2023; Lai et al., 2024). Zander et al. applied explosive
blast overpressure waves to brain organoids and found increased
formation of reactive oxygen species and membrane permeability
(Zander et al., 2017). Silvosa et al. exposed cerebral organoids to
pressure waves with varying frequencies and found that higher-
frequency pressure resulted in increased apoptosis and network
desynchronization (Silvosa et al., 2022). Ramirez et al. embedded
cerebral organoids within a surrogate brain placed in a mouse skull
and induced injury via controlled cortical impact. One week post
impact, they found increased astrogliosis, neuronal damage, and
apoptosis, which was similar to paired experiments with mice
(Ramirez et al., 2021). In another controlled cortical impact study,
Beltrán et al. used RNA sequencing to find genes that regulate
inflammation, cell death, and immune dysregulation (Beltrán et al.,
2023). Lastly, Lai et al. applied high-intensity focused ultrasound to
cortical organoids, revealing tau phosphorylation and TDP-43, which
was prominent in deep-layer neurons. Although brain organoids are
still an emerging model for TBI research and require significant
advancements to enhance their applicability to humans, these
studies underscore their potential for investigating TBI (Jgamadze
et al., 2020; LaPlaca and Brody, 2022).

FIGURE 1
Framework for next-generation mbTBI research platforms,
highlighting three core technological areas: (1) loading devices
capable of accurately replicating the human brain’s biomechanical
conditions, (2) advanced brain organoids that more effectively
mimic the in vivo environment, and (3) technologies for non-invasively
evaluating the biological responses to loading while increasing
throughput. This framework aims to accelerate research into
determining mbTBI mechanisms, enabling rapid assessment of new
interventions.
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In this article, we review the current state of brain organoids and
present a framework (Figure 1) for developing next-generation platforms
tailored to studymbTBI from rLLB. The framework focuses on three key
technological areas, each discussed in context of current research:

• Loading devices capable of accurately replicating the
biomechanical loading conditions in the human brain
during rLLB exposure in vitro.

• Advancements in brain organoids to more effectively replicate
the in vivo environment of the human brain.

• Non-invasive technologies for evaluating biological responses
to loading while increasing throughput

The development of these new platforms will accelerate research
to elucidate the mechanisms of mbTBI, including determining the
dose-response relationship, molecular pathways involved, timelines
of injury progression, recovery processes, and functional effects such
as learning or memory. This understanding will enable researchers
to rapidly evaluate the efficacy of interventions such as prophylactics
and therapeutics.

2 Study design considerations

In studyingmbTBI, it is critical to consider the overall experimental
design as the injury response is not immediate (Hernandez et al., 2018),

making such studies both time-intensive and costly. Further
complicating these studies, both the pressure waveform
characteristics (e.g., peak pressure and duration) and interval
between exposures affect the biomechanical environment in the
brain during rLLB exposure. Cross-sectional designs, where the
specimen is loaded and then destructively processed and analyzed
(Figure 2), for example, with bulk RNA sequencing or
immunohistochemistry, provide a detailed snapshot of the injury
state, but fail to capture the temporal dynamics of the injury
progression. In contrast, longitudinal designs enable non-invasive
evaluation of the biological responses, which reduces inter-subject
variability and enables the assessment of injury progression within a
single specimen, making it better suited for exploring a larger range of
loading parameters. Despite these advantages, longitudinal designs face
challenges due to the limited availability of techniques capable of non-
invasive measurements. However, emerging technologies, including
microfluidic systems (Zhao et al., 2024), label-free imaging
approaches (Keshara et al., 2022), molecular assays (Abdollahi,
2021), and sensors (Kang et al., 2024), are beginning to address
these limitations, making longitudinal designs increasingly feasible.

3 Loading devices

A platform for studying mbTBI must effectively tease apart the
complex relationship between exposure and injury response (LaPlaca

FIGURE 2
Schematic comparing cross-sectional and longitudinal experimental designs for studying mbTBI from repeated exposures. In the cross-sectional
design, specimens are exposed to a blast condition, then destructively processed and analyzed at discrete time points, requiring three organoids to
evaluate three post-exposure time points. In contrast, the longitudinal design involves exposing the same specimen to repeated blasts and continuously
evaluating injury progression without destructive processing, resulting in more replicates for a single exposure condition.
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and Brody, 2022). In vitro devices must methodically apply controlled
loading to understand this complex relationship (LaPlaca and Brody,
2022); however the loading parameters need to accurately reflect the
range of exposures experienced in real training and combat scenarios.
Characterizing this range requires scaling externally measured field
exposures (Kamimori et al., 2017; Skotak et al., 2019; Thangavelu et al.,
2020; Wiri et al., 2023) to the biomechanical environment in the brain
experimentally (Elster et al., 2023) or in silico (Gupta and Przekwas,
2013; Gupta et al., 2017), which are then applied as loading conditions
to brain organoids. In this section, we review the biomechanics of blast
loading to the head and approaches for scaling these loads to
in vitro devices.

3.1 Characterizing the brain biomechanics

Primary bTBI occurs when a blast pressure wave propagates
through the skull, loading the brain tissue directly. In contrast,
secondary injuries from shrapnel, and tertiary injuries from rapid
accelerations are typically associated with moderate to severe blast
exposures (Rosenfeld et al., 2013). These secondary and tertiary
effects are less relevant for LLB (Säljö et al., 2008; Rosenfeld et al.,
2013), making the primary blast pressure response crucial to
replicate experimentally when studying mbTBI.

The brain biomechanics underlying mbTBI are complex due to
the interaction of the incident shockwave with the heterogeneous
structures and mechanical properties of the human head (Liang
et al., 2021). Across a variety of models, including post-mortem
human subjects (Bir, 2011; Ganpule et al., 2013; Ott et al., 2013;
Ouellet et al., 2014; Iwaskiw et al., 2018), in silico (Moore et al., 2009;
Taylor and Ford, 2009; Nyein et al., 2010; Chafi et al., 2011; Panzer
et al., 2012; Tan et al., 2017; Tan andMatic, 2020; Li et al., 2024), and
anthropometric surrogates (Merkle and Carneal, 2012; Hua et al.,
2014; Ouellet and Philippens, 2018), the skull acts as a filter,
attenuating the high-frequency delta response of the incident
shockwave. The transmitted pressure wave propagates through
the brain tissue, undergoing multiple reflections within the
intracranial cavity due to acoustic impedance mismatches
between the cranium and brain (Gupta et al., 2021; Liang et al.,
2021). These reflections result in intracranial pressure (ICP) wave
interference and oscillatory characteristics withmultiple peaks in the
0.5–10 kHz frequency range that persist for 1–10 m.

A full characterization of the tissue-level stress or strain state is
challenging since deviatoric stresses in experimental studies are not
measured due to sensor limitations. However, computational
models have reported deviatoric stresses that are over 100 times
lower than pressure (Taylor and Ford, 2009), which is attributable to
the high bulk-to-shear modulus ratio of brain and it’s confinement
within the intracranial cavity. Deviatoric stresses also persist
milliseconds after the initial ICP wave (Taylor and Ford, 2009),
suggesting they result from brain strains and displacements
(Iwaskiw et al., 2018) caused by overall kinematic head motion,
which is less relevant for LLB (Säljö et al., 2008; Rosenfeld et al.,
2013). Elster et al. presents a comprehensive review of the
experimental studies that measure the brain biomechanics during
blast exposures (Elster et al., 2023). However, a comprehensive
understanding of the brain biomechanics is challenging due to it
being dependent upon many factors, including incident shockwave

direction (Li et al., 2024), surface reflections (Tan et al., 2017), use of
PPE (Moss et al., 2009; Nyein et al., 2010; Alphonse et al., 2020;
Elster et al., 2023; Li et al., 2024), and anthropometric variations.

With recent field studies monitoring rLLB exposure (Kamimori
et al., 2017; Skotak et al., 2019; Thangavelu et al., 2020; Wiri et al.,
2023), there are opportunities to replicate these conditions
experimentally or in silico to characterize the brain biomechanics.
Critical to these studies is addressing the variations in exposures
associated with large diversity of weaponry (Wiri et al., 2023),
including the potential cumulative effects of automatic weapons
with firing rates that approach the duration of ICP waves, potentially
resulting in rapid ICP accumulation.

Additionally, several challenges related to spatiotemporal scales
must be addressed when translating results between experimental
and computational models, particularly when considering the
differences between organoid models and the human brain. At
the continuum level, the brain’s mechanical properties behaves as
a nonlinear viscoelastic material that is highly rate-dependent
(Procès et al., 2022). Therefore, characterizing and assigning
these properties in computational models becomes difficult at the
time scales of blast exposure. At the cellular scale, deformations are
spatially heterogeneous due to the cell-extracellular matrix and cell-
cell interactions, resulting in strain concentrations at micro-
interfaces with impedance mismatches (Nakagawa et al., 2011),
such as synapses (Gharahi et al., 2023). To accurately model
these micro-interfaces, advancements in mechanobiology models
that bridge continuum and molecular scales are essential
(Montanino et al., 2020; Gharahi et al., 2023).

3.2 Load scaling to in vitro devices

Scaling the effective primary blast loading from an explosive event
to an in vitro device is challenging. Various systems have been used to
induce bTBI in cellular cultures, spanning a wide range of loading rates.
Hydrostatic pressures have been applied to induce injury (Murphy and
Horrocks, 1993; Salvador-Silva et al., 2004), but these systems do not
capture the dynamics of the ICP. Systems utilizing shock tubes (Arun
et al., 2011; Hue et al., 2013; Vogel et al., 2017; Campos-Pires et al., 2018)
and pneumatic actuators (Ravin et al., 2012; 2016) expose cells to
dynamic pressures. However, these systems are replicate the pressure
from an incident shockwave—idealized as a Friedlander wave—instead
of the tissue-level ICPs. Shockwaves generated by pulsed lasers
(Selfridge et al., 2015; Gomez Godinez et al., 2021) and lithotripsy
(Howard and Sturtevant, 1997) devices have also been utilized to induce
cellular injury. However, the pressures generated are substantially more
transient, in the microsecond time range, compared to the millisecond
time range during blast loading.

In an interesting device design, Silvosa et al., used a piezo driven
pressure chamber to control both pressure amplitude and frequency
to induce primary bTBI in cerebral organoids (Silvosa et al., 2022).
Approaches such as this are powerful to study mbTBI since they allow
researchers to identify the relationship between specific loading
parameters and injury response. Additionally, for rLLB exposures,
the loading parameters require devices that are tunable to generate
complex, low-magnitude pressure waveforms that are repeated for
many hours (e.g., during training exercises) or at very high repetition
rates to replicate firing rates of automatic weapons.
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4 Advancing brain organoid models

Brain organoids have emerged as transformative tools for
modeling human brain development and pathology, offering
unprecedented opportunities to investigate complex
neurobiological processes. Despite significant progress, several
challenges remain for brain organoids to serve as a viable model
for studying the effects of rLLB on cellular system. In this section, we
review these challenges alongside recent developments aimed at
addressing them.

4.1 Organoid growth and maturation

Due to the lack of an integrated vascular system, nutrient and
waste exchange relies solely on diffusion (Nwokoye and Abilez,
2024). When organoids exceed a diameter of 0.4–0.5 mm, diffusion
becomes increasingly inefficient, leading to hypoxia and necrosis of
the inner core. These conditions reduce cellular viability and
functional capacity in deeper regions. Additionally, brain
organoids largely represent an immature state, akin to early fetal
development, restricting their utility for modeling adult brain
functions, such as advanced cognition or late-stage
neurodegeneration. Addressing these limitations is essential for
enhancing the physiological relevance and applicability of brain
organoid models for mbTBI.

To overcome these challenges, various innovative techniques are
being developed to support their growth and viability. One promising
approach is organoid vascularization (Nwokoye and Abilez, 2024). By
integrating endothelial cells into brain organoid cultures, either as a co-
culture or during differentiation (Skylar-Scott et al., 2022), researchers
promote vascularization, which enhances the survival of cells within the
organoid’s core and promotes more complex tissue organization, closely
resembling in vivo conditions. Vascularization is also an important
component for studying neurovascular impairment, a common
pathophysiology in bTBI (Siedhoff et al., 2022). Another significant
advancement is the use of perfusion systems. Devices such as bioreactors
and microfluidic systems enable dynamic medium flow, providing a
constant supply of nutrients and oxygenwhile efficiently removingwaste
(Cai et al., 2021; Cho et al., 2021; Khan et al., 2021; Salmon et al., 2022).
These systems create a more favorable microenvironment, supporting
the prolonged growth and functional maintenance of larger organoids.
Lastly, 3D bioprinting has emerged as a powerful tool for constructing
organoids with precise spatial arrangement of cells and scaffolds,
enabling the creation of vascular networks within organoids (Zhao
et al., 2021; Salmon et al., 2022; Galpayage Dona et al., 2023).
Together, these techniques are transforming the scalability and
applicability of brain organoid models, paving the way for more
advanced and realistic in vitro systems for studying mbTBI.

4.2 Cellular complexity and immune-
response modeling with microglia

One of the critical limitations of current brain organoid models
is their lack of cellular diversity, which restricts their ability to
replicate key processes such as neuroinflammation and immune
responses to injury or disease. While some brain organoids include

oligodendrocytes and myelination (Pamies et al., 2017; Chesnut
et al., 2021a; Chesnut et al., 2021b)—a particularly important feature
to replicate—many still lack microglia. The absence of microglia
represents a significant gap in these models since they are the brain’s
resident immune cell and are essential in maintaining neural
homeostasis, mediating synaptic pruning, and mounting immune
responses to TBI (Loane and Byrnes, 2010; Huber et al., 2016; Shi
et al., 2021; Ravula et al., 2022).

To incorporate microglia into organoid systems, researchers
have employed various techniques (Zhang et al., 2023). Co-culture
models involve the direct addition of microglia (Abreu et al., 2018;
Song et al., 2019) or iPSCs into developing organoids (Wörsdörfer
et al., 2019; Fagerlund et al., 2021; Sabate-Soler et al., 2022),
facilitating their interaction with other brain cell types.
Alternatively, endogenous development strategies use genetic
engineering or cytokine treatments to encourage microglial
differentiation within the organoid itself (Ormel et al., 2018),
creating a more integrated and physiologically relevant model.
Emerging dynamic immune-organoid systems, enabled by
microfluidic systems, further enhance this integration by allowing
the interaction of circulating immune cells with organoids,
simulating systemic immune response (Ramadan et al., 2023).

5 Non-invasive technologies

Technologies to non-invasively evaluate brain organoid
responses while reproducibly increasing throughput are essential
for enabling longitudinal study designs encompassing a broad
parameter space. In this section, we review a range of emerging
technologies that can be integrated into next-generation
mbTBI platforms.

5.1 Microfluidic systems

High-throughput systems that integrate brain organoids with
microfluidics, known as organoid-on-a-chip systems, are
revolutionizing their application in research and drug discovery
(Anderson et al., 2021; Zhao et al., 2024). These systems provide
several advantages that enhance the scalability and control of
organoid-based experiments. These systems support parallelized
experiments, allowing for the simultaneous testing of multiple
loading parameters, assays, intervention strategies. As discussed
previously, these systems also offer precise control over critical in
vivo factors, such as fluid flow, temperature, pH, mechanical forces,
nutrient gradients, and microglia circulation, thereby creating a
physiological environment that more resemble the human brain.
Achieving these environments typically involves precisely
controlling incubation systems and tuning media exchange using
low-flow pumps to minimize shear stress. However, a unique
challenge in prolonged rLLB scenarios is ensuring a robust
interface between the loading device and microfluidic system.
Addressing this issue is essential for the development of future
mbTBI platforms. Looking ahead, several innovations promise to
further enhance the utility of organoid-on-a-chip systems. The
development of automated systems for the production,
maintenance, and testing of organoids will streamline workflows
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and increase reproducibility. Additionally, enhancing integration by
combining multiple organoid types (e.g., brain, liver, and heart) on a
single chip will facilitate multi-organ interactions (Zhao et al., 2024),
particularly relevant for pharmacokinetics and polytrauma
(Hubbard et al., 2017).

5.2 Sensors

New multimodal sensors enable real-time monitoring of brain
organoid physiology, providing researchers with continuous feedback
on dynamic parameters such as mechanical properties (Ryu et al.,
2021), temperature, oxygen concentration, and neural activity without
disrupting the organoid (Park et al., 2021). By utilizing MEAs
alongside calcium imaging, studies have demonstrated that brain
organoids form neural networks that generate oscillatory activity
based on phase amplitude coupling (Trujillo et al., 2019), mutual
information (Alam El Din et al., 2024a), network correlation or
synchrony (Samarasinghe et al., 2021; Sharf et al., 2022), which
has been shown to be disrupted by bTBI (Silvosa et al., 2022).
Advancements in high-density (Schröter et al., 2022) and 3D
MEAs (Li et al., 2019; Soscia et al., 2020; Huang et al., 2022;
Martinelli et al., 2024) are expected to drastically enhance these
electrophysiological measurements through unprecedented
improvements in spatial resolution and access. An emerging area
called organoid intelligence (Smirnova, 2023; Smirnova et al., 2023;
Alam El Din et al., 2024a; Alam El Din et al., 2024b), combines these
electrophysiological measurements with artificial intelligence, opening
up the possibility to study cognition, learning, and memory, all of
which are effected by mbTBI (Siedhoff et al., 2022).

5.3 Label-free imaging

Imaging provides unique insight into the 3D structure and
function of brain organoids, enabling the researchers to
characterize the injury progression and recovery processes as a
result of mbTBI. Confocal, multiphoton, and light sheet
fluorescent microscopy are the primary techniques for 3D imaging
(Ettinger and Wittmann, 2014). However, these techniques typically
rely on exogenous fluorophores that are diffusion-limited, cytotoxic,
or require fixation, limiting their use for long-term time-lapse imaging
of brain organoids (Ettinger and Wittmann, 2014; Fei et al., 2022).
Genetically engineered brain organoids that express endogenous
fluorophores (Artegiani et al., 2020; Romero et al., 2023), allowing
for specific tagging of processes such as oligodendrogenesis and
myelination (Romero et al., 2023) have begun to address the
limitations with exogenous fluorophores. However, point scanning
methods such as confocal and multiphoton microscopy can induce
phototoxicity (Ettinger and Wittmann, 2014), which may confound
the observed effects of mbTBI.

In recent years, there has been advancements in imaging
techniques that overcome these limitations by taking advantage of
untagged endogenous contrast agents (Fei et al., 2022; Keshara et al.,
2022; Maharjan et al., 2024). Full-field optical coherence tomography
(FF-OCT) is a full-field interferometry technique that resolves the
temporal dynamics of intra-cellular structures (Scholler et al., 2020;
Monfort et al., 2023). This technique has been used to image retinal

organoids over the course of 17 days (Monfort et al., 2023) and has
been shown to be correlated with cellular processes such as oxidative
stress (Groux et al., 2022), differentiation, and cellular death (Monfort
et al., 2023). Techniques such as fluorescence lifetime imaging
microscopy (FLIM) and hyperspectral imaging (HSI) measure
properties of endogenously fluorescing biomolecules, such as decay
rates and spectral characteristics, respectively, that are involved in
metabolic processes, as well as structural and molecular changes in
organoids (Xue et al., 2021; Barroso et al., 2023).

One of the key challenges with FF-OCT, FLIM, and HSI is
achieving imaging depths beyond a few hundred micrometers
(Xue et al., 2021; Monfort et al., 2023). This capability is
particularly important for visualizing the inner core of organoids,
which in larger brain organoids can extend to depths of 1–2 mm and
may respond differently to biomechanical loading compared to the
surface. Recently, three-photon microscopy (3p.m.) has been used to
image cerebral organoids at depths of up to 2 mm. (Yildirim et al.,
2022). The endogenous contras detected by 3p.m. is based on third
harmonic generation, which is sensitive to large refractive index
changes, such as those occurring at the cell membrane. However,
3p.m. is limited by the working distance of high numerical aperture
(>1) immersion objectives. Recent modifications to the collection
pathway are beginning to address this limitation (Deng et al., 2024).
The challenge of imaging at depth is expected to become more
pronounced as researchers successfully grow larger brain organoids
by mitigating inner core necrosis. Consequently, further
advancements in these label-free imaging techniques are necessary.

5.4 Sequencing

bTBI initiates a cascade of key pathophysiological processes that
disrupt brain homeostasis, including excitotoxicity, oxidative stress,
inflammation, and apoptosis (Siedhoff et al., 2022). These processes
exacerbate the initial damage caused by the primary injury, leading to
widespread neuronal dysfunction and tissue loss. Omics technologies
have been extensively employed to study bTBI (Tajik and Noseworthy,
2022), providing insights into global molecular changes but failing to
capture the heterogeneity of the disease. The advent of single-cell omics
has addressed this limitation by enabling the investigation of responses
at the level of individual cells, uncovering cell-specific biomarkers and
dynamic changes in cell population distributions. For example, single-
cell RNA sequencing can identify distinct transcriptional states within
neurons, glial cells, and infiltrating immune cells post-injury, offering a
deeper understanding of the cellular signaling driving both damage and
repair across different types of external injury models (Jha et al., 2024).
Additionally, when combined with CRISPR, there is a path to towards
identifying and modifying injury-induced degenerative processes (Lai
et al., 2024).

Although single-cell RNA sequencing is a powerful tool for
precisely assessing cellular signaling pathways triggered by bTBI, it is
a destructive process. Extracellular vesicle (EV) based biomarkers
represent a promising alternative since nearly all cell types release
EVs, making them possible to characterize by processing the
supernatant in brain organoid cultures. EVs containing lipids,
proteins genetic material that are reflective of the cell-type
specific complex biochemical environment, enabling dynamic
assessment of neuroinflammation, gliosis, and neurodegeneration
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(Frühbeis et al., 2013). Additionally, EVs are able to cross the blood-
brain barrier (Ramos-Zaldívar et al., 2022) and hold potential for
inferring the brain’s state in vivo (Smirnova et al., 2024).

6 Conclusion

Brain organoids represent a transformative technology for
studying the mechanisms of mbTBI by providing a
physiologically accurate in vitro model with unprecedented
control and throughput. However, to fully realize and harness the
power of these next-generation platforms, the advancement of new
loading devices, organoid models, and non-invasive technologies are
essential. The presented framework aims to guide research to drive
these innovations, establishing brain organoids as a cornerstone in
trauma research.
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