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This study aims to assess the efficacy of melatonin in mitigating the adverse
effects of hypobaric hypoxia on the cardiovascular system of neonatal lambs
(30 days old). Two groups were considered for this purpose: (i) Melatonin-treated
group (N = 5) and (ii) Control group (N = 6) without treatment. All subjects were
exposed to hypobaric hypoxia during gestation and perinatal periods, with
melatonin administered after birth. The study focused on the carotid artery, a
known predictor of cardiovascular risk. Biomechanical tests, morphometric, and
histological measurements were conducted, and a numerical model was
developed based on the biomechanical data. Key findings showed remodeling
effects: Firstly, a realignment of collagen fibers towards a longitudinal direction
was observed with melatonin treatment, similar to non-hypoxic arteries. Second,
changes in residual stress and ex-vivo luminal radius were noted, aiming to
reduce wall stress and increase vascular resistance. These changes indicate an
antihypertensive response, reducing the effects of increased blood pressure and
flow due to hypobaric hypoxia. This study demonstrates that biomechanical and
histomorphometric methodologies effectively assess the beneficial effects of
melatonin treatment under hypobaric hypoxia exposure.
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1 Introduction

Vasculature is particularly affected by changes in the physiological environment,
manifested in adaptative/maladaptative processes (Sehgal et al., 2019). Accordingly,
biomechanics has been proven as a successful tool in assessing vascular impairments,
particularly related to the aging process (Haskett et al., 2010), along with the development
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and progression of cardiovascular diseases (Lasheras, 2007; Walsh
et al., 2014; Murtada et al., 2021; Tong et al., 2023).

Focusing attention on the arteries, their characteristic
microstructural configuration plays a key role in the
biomechanical response under physiological conditions. The
mechanical behavior is mainly governed by the action of elastin
and collagen fibers (extracellular matrix (ECM)), along with the
smooth muscle cells (SMC) (Pukaluk et al., 2024; Holzapfel and
Ogden, 2018). Kochova et al., 2012 (Kochová et al., 2012) found out
the passive biomechanical effect of each one of these components by
its respective degradation, through the inflation-deflation testing.
They discovered that elastin is related to an increased diameter at
physiological pressure levels without determining stiffness changes,
which is attributed to collagen influence. In contrast, SMC content
induces both diameter change and arterial wall stiffening at supra-
physiological pressures.

Hypoxia, characterized by low oxygen levels at the cellular and
tissue levels, is detrimental to maintaining normal physiological
processes (Ream et al., 2008). In the gestational stage, hypoxia
induced by a high-altitude environment (commonly referred to as
hypobaric hypoxia, HH) is classified as a kind of preplacental hypoxia,
due to bothmother and fetus being subjected to this condition (Hutter
et al., 2010). Besides the geographic conditions, fetal hypoxia can also
develop as a result of biological abnormalities, namely, impaired
development of the placenta during the early pregnancy period
(Eskild et al., 2016), umbilical cord occlusion (Kawagoe et al.,
1999), and maternal diabetes (Klemetti et al., 2021). In particular,
this condition triggers an alteration in normal development in the
perinatal period, where chronic exposure toHHduring pregnancy has
revealed high incidence of intrauterine growth restriction (IUGR)
(Parraguez et al., 2005; brown and GiussanI, 2024). IUGR has been
closely related to cardiopulmonary complications during life (Rueda-
Clausen et al., 2009), including premature pulmonary hypertension
(Herrera et al., 2010; Papamatheakis et al., 2013; Ding et al., 2020;
Sigaeva et al., 2019; Steinhorn, 2017) and reduced cardiac
performance (Patterson and Zhang, 2010) which leads in turn, to
higher risks of adult cardiovascular disease (Giussani and Davidge,
2013; Ream et al., 2008).

Aiming to mitigate the pulmonary hypertension effects, the
performance of vasodilator treatments has been assessed. In the
physiological context, melatonin is naturally released by the pineal
gland to the body at night, aiming to regulate the circadian and
seasonal rhythms (Xu et al., 2018; Nelson and Drazen, 2000; Zisapel,
2018), along with pubertal development (Pandi-Perumal et al., 2008;
Olcese, 2020). Different research has shown that when used as a
treatment, melatonin exhibits antioxidant properties (Figueroa et al.,
2021). This is particularly crucial in different types of hypoxia
exposure conditions (Debevec et al., 2017; Farías et al., 2012;
González-Candia et al., 2019). In addition, this drug has
successfully mitigated effects linked to pulmonary arterial
hypertension (Torres et al., 2015; Maarman and Lecour, 2021;
Hung et al., 2017; Yildiz and Balcioğlu, 2024; Astorga et al.,
2018). Simultaneously, several alternative treatments have been
proposed for these same goals, i.e., atrial natriuretic peptide
(Wiedemann et al., 2001; Werner et al., 2016; Hussain et al.,
2019), cinaciguat (Beñaldo et al., 2022; Chester et al., 2011;
Laubrie et al., 2023), and allopurinol (Liu-Shiu-Cheong et al.,
2020; Gokcen et al., 2022).

Physiologically, the common carotid artery (CCA) plays a
crucial role in the cardiovascular system, by perfusing oxygenated
blood from the heart to the brain territory (Sethi et al., 2023).
Structurally, it is classified as a conductive or elastic-type artery,
denoted by a higher content of elastic fibers than smooth muscle
cells, unlike in the peripheral muscular arteries (Brown et al., 2018).
This distinctive feature impacts a high level of vascular compliance,
essential for responding to the significant blood pressure
fluctuations this kind of artery is subjected to (Peace et al., 2018).
Different authors have shown the impact of intrauterine growth
restriction (IUGR) on the carotid arteries of various animal models
along perinatal development. Kucukbas and Doğan (2023) evaluated
hemodynamics parameters (i.e., pulsatility and resistance indexes,
along with peak systolic velocity) via ultrasound Doppler technique
in the common carotid artery of fetuses with IUGR, determining an
abnormal blood flow under this condition to the difference of those
subjected to normal pregnancy. Paz et al. (2019) assessed the
changes in carotid morphology under IUGR conditions,
specifically noting a reduction in luminal diameter, while
observing no alterations in vascular reactivity, neither in
contractile nor dilation ex-vivo function. Cañas et al., (2018)
determined the passive mechanical properties and residual stress
quantification via ring tensile and ring opening tests in the aorta,
carotid, and femoral arteries of guinea pigs fetuses, in pregnancies
subjected to progressive uterine artery occlusion. The main results
did not find conclusive evidence about changes in the mechanical
behavior and residual stress in carotid arteries. Dodson et al. (2013a)
studied the effect of placental insufficiency-induced IUGR in
umbilical and carotid arteries of sheep near-term fetuses,
determining a decrement in compliance for both studied arteries,
measured through the inflation-extension test. In addition,
histological observations reveal arterial remodeling, denoted by
an increment in the content of elastic and collagen fibers in
the carotid.

Focusing on the biomechanical aspects of perinatal development
under chronic HH-induced IUGR, there is limited research (Rivera
et al., 2020; Rivera et al., 2021; Navarrete et al., 2024), and even less
on those of the carotid artery (Navarrete et al., 2020). On the other
hand, there is little information about the drug-based treatment
effects. Melatonin has been found to have a vasodilator effect in
pulmonary circulation, but its impact on systemic circulation
arteries is yet to be established. Based on the fact that there is
evidence of alteration in the normal characteristics of the carotid
artery regarding biomechanics and morphological parameters,
under the mentioned condition, we hypothesize that
administration of melatonin treatment in newborn lambs
exposed to chronic HH during both pregnancy and postnatal
periods alter the carotid artery mechanical response and its
morphology.

To verify the research hypothesis, a numerical-experimental
study of preclinical nature was carried out in the common
carotid artery of newborn lambs gestated and bred in high
altitude conditions. The passive mechanical properties were
determined through biomechanical tests (explained in Section
2.2), and the corresponding characterization was performed using
a suitable constitutive model (detailed in Section 2.3.1). Once the
model has been characterized, a well-established numerical
simulation procedure (detailed in Section 2.3.2) determines the
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residual stress field in the arterial wall. In addition, histological and
ultrastructural assessments were conducted to determine the
microstructure and morphology of the artery wall (Section 3.3).

2 Materials and methods

2.1 Materials

The study was conducted on the carotid artery of lambs whose
conception, gestation, and neonatal period took place in an
environment of hypobaric hypoxia at the International Center for
Andean Studies (INCAS) of Universidad de Chile, located in the
town of Putre at 3,600 m above sea level (m.a.s.l.).

The number of animals required for the study was determined
following the 3 R s of good practices in animal experimentation
(Replacement, Reduction, and Refinement of animals, from “The
principles of human experimental techniques”, 1959). The samples
were divided into two experimental groups.

• Control group (CN), consisting of six specimens without
pharmacological treatment.

• Melatonin group (MN), consisting of five specimens treated
with melatonin medication.

The pharmacological treatment consists of the oral
administration of 1 mg/kg of melatonin at approximately 8 p.m.
for 20 days, between four and 23 days of age. After delivery, neonates
are left without interventions for 2–3 days to ensure maternal-
newborn attachment and proper recognition of their mothers, which
ensures good lactation. It has been done with the purpose of
increasing melatonin levels at a steady rate without altering the
circadian rhythm of the lambs. Euthanasia occurs at 30 days of age,

through the intravenous administration of 100 mg/kg of sodium
thiopental. Subsequently, the dissection and extraction of the carotid
artery were carried out, and within a period not exceeding 24 h, the
corresponding biomechanical tests were performed. All animal
procedures for this study were carried out with the approval of
the Bioethics Committee on animal research of the Faculty of
Medicine of Universidad de Chile (CBA #0761 FMUCH).

2.2 Experimental methods

2.2.1 Biomechanical tests
Different biomechanical tests were conducted in the carotid

artery. They were perfomed inmedialty after disection procedure.
During the entire process (both extraction and testing), the sample
was immersed in physiological saline solution. Moreover, after
extraction, the arterial segment was preserved at 4°C. During
testing, the tissue was gradually brought to normal body
temperature (39 ± 1°C), following the protocol established by
Rivera et al. (2020).

2.2.1.1 Uniaxial tensile test
Figure 1a, schematizes the main aspects of the experimental

procedure involved in the uniaxial tensile test. For each sample, two
uniaxial tensile tests were performed: one in longitudinal and the
other in circumferential directions (denoted by the directions l and
θ, respectively, according to the Figure 1a). Initially, a tubular section
of the arterial sample, approximately 2.5 cm long, was opened
through a longitudinal cut. Then, rectangular-shaped samples
were extracted in both directions considered. Each sample was
mounted in the testing machine Instron 3342 (equipped with
a 10 N load cell with a precision ± 0.1 N). Before the test begins, the
initial dimensions were measured, where both the length (l0) and

FIGURE 1
Set-up of biomechanical tests and representative measurements. (a) Uniaxial tensile test. (b) Ring opening test.
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width (w0) were obtained via image processing using the software
ImageJ (Schneider et al., 2012). These measurements were
performed from an image of the mounted sample placed beside a
ruler (see Figure 1a), whose error is ±1 mm. On the other hand, the
thickness t0 was determined via histological images, according to the
refered below in Section 2.2.2).

The test was conducted by stretching the sample in the direction
ê1 of Figure 1a, at a quasi-static speed of 1.5 mm/min. From the
instantaneous force (F) measured by the load cell, and the actual
length (l) of the sample, the Cauchy stress was calculated through
the expression (σ1 � F

A), where A is the instantaneous cross-
sectional area of the sample. The stretch λ1 during the test was
calculated as the ratio between the actual and the initial length of the
sample (λ1 � l

l0
). Alternatively, whereas the sample is stretched in

direction ê1, the other two directions (ê2, ê3 shown in Figure 1a) are
shortened, and the stretch is denoted as λ2 and λ3, respectively. As
the tissue was assumed to be incompressible (Rivera et al., 2020), the
instantaneous cross-sectional area can be determined as (A � A0

λ1
),

where (A0 � w0 t0) is the initial one.
From the experimental dates, stress-stretch curves were

generated, which consider the dataset of force from the
beginning of the test, until when it reaches its maximum value
(right side of the Figure 1a). From them, the following characteristic
parameters were quantified: the slope at low strain levels (E1) and at
high strain levels (E2), the coordinates of the elbow point (λe, σe),
and the rupture point (λr, σr). In specific, the slopes E1 and E2 were
obtained by a linear fitting of the data, considering the highest
quantity of points until the coefficient of determination r2 be equal
to 0.95 (Rivera et al., 2020). According to the referential stress-
stretch curve from Figure 1, the elbow is defined as the midpoint of
the transition zone, which delimits the low and high stretch levels. Its
value is determined by the mean stress-stretch coordinate between
the stretch on the curve defining the end of the slope for E1 and the
beginning of the slope for E2. Finally, the rupture point is taken as

the last stress-stretch coordinate value considered. (Rivera et al.,
2020; García-Herrera et al., 2012).

2.2.1.2 Ring opening test
In this research, a 4-mm arterial ring segment was extracted

from the carotid artery, which was radially cut to measure its
opening angle α. The transversal section of the ring as
characterized by the lumninal radius R0 along with the wall
thickness t0, both measured through histological images, using
the software ImageJ, such as is exhibited in Figure 2a. The
measurements were performed 20 min after the cut procedure to
avoid any transient effect (Rivera et al., 2020). Figure 1b schematizes
the experimental process of this test. The opening angle was
retrieved by image processing using the software ImageJ.

2.2.2 Histomorphometry
Figure 2a schematizes the protocol to obtain the morphometric

measurements of samples, corresponding to the external radius Ro

and arterial wall thickness to. Ro was measured through images of
the arterial wall cross-section, which were captured by magnifying
glass Motic SMZ-161 (left image of Figure 2a), while to was
determined from 10X histological images (right image of Figure 2a),
which includes both the intima-media and adventitia layers.

To determine the microstructural composition, a well-known
histological procedure was applied to the artery under study
(Carson and Hladik, 2009). In particular, two stains were used for
this purpose (see Figure 2b). On the one hand, the Hematoxylin-Eosin
(HE) staining was used to identify the cell nuclei (visualized with
purple color), determining the cell nuclei density (number of cells per
unit surface). Each cell nucleus was identified through a color
thresholding process. The overall number of nuclei per image, was
then quantified using a particle analyzer, which counts these regions
based on a minimum size of 50 pixels2 (value determined by
inspection). On the other hand, the Van Gieson Elastic (VGE)
staining quantifies two extracellular matrix components: elastic
fibers (identified by black color) and collagen fibers (pink color).
Specifically, to determine the percentages corresponding to collagen
and elastic fibers, the histological images undergo a color thresholding.
This process defines three parameters: hue, saturation, and brightness,
which are adjusted to identify the characteristic colors of the fibers. All
these processes of counting, described below, have been developed
using the software ImageJ.

2.2.3 Statistical procedure
All data of the samples were expressed as mean ± standard error

of the mean (SEM), calculated as the ratio of the standard deviation
to the square root of the number of specimens. The representation of
the mean population differences was quantified through the 95%
confidence interval (CI), along with the p − value of a suitable
statistical test. To this end, a well-defined procedure was used to
determine the statistical test to be used (Navarrete et al., 2024). First,
the Shapiro-Wilk test was used to assess the normality of the
data sets. When both samples are normally distributed, the F-test
was used to compare the variances between the groups. Based on
these two results, the appropriate statistical method was chosen to
assess differences between means. The unpaired t-test was used
when both groups followed a normal distribution and equal
variances, Welch’s t-test was also considered in groups with

FIGURE 2
(a) Representative parameters of morphometric measurements.
(b) Representative histological images of Hematoxylin-Eosin (HE) and
van Gieson Elastic (VGE) staining, along with colors and zones where
elastic fibers, collagen, and cell nuclei were quantified.
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normal distribution, but different population variance; while a non-
parametric Mann-Whitney U-test was used when the distribution of
one or both groups was not normal. Differences were considered
significant when p − value≤ 0.05. The software GraphPad Prism

6.01 (GraphPad Software Inc., San Diego, CA, USA)

was used for this purpose.

2.3 Numerical methods

2.3.1 Constitutive modelling
Continuum mechanics models soft tissue’s purely elastic

mechanical response as those of hyperelastic materials (Dwivedi
et al., 2022). According to the intrinsic characteristics of the material
under study, a suitable hyperelastic constitutive model must be
considered for this purpose. In particular, several authors have
considered the artery wall to be an isotropic ground matrix fiber-
reinforced (Huh et al., 2019; Lee et al., 2019; Pagoulatou et al., 2021).
This idea is supported by observations of its microstructure, where
the isotropic matrix represents the non-preferential direction of the
elastic fibers, whereas the fibrous part in the model reflects the
preferential orientation of the collagen fibers along the arterial wall.
Thus, we opted for the transversely isotropic Gasser-Holzapfel-
Ogden (GHO) model in this study (Gasser et al., 2006).

In general, for hyperelastic materials, the stress-strain
relationship is determined based on the strain energy function
(W), which for the GHO model is defined as follows:

W C( ) � μ

2
I1 − 3( ) + k1

2 k2
∑
i�4,6

exp k2 κ I1[([
+ 1 − 3κ( ) Ii − 1]2) − 1], (1)

which involves the following terms: (i) The first invariant of the right
Cauchy-Green strain tensor (C), denoted as (I1 � tr(C)). (ii) Two
pseudo-invariants of this strain tensor, I4 � â1 · C â1 and
I6 � â2 · C â2, both related to the orientation of the two-
symmetrical family of fibers in the plane defined by the
circumferential and longitudinal axes, each one represented by â1 �
[sin(γ), cos(γ), 0] and â2 � [−sin(γ), cos(γ), 0], where γ is defined as
the mean angle of each family of fibers measured from longitudinal
direction of the arterial duct. (iii) The set ofmaterial constants μ, k1, k2
and κ, where the first three are referred to stiffness both in isotropic
matrix ground and fibers, meanwhile the last one to the degree of
dispersion of both fiber families considered (0≤ κ≤ 1/3).

A particular consideration about arterial tissue is its
incompressibility, where the volume does not change in the face
of any characteristic deformation state (García-Herrera et al., 2016).
In this case, the definition of the stress state is not only deformation-
dependent, since added hydrostatic pressure p on the material is
unable to deform it. The stress-strain relationship, specifically for
incompressible materials, is stated through the Lagrangian
multiplier approach, and it can be deducted from the following
expression:

σ � 2J−1F
∂W �C( )
∂C

FT − pI, (2)

where σ is the Cauchy stress tensor, �C � J−2/3 C the isochoric part of
the tensor C with J � det(F) (equal to one under incompressibility
condition), p the Lagrange multiplier that represents the already

mentioned hydrostatic pressure (related to volumetric component),
and I is the identity tensor. Equations 1, 2 yield the stress-strain
relationship as stated by:

σ � J−1FSFT − pI, (3)
where S is the Second Piola Kircchoff stress tensor, whose specific
expression for the GHO model is:

Sij � μIij + 2κk1 κI1 + 1 − 3κ( )I4 − 1[ ]expk2 κI1+ 1−3κ( )I4−1[ ]2 Iij+
2κk1 κI1 + 1 − 3κ( )I6 − 1[ ]expk2 κI1+ 1−3κ( )I6−1[ ]2 Iij+
2k1 1 − 3κ( ) κI1 + 1 − 3κ( )I4 − 1[ ]expk2 κI1+ 1−3κ( )I4−1[ ]2ϱij+
2k1 1 − 3κ( ) κI1 + 1 − 3κ( )I6 − 1[ ]expk2 κI1+ 1−3κ( )I6−1[ ]2ϱij − pC−1

ij ,

(4)
where the tensor ϱij is defined as:

ϱij �
cos2γ, if i � j � 1
sin2γ, if i � j � 2
0, if i ≠ j ∧ i, j � 1, 2

⎧⎪⎨
⎪⎩ (5)

Particular case: uniaxial tensile test.
Three-dimensional spatial region designated for the tensile test

(Figure 1a) is defined by the orthogonal unit vector triad (ê1, ê2, ê3).
The sub index □1 denotes the direction where deformation is applied
(either longitudinal and circumferential, according to the two
directions tested), whereas □2 and □3 are the other two directions
(being □3 the radial direction in all cases).

In particular, in the case of uniaxial tensile test, the definition of
right Cauchy-Green strain tensor corresponds to the diagonal
matrix C � diag[λ21, λ22, λ23], and the Cauchy stress tensor is
σ � diag[σ1, 0, 0]. Moreover, the incompressibility condition
implies that λ3 � 1/λ1λ2. Through the Equations 3–5 and the
previously referred particularizations of the uniaxial tensile test,
the semi-analytical expressions for the GHO model can be deduced.
Further details about these equations are exhibited in the study of
García-Herrera et al. (2016).

The set of material parameters defined by the GHO model
(i.e., μ, k1, k2, κ, γ) were determined via numerical fitting, by
considering the experimental information provided by the
uniaxial tensile test both in longitudinal and circumferential
directions. To solve the parameter determination, the gradient-
based optimization Levenberg-Marquardt algorithm was used to
address the non-linear least square problem (Gundiah et al., 2009).
The coefficient of determination for each direction considered (r2θ
and r2l ) is the metric used to evaluate the fitting quality, widely used
in biomechanical studies (Saw et al., 2018; Avril et al., 2013; Guo
et al., 2023).

2.3.2 Numerical simulation of the ring closure
Aiming to determine the residual stress field across the artery

wall, the numerical simulation of the inverse process to the
experimental ring opening test is described below. Experimental
information of the ring opening angle α (Section 2.2.1) along with
the initial ex-vivo geometry of the arterial ring (Ro and to, Section
3.3), are required as input data (Cañas et al., 2018).

Figure 3a, outlines the numerical procedure in the simulation,
where material homogeneity and geometrical symmetry were
considered (García-Herrera et al., 2016). The referential
configuration (region ABCD) corresponds to a stress-free, open
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and stabilized arterial ring. The numerical ring-closure was achieved
by imposing displacements on the line AB, which moves via A’B’
and finishes in the closed ring configuration (A″B″ position).

To achieve the adequate reconstruction of the closed geometry,
the mean perimeter of the closed arterial ring is related to the arc
formed by its respective open configuration. An analytical
expression (Equation 6) is used to relate the mean radius of the
open configuration Rα with the mean radius of the closed one Rm,

Rα � π

π − α
· Rm, (6)

where Rm � Ro + to
2 , and α is in radians.

Simulations were performed using the Finite Element Method
(FEM) via an in-house code (Celentano et al., 1996; Celentano,
2001). In the FEM context, incompressibility in hyperelastic models
(as GHO) was implemented through a nearly incompressible
condition, by adding an appropriate penalty parameter k that
represents the bulk modulus, which is higher than the shear
modulus parameter μ to enforce the incompressibility (k ≈ 103μ)
(Yosibash and Priel, 2011). Figure 3b exhibits the 3D mesh used,
which is composed of 8,000 hexahedra elements and 9,594 nodes.

From simulation, two characteristic values were considered:
circumferential residual Cauchy stress in the inner σθin and outer
radius σθout, such as is exhibited in Figure 3a.

3 Results

From the experimental and numerical procedure described in
Section 2, the biomechanical, structural, and morphometric results
are listed in detail below.

3.1 Uniaxial tensile test

Table 1 exhibits the mechanical parameters directly determined
from tensile curves for both study groups, as displayed in the
procedure stated in Section 2.2.1.

From the Table 1, material stiffening at low and high
deformation levels, (E1 and E2, respectively), shows different
trends in the longitudinal and circumferential directions when

both experimental groups were contrasted. Particularly, the mean
stiffness in the longitudinal direction of the blood vessel at low and
high deformation levels, increases under melatonin treatment (l-E1:
CN0 81.9 ± 15.5 kPa, MN0 128.2 ± 42.8 kPa, p-value = 0.30), (l-
E2: CN0 1894 ± 289 kPa, MN0 2355 ± 404 kPa, p-value = 0.37).
Otherwise, mean values of E1 and E2 decrease in the circumferential
direction in the treated group (θ-E1: CN 0 206.1 ± 82.9 kPa, MN
0 138.3 ± 47.3 kPa, p-value = 0.48) and (θ-E2: CN 0 2005 ±
486 kPa, MN 0 1935 ± 246 kPa, p-value = 0.91), respectively. The
transition between low and high deformation levels in stress-stretch
curves of the uniaxial tensile test, as represented by λe and σe. Both
parameters behave differently in the directions considered, where
the mean elbow stretch in the longitudinal one experiences a
diminution (l-λe: CN 0 1.72 ± 0.07, MN 0 1.66 ± 0.06,
p-value = 0.50), while the circumferential one increases (θ- λe:
CN 0 1.53 ± 0.06, MN 0 1.61 ± 0.09, p-value = 0.48).
Conversely, whereas the stress level increases along the
longitudinal direction (l-σe: CN 0 119.5 ± 12.9 kPa, MN 0

127.8 ± 21.9 kPa, p-value > 1.00), the same value for the
circumferential one decreases under melatonin treatment (θ-σe:
CN 0 188.7 ± 54.2 kPa, MN 0 154.3 ± 22.9 kPa, p-value =
0.57). The rupture zone, quantified by its corresponding stretch (λr)
and stress (σr) values, responds differently in each direction.
Specifically, for the longitudinal axis, the mean rupture stretch
level decreased in the melatonin-treated group (l-λr: CN 0

2.73 ± 0.14, MN 0 2.59 ± 0.05, p-value = 0.39); meanwhile, for
the circumferential direction, it increased (θ-λr: CN 0 2.25 ± 0.10,
MN0 2.31 ± 0.15, p-value = 0.75). Concerning the mean values of
rupture stress, they exhibit the same characteristic for both
directions, showing an increment under melatonin (l-σr: CN 0

1648 ± 305 kPa, MN0 1676 ± 185 kPa, p-value = 0.94), (θ-σr: CN
0 1230 ± 354 kPa, MN 0 1382 ± 334 kPa, p-value = 0.76).

FIGURE 3
(a) Representation 2D of the boundary conditions for the
computational simulation of the closure of the rings, (b) 3D finite
element mesh [generated in Gmsh (Geuzaine and Remacle, 2009) and
visualized in ParaView software].

TABLE 1 Average ± SEM, along with mean difference and 95% confidence
interval of biomechanical parameters derived from the stress-strain curve
for the carotid artery: Slopes to low (E1) and high (E2) deformation levels,
elbow coordinates (λe, σe) and rupture coordinates (λr , σr).

CN-l 95% CI MN-l 95% CI

E1 [kPa] 81.9 ± 15.5 [42.0; 121.7] 128.2 ± 42.8 [9.3; 247.2]

E2 [kPa] 1894 ± 289 [1150; 2637] 2355 ± 404 [1069; 3642]

λe [mm
mm] 1.72 ± 0.07 [1.54; 1.90] 1.66 ± 0.06 [1.50; 1.81]

σe [kPa] 119.5 ± 12.9 [86.2; 152.7] 127.8 ± 21.9 [67.1; 188.5]

λr [mm
mm] 2.73 ± 0.14 [2.34; 3.12] 2.59 ± 0.05 [2.45; 2.73]

σr [kPa] 1,648 ± 305 [864.1; 2432] 1,676 ± 185 [1163; 2189]

CN-θ 95% CI MN-θ 95% CI

E1 [kPa] 206.1 ± 82.9 [−57.8; 469.9] 138.3 ± 47.3 [6.91; 269.7]

E2 [kPa] 2005 ± 486 [655.8; 3354] 1935 ± 246 [1152; 2718]

λe [mm
mm] 1.53 ± 0.06 [1.38; 1.70] 1.61 ± 0.09 [1.37; 1.85]

σe [kPa] 188.7 ± 54.2 [38.2; 339.3] 154.3 ± 22.9 [90.6; 218.0]

λr [mm
mm] 2.25 ± 0.10 [1.96; 2.53] 2.31 ± 0.15 [1.89; 2.72]

σr [kPa] 1,230 ± 354 [247.0; 2212] 1,382 ± 334 [455.4; 2309]
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According to the fitting procedure carried out for the
hyperelastic model (GHO) in this study (Section 2.3.1), the
corresponding material parameters have been displayed in Table 2.

When comparing the GHO parameters, fitted from the mean
stress-stretch curves obtained from control and melatonin groups, μ,
related to the material stiffness of the isotropic part, they exhibit
similar values between them (difference of 6%). In the same way,
most of the fibrous-like parameters do not show major differences,
e.g., k1, k2 and κ in none of the cases differ above 15%. However, the

collagen fiber orientation, represented by γ, exhibits noticeable
changes (close to 30%), diminishing its value from 74.5° to 52.5°.

Figures 4a, b, depict the experimental (± SEM) and numerical
stress-stretch curves for the control and treated groups. The
goodness of fitting, as represented by the r-square values in the
two directions r2θ and r2l . Table 2) displays these values, which were
close to 0.99 in all cases, which reflects a good fitting quality. On the
other hand, Figures 4c, d display the numerical stretch values on the
two orthogonal axes (width λ2 and thickness λ3) regarding on which
the stretching λ1 was applied. The decay of all curves as the stretch
increases ensures the physical consistency of the fittings performed.

3.2 Ring-opening test and residual stress

Following the procedure described in Section 2.2.1, the
opening angle α in the control group was 111 ± 15° with
95% CI [71.4; 149.8], whereas its value corresponds to 124 ± 16°
with 95% CI [80.7; 167.3] in the case of the melatonin-treated
group, without significant mean differences between
groups (p-value = 0.56).

TABLE 2 Values for the GHO model parameters were optimized to fit the
experimental data obtained from uniaxial tension tests. The coefficients r2θ
and r2l facilitate the adjustment of the model in the circumferential and
longitudinal orientations, respectively.

Group μ
[kPa]

k1
[kPa]

k2 κ γ[°] r2θ r2l

Control,
CN

35.0 73.0 0.07 0.27 74.5 0.981 0.990

Melatonin,
MN

33.0 79.0 0.06 0.26 52.5 0.992 0.992

FIGURE 4
Experimental (± SEM) and fitted stress-strain curves from the uniaxial tensile test for (a) control (CN) and (b) melatonin (MN) groups. Physical
consistency of the GHO parameters obtained, represented through the stretch values along the width and thickness of the tensile sample, for (c) control
(CN) and (d) melatonin (MN) groups.
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The mean α value, along with Ro and to were used in the
computational reconstruction of the open arterial ring for both
groups of study. From the numerical simulation, followed under the
procedure detailed in Section 2.3.2, three representative values were
obtained: the circumferential Cauchy stress both in the inner radius
zone (σθin) and outer radius zone (σθout) and the absolute difference
between both values Δσθ. All these values were schematized and
displayed in Table 3.

3.3 Histomorphometry

The different characteristics that describe the morphometric and
microstructural composition of the carotid artery wall are detailed
in Table 4.

Within structural measures, luminal radius (Ro), overall
thickness (to) and percentage of thickness comprising both the
intima-media and adventitia layers were obtained for both groups.
Although the arteries of animals treated with melatonin have lower
values in Ro and to, these differences are not significant (Ro: CN0

1.28 ± 0.07 mm,MN0 1.14 ± 0.04 mm, p-value = 0.12) and (to: CN
0 0.53 ± 0.04 mm, MN 0 0.48 ± 0.06 mm, p-value = 0.50).

In the same way, changes in both mean values exhibited below
are related to an increase in the wall percentage covered by the
intima-media (CN 0 52.7 ± 2.7%, MN 0 54.7 ± 2.1%, p-value =

0.59). In turn, the percentage of adventitia decreases in the MN
group regarding the control (CN 0 47.3 ± 6.2%, MN 0 45.4 ±
6.3%, p-value = 0.84).

Histological results, which include the percentage of collagen
and elastic fibers, along with the density of the cell nuclei (Table 4),
were performed following the protocol stated in Section 2.2. Elastic
fibers exhibit a tendency of higher content in arteries treated with
melatonin (CN0 31.3 ± 3.7%, MN0 39.6 ± 3.2%, p-value = 0.29).
Meanwhile, the percentage of collagen fibers was similar for both
groups (CN 0 7.0 ± 0.9%, MN 0 6.8 ± 0.1%, p-value = 0.19) and
cell nuclei density also lack of changes (CN0 2524 ± 66 cells/mm2,
MN 0 2571 ± 142 cells/mm2, p-value = 0.76).

4 Discussion

This preclinical study has been conducted to identify the main
aspects related to HH exposure and the effects of drug-based
treatment on biomechanics, morphometric and histology
measurements.

Physiologically, the study on the carotid artery is of clinical
relevance because alteration of its properties and structure has been
widely identified as an indicator of cardiovascular risks, triggering
adverse consequences mainly on the cerebral territory (Moghadasi
et al., 2024; Hirata et al., 2006). Morphological, changes in intima-

TABLE 3 Circumferential residual stress in inner and outer arterial radius (σθin and σθout ), along with the absolute difference between them (Δσθ). The scheme
displays the specific location from where they have been obtained.

TABLE 4 Average ± SEM, along with mean difference and 95% confidence interval of morphometric and histological results for both groups of study.

Control (CN) 95% CI Melatonin (MN) 95% CI

Morphometry

Luminal radius Ro (mm) 1.28 ± 0.07 [1.10; 1.46] 1.14 ± 0.04 [1.02; 1.25]

Thickness to (mm) 0.53 ± 0.04 [0.44; 0.62] 0.48 ± 0.06 [0.30; 0.66]

Intima-Media (%) 52.7 ± 2.7 [45.8; 59.6] 54.7 ± 2.1 [48.9; 60.5]

Adventitia (%) 47.3 ± 6.2 [31.4; 63.2] 45.4 ± 6.3 [27.9; 62.9]

Histology (media layer)

Elastic fibers (%) 31.3 ± 3.7 [21.0; 41.5] 39.6 ± 3.2 [29.4; 49.8]

Collagen (%) 7.0 ± 0.9 [4.5; 9.5] 6.8 ± 0.1 [6.4; 7.2]

Cell nuclei density (cells/mm2) 2524 ± 66 [2340; 2708] 2570 ± 142 [2119; 3021]
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media and adventitia thickness have been assessed as indicators of
atherosclerosis and coronary heart disease (Mohamed et al., 2023;
Skilton et al., 2011; Ebrahimi, 2009). Furthermore, alteration of the
microstructural components of the arterial wall, such as elastin
degradation (Fonck et al., 2007) and density decrement (Kamenskiy
et al., 2015), have been directly associated with atherosclerosis and
hypertension. Likewise, the assessment of biomechanical metrics,
such as 2D strain, stress, energy storage, and arterial stiffness, among
others, have been linked to both cardiovascular complications (Kim
et al., 2012; Lanne et al., 1994; Forsblad-D’Elia et al., 2021; Olver
et al., 2016) and aging (Gkousioudi et al., 2022; Sherman et al., 2022).
Therefore, the biomechanical, morphological, and structural
characteristics assessed in the current work are relevant to
determine potential adverse cardiovascular effects in the face of
hypobaric hypoxia exposure.

From Table 1, no biomechanical parameter obtained exhibits
any statistical differences between groups. However, the results
obtained via numerical analysis, expressed in terms of the
material parameters of the GHO hyperelastic model, show that
the phenomenological parameter γ exhibits the most significant
variations when comparing the numerical results in the two
experimental groups, as shown in Table 2. This angular value
shows a remarkable decrement for the melatonin-treated group
[≈ 30% of percentage difference), which is interpreted as a collagen
fiber reorientation towards the longitudinal direction compared to
the control non-treated group. Interestingly, the previous study of
Dodson al. (2013b)] coincides with this fact, which considers both
the same arterial territory and experimental animal used in our
research, has determined experimentally an alteration in the
phenomenological parameter γ for near-term ewe fetuses under
IUGR condition, which arises from the collagen fibers realignment
such as has been observed via the second harmonic generation
technique. In fact, in our results for newborn lambs treated with
melatonin, the γ parameter returns to similar values to those
obtained in the control group of the referred research (without
IUGR condition), meanwhile in the study of Dodson al. (2013b),
the fetuses under IUGR condition exhibit fiber alignment
preferentially in the circumferential direction, in the same
manner as has been determined in our findings (in hypoxic group).
Therefore, these results suggest that melatonin reverses the effects of
the HH condition, restoring features observed in non-hypoxic
arteries.It is worth noting that, as the GHO model parameters were
fitted from the average curves of the tensile tests, the numerical results
reference potential alterations in the biomechanics resulting from the
treatment. Further evidence can be given by considering the numerical
fit for each specimen individually.

Residual stress plays a key role in arteries, which has been closely
related to blood vessel remodeling (Cheng and Zhang, 2019).
Biomechanically, the effect of residual stress arises intending to
diminish the peaks or gradients in pressure on the artery wall, which
is generated from blood pressure (Zahn and Balzani, 2018; Cañas
et al., 2018). The residual stress field obtained from the numerical
simulation procedure detailed in Section 2.3 is represented through
the parameters shown in Table 3, whose values are dependent on the
circumferential residual strain (quantified by the opening angle),
and the material parameters from GHO model. In this sense,
according to Equation 1, the first term of the GHO model (μ)
can be interpreted as the parameter that describes the biomechanical

effect at the physiological level, which is similar in both experimental
groups (CN 035 kPa; MN 033 kPa). Likewise, from Section 3.2,
the mean opening angle (α) was higher in the treated group (CN
0111°; MN0124°). Table 3 confirms the previous findings, since
both the inner σθin and outer arterial σθout regions have higher
absolute values in compression and tension values for the
melatonin group. As a consequence, the difference between the
compressive and tensile values Δσθ in the melatonin group was also
higher. These findings suggest that the increase in residual stress
levels observed in groups treated with melatonin may contribute to
reducing and balancing differences in the arterial wall stress to
potential elevations in blood pressure associated with hypoxia
exposure (Navarrete et al., 2024). Considering that residual stress
is influenced by elastic fibers (Cardamone et al., 2009; Greenwald
et al., 1997), the increment in the mean value of the opening angle α
seems to be linked to a potential rise in the mean percentage of
elastic fiber content (Table 4). However, there are no conclusive
statistics to support this relationship.

Within the scope of this study, the effects of melatonin were
examined only under HH conditions. The impact of the treatment
at sea-level conditions was not addressed in this work. Precisely,
this aspect would be interesting to address in future studies to
evaluate the baseline parameters that the melatonin group exposed
to HH should reach. In addition, an increase in the number of
specimens in each group could lead to more conclusive results on
the outcomes.

5 Conclusion

Through a coupled experimental-numerical approach, the
influence of melatonin treatment on the biomechanical response
in carotid arteries subjected to hypoxia hypobaric condition has
been assessed. Aiming to this goal, several relevant biomechanical
parameters have been determined for this goal, i.e., material
stiffness, stress-stretch rupture levels, and residual stress. In
addition, morphometric and histological measurements arise as
further insights to give explanation to the mechanism that
governs the characteristic mechanical response on the artery.

Melatonin treatment in animals exposed to gestational and
perinatal hypobaric hypoxia primarily induces collagen fiber
reorientation, rather than changes in extracellular matrix
proliferation, degradation, or cell nuclei density. This is
supported by biomechanical responses from uniaxial tensile tests
and alterations in the hyperelastic model parameter γ linked to
collagen fiber orientation. Previous studies confirm similar findings,
showing melatonin tends to restore conditions observed in control
groups. Additional changes, including reduced wall stress and
increased vascular resistance, suggest an antihypertensive
response related to cardiovascular pressure and blood flow
regulation.

Future studies should focus on investigating the impact of
different melatonin doses in distinct developmental stages,
including long-term effects. New biomechanical analysis can be
conducted on the artery wall, determining the effect of the active
response, viscoelastic effects, and damage phenomenon, among
others. Furthermore, the exploration of alternative biomechanical
models encompassing growth and remodeling phenomena, as well
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as the impact of fiber degradation (Humphrey, 2021) can be
explored. Moreover, novel ultrastructural techniques can be
explored to obtain additional information regarding the
microstructural phenomena carried out during the remodeling
process on the arterial wall (i.e., second harmonic generation,
atomic force microscopy, electron microscopy, and multiphoton
imaging), which cannot be obtained through conventional
histological techniques.
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