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Despite the documented consequences of modeling decisions on the
performance of computational models in orthopaedics and biomechanics, the
influence of the input data has largely been ignored. Modeling the living knee is
limited by methods to measure in vivo the quantities needed for ligament
calibration; yet, this may be possible with new devices focused on non-
invasive measurement of knee laxity. These devices offer measurements
similar to those commonly obtained from cadaveric specimens but are limited
by what can be practically and safely obtained from a living subject. Validation of
models calibrated with in vivo data is crucial and increasingly important as
personalized modeling becomes the basis for proposed digital twins, and in
silico clinical trial workflows. To support our overall goal of building subject-
specific models of the living knee, we aimed to show that subject-specific
computational models calibrated using in vivo measurements would have
accuracy comparable to models calibrated using in vitro measurements. Two
cadaveric knee specimens were imaged using a combination of computed
tomography (CT) and surface scans. Knee laxity measurements were made
with a custom apparatus used for the living knee and from a robotic knee
simulator. Models of the knees were built following previous methods and
then calibrated with either laxity data from the in vitro robotic knee simulator
(RKS) or from the in vivo knee laxity apparatus (KLA). Model performance was
compared by simulation of various activities and found to be similar between
models calibrated with laxity targets from the RKS and the KLA. Model predictions
during simulated anterior-posterior laxity tests differed by less than 2.5 mm and
within 2.6° and 2.8 mm during a simulated pivot shift. Still, differences in the
predicted ligament loads and calibrated material properties emerged,
highlighting a need for methods to include ligament load as part of the
calibration process. Overall, the results showed that currently available
methods of measuring knee laxity in vivo are sufficient to calibrate models
comparable with existing in vitro techniques, and the workflows described
here may provide a basis for modeling the living knee. The experimental data,
models, results, and tools are publicly available.
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1 Introduction

There is a widespread endeavor to create personalized models
that mimic individuals with clinically meaningful accuracy. These
efforts seek to more accurately represent the individual variability
affecting functional outcomes to ultimately improve personalized
medicine. Model personalization hinges on uniquely recreating an
individual by obtaining subject-specific measurements and using
those to recreate an individual’s geometry, material properties, and
loading and boundary conditions to develop digital twins (Hassani
et al., 2022; Sun et al., 2022; Viceconti et al., 2024). Many different
modeling workflows with differing levels of personalization have
been utilized to model human biomechanics motivating
investigations into their reproducibility, validity, accuracy, and
limitations before their adoption in clinical settings (Anderson
et al., 2007). In knee biomechanics, personalized models of the

living knee are most often constructed from medical imaging, such
as computed tomography (CT), magnetic resonance imaging (MRI),
or statistical tools (Van Oevelen et al., 2023). Modeled knee structure
material properties are then calibrated by matching predictions of
joint level dynamic behaviors with those experimentally measured
by adjusting parameters in constitutive models (Erdemir et al.,
2019). Researchers have aimed to understand the effect of
different model parameters (Farshidfar et al., 2022) on model
dynamic behavior with investigations into ligament
representation and material properties (Naghibi Beidokhti et al.,
2017; Peters et al., 2018), bone material properties (Peters et al.,
2018; Kluess et al., 2019), cartilage representation and material
properties (Klets et al., 2016; Peters et al., 2018) and the choice
of constitutive models and representations for other structures such
as the meniscus (Elmukashfi et al., 2022). However, the influence of
the experimental data used for calibration on the predictive abilities
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of models has largely been ignored. Specifically, calibration of the
ligament material properties is necessary to improve model
predictions of individual kinematics and tissue loads, and absence
of personalized properties may result in poor model predictions
(Gardiner and Weiss, 2003; Andreassen et al., 2023).

Calibration of ligament material properties to recreate the
kinetic force-displacement behavior of the knee requires
obtaining the necessary measurements. Likely for this reason,
models of the living knee frequently use ligament material

properties from the literature without direct calibration
(mathematical optimization of ligament material properties) to
the individuals of interest (Carey et al., 2014; Kang et al., 2017;
Shu et al., 2018; Esrafilian et al., 2020; Theilen et al., 2023). Notably,
Ali et al. calibrated ligament material properties to match the
kinematics of passive knee flexion measured from their modeled
subjects (Ali et al., 2020). Nevertheless, model predictions of loaded
kinematics were not directly compared against physical
measurements and instead relied on predictions from
musculoskeletal modeling. Alternatively, ligament material
properties in specimen-specific models of the knee are calibrated
from measurements readily obtained from cadaveric tissue
(Bloemker et al., 2015; Harris et al., 2016; Kia et al., 2016; Kluess
et al., 2019; Razu et al., 2023). Various specimen-specific models of
cadaver knees have been calibrated utilizing data from ligament
forces (Kia et al., 2016; Razu et al., 2023), zero-load ligament lengths
(Bloemker et al., 2015), joint distraction of the bones (Zaylor et al.,
2019), or large numbers of trials of high-accuracy force-
displacement measurements from robotic knee simulators (Harris
et al., 2016; Chokhandre et al., 2022; Andreassen et al., 2023), all of
which are impractical methodologies in living people. Methods to
calibrate models of the living knee using measurements available in
vivo have not been validated against measurements available in vitro.

Modeling the living knee is confined by the limited means to
measure in vivo the quantities needed for ligament calibration.

TABLE 1 Donor specifics for knee models. Specimen IDs are used for
Supplementary Material, including model files, where the data are referred
to using the Specimen ID rather than Specimen 1 and Specimen 2.

Specimen 1 Specimen 2

Specimen ID S192803 S193761

Modeled side L L

Sex M M

Age (years) 29 64

Height (cm) 188 178

Weight (kg) 113.4 56.2

BMI (kg/m2) 32.1 17.8

FIGURE 1
Modeling workflow for each knee specimen. Gray regions are the original imaging data used to create models of the two knee specimens. The
combined CT scans and surface scans were used to createmodel geometries for both specimens. Green and blue regions are the source of experimental
laxity measurements used for calibration, namely a knee laxity apparatus (KLA) and a robotic knee simulator (RKS). Yellow and red regions are the resulting
models defined using the corresponding imaging data and the different knee laxity data sources.
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Fortunately, subject-specific calibration of knee models may be
possible with recent improvements in non-invasive measurement
of knee laxity in vivo from the creation of several new devices
(Kupper et al., 2016; Moewis et al., 2016; Pedersen et al., 2019;
Andreassen et al., 2021; Shamritsky et al., 2023; Imhauser et al.,
2024). These devices, and others, offer significant improvements
over previous laxity measurement devices, such as the KT-1000
(Collette et al., 2012) and offer measurements similar to those
obtained from cadaveric specimens. However, compared with
existing cadaveric laxity measurement methods, the
measurements from in vivo devices are limited in the number of
samples, joint angles, and loading conditions that can be practically
and safely obtained from a living subject. Validation (comparison of
model predictions against experimental data or previously validated
methods) of models calibrated with in vivo data by comparison to
models calibrated with in vitro datasets is crucial and increasingly
important as personalized modeling becomes the basis for proposed
digital twins, and in silico clinical trial workflows.

To support the long-term goal of creating personalized models
of the living knee, this study evaluated whether models with
ligaments calibrated to laxity measurements obtained with in vivo
methods are comparable to models calibrated from laxity
measurements obtained with conventional in vitro methods. This
was accomplished in three steps. First, subject-specific finite element
models of two cadaveric specimens were developed using a
combination of imaging data and methods matching that of
previous knee modeling work. Second, and the key piece of this
work, these models were calibrated to in vitro laxity measurements
collected with a robotic knee simulator, and then separately
calibrated to laxity measurements collected with an in vivo
device. Lastly, model predictions were compared between the two
calibration scenarios for similarity and accuracy of kinematics and
ligament forces during passive knee flexion, anterior-posterior
laxity, and a pivot shift test. We hypothesized that methods for
in vivo measurement of knee laxity would allow calibration that
produces accuracy comparable with calibration from in vitro
measurements. The experimental data, working models, results,
and tools are publicly available to encourage model reproducibility.

2 Materials and methods

2.1 Overview

To evaluate the use of in vivo laxity measurements for model
creation and calibration, finite element models (FEM) were
compared between two calibration methodologies: 1) FEM
calibrated to knee laxity measurements obtained using in vivo
methods; 2) FEM calibrated to knee laxity measurements
obtained from a robotic knee simulator. Geometries of two
cadaveric knee specimens (Table 1) were obtained from a
combination of lower-extremity CT scans, and surface scans of
the bones and soft tissues. Measurements for calibration were
obtained using a previously validated knee laxity apparatus
(KLA) (Andreassen et al., 2021) designed to measure knee laxity
in vivo and a robotic knee joint simulator (RKS). In vivo laxity
experimentation was recorded first using two intact lower body

cadaveric specimens using the KLA, and then subsequent dissection
performed to facilitate RKS testing on the same specimens.

The CT and surface scans were used to create model geometries
for both specimens. These models were then calibrated against two
different laxity datasets. White light surface scanning was chosen as
a rigorous means of producing the best possible geometry to isolate
the impact of force-displacement calibration from the notable
variability inherent in geometric reconstruction from in vivo
sources (Rooks et al., 2021) and its influence on calibration
(Andreassen et al., 2023). In one case, models were calibrated to
laxity measurements from the knee laxity apparatus, known as the
“KLA”models. The other case was calibrated to laxity measurements
from the robotic knee simulator, known as the “RKS” models
(Figure 1). The two models were then used to predict anterior-
posterior laxity at various knee flexion angles and a passive knee
flexion. Kinematics and ligament force predictions were compared.
Additionally, models were used to predict a simulated pivot shift and
resulting kinematics and ligament loads compared.

The knee modeling process followed the Team DU workflow
from the KneeHub project (SimTK: Reproducibility in Simulation-
Based Prediction of Natural Knee Mechanics: Project SimTK, 2018;
Erdemir et al., 2019; Rooks et al., 2021; Andreassen et al., 2023) to
allow for a comparison with previous work that examined the
differences in modeling strategy. The following sections describe
the experimental and modeling workflow.

2.2 Experimental data collection

The experimental data were collected as part of previous work
(Andreassen et al., 2021) and is summarized herein. Two non-frozen
male pelvis-to-toes cadavers (Table 1) were obtained with no history
of musculoskeletal ailments. Prior to testing, specimens underwent
CT scans (Figure 1). CT scans were collected axially (Siemens
SOMATOM Perspective, Erlangen, Germany) with approximately
0.75 mm × 0.75 mm in-plane resolution and a 0.6 mm axial
resolution from approximately L5 to the toes of both legs. Bone
geometries were segmented from CT scans using a combination of
global thresholding and manual segmentation methods and
exported as STLs (Simpleware ScanIP, Synopsys, Sunnyvale, CA).

Whole limb specimens were placed in a custom knee laxity
apparatus (KLA) (Andreassen et al., 2021) designed to measure
laxity in the living knee noninvasively. To simulate a standard knee
laxity data collection with a living subject recreating in vivo
conditions as much as possible, a series of loads was applied to
the anterior, internal, and external degrees of freedom (DOF) of the
tibia at 30 and 90° of knee flexion. Maximum loads were
approximately 175 N for anterior and 5.5 N*m for internal and
external as measured via load cell. To approximate a passive knee
extension while stereo radiography images were recorded, a cuff was
placed around the ankle and attached with a cable and rod to
manually push the knee to deep flexion (~150°) and pull to full
extension. This simulated passive knee extension is later referred to
as the “Intact Leg Experimental” kinematics. The resulting
displacements for all DOF were recorded using 3D image
tracking techniques from high-speed stereo radiography (HSSR)
images (Ivester et al., 2015; Kefala et al., 2017).
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Immediately following these measurements, specimens were
dissected, leaving approximately 230 mm of soft tissue and bone
intact above the knee joint line and 200 mm below the knee joint
line. Each knee specimen was cemented into custom femur and
tibia-fibula fixtures and affixed to a VIVO robotic knee simulator
(RKS) (AMTI, Watertown, MA). Additionally, a custom
quadriceps actuator (Behnam et al., 2024) was affixed to the
quadriceps tendon to simulate the passive tension in the
quadriceps tendon (McKay et al., 2010). The joint simulator
applied laxity loads for anterior-posterior (AP), internal-external
(IE), and varus-valgus (VrVl) between 0–120° of knee flexion in
15-degree increments. Maximum loads applied were
approximately 200 N for AP (Mouton et al., 2015), 7.5 N*m

for IE, (Wang et al., 2020), and 10 N*m for VrVl (Schmitz et al.,
2008) and measured using a built-in 6 DOF load cell. The
resulting displacements for all DOF were recorded using an
Optotrak motion capture system (NDI, Ontario, Canada).
Following laxity testing, the passive range of motion of the
knee was recorded in the simulator with no loads applied and
is later referred to as the “Dissected Knee Experimental”
kinematics.

The laxity values used during the model calibration
(described below) were selected as a subset of the overall
measurements collected from experimentation and differed
between the RKS and KLA data sources because of
experimental constraints and the model optimization

FIGURE 2
Surface scans of a knee at various stages of dissection, intact with capsule, femur only, tibia/fibula only, and patella only. The black highlighted
regions on the bones represent different ligament attachment sites identified during the dissection and marked on the specimens using a permanent
marker. Bones include fiducial screws and dots to allow for improved registration after the fact, and the combining of the original surface data collected
from the scanner. The red arrows highlight one of the attachment sites (LCL) identified during dissection. The blue arrow highlights one of the
fiducial screws used for registration. In all cases, the fiducial screws shownwere added after testing to allow for superior registration. As such, they did not
impact the joint laxity measurements.
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procedures. From the KLA data, laxity values used for model
calibration were the anterior and IE knee laxity at 30 and 90° of
knee flexion at various load levels. From the RKS data, laxity
values used for model calibration were the AP, IE, and VrVl laxity
at 0, 30, 60, and 90° of knee flexion at the maximum and
minimum loads measured. Due to experimental limitations,
the target used was chosen at 75 instead of 90° of knee flexion
in some cases. In all models, an additional calibration target was
placed at 0° of knee flexion taken from the kinematics of the
passive range of motion at full extension.

The knee specimens were further dissected after
experimentation, leaving the bones, ligaments, and knee capsule
intact. A white-light scanner (Artec Space Spider, Artec, Santa Clara,
CA) was used to scan the surface of the knees (Figure 2). Then, the
soft-tissue structures were removed, and ligament attachment sites
of the major knee ligaments and tendons (patellar tendon) were
outlined on the bones, and the bones were scanned again (Figure 2).
Fiducial screws and stickers were added to the bones prior to
scanning to assist registration, but did not affect the experimental
kinematics measurements. The scanner provided high-resolution
color texture surfaces of the bone and the exact locations of soft-
tissue attachment outlines on the bone (Figure 2), with
reconstruction accuracy comparable to micro-CT (Hayes et al.,
2016). Scans of the full intact knee capsule as well as separate
scans for the femur, tibia-fibula, and patella were all collected for
both specimens (Figure 2). The resulting geometries were
exported as STLs.

Geometries from the CT were used to create local bone
coordinate systems in the transepicondylar (TEA) axis coordinate
system (Figure 3) following the joint coordinate system convention
from Grood and Suntay (Grood and Suntay, 1983). All kinematics
from the KLA and the RKS testing were represented in the same
local coordinate system of the bones.

2.3 Geometry identification

Geometries of the bones were created from a combination of
CT and surface scans. Geometries of the bones from the surface
scan were first aligned to the position of the bones in the CT with
a combination of manual and automatic registration using an
iterative closest point (ICP) algorithm in MATLAB (Mathworks,
Natick, MA). Final model geometries of the bones were created
by cropping the bones obtained from the CT images to the region
around the knee (approximately 150 mm above and below the
joint line). Geometries of cartilage were obtained by Boolean
subtraction of the aligned CT of the bones with the
corresponding surface scans of the bones and cartilage (Kia
et al., 2016). In all cases, geometries were smoothed and fixed
(removal of poor-quality elements, removal of inaccuracies from
segmentations, etc.) using a combination of MeshMixer
(Autodesk, San Francisco, CA) and MeshLab (Cignoni et al.,
2008). Marked attachment site regions from the surface scans for
the major ligaments (ACL, LCL, MCL, PCL) and patellar tendon
were projected along surface normal directions to the CT bones
to determine the approximate attachment on the true boney
surface. For ligaments that could not be easily identified during
experimentation, approximate attachment sites were identified
using descriptions from the literature, summarized in Table 2
(LaPrade et al., 2003; 2007; 2021; De Maeseneer et al., 2004;
Petersen and Zantop, 2007; Liu et al., 2010; Claes et al., 2013;
Chahla et al., 2020). In total, the model contains the following
14 ligaments: anteromedial bundle of anterior cruciate ligament
(ACL_AM), posterolateral bundle of anterior cruciate ligament
(ACL_PL), lateral collateral ligament (LCL), superficial anterior
fiber of medial collateral ligament (sMCL_A), superficial middle
fiber of medial collateral ligament (sMCL_M), superficial
posterior fiber of medial collateral ligament (sMCL_P), deep

FIGURE 3
Views of Specimen 1 FEM. (Red) Femoral and tibial coordinate system definitions using transepicondylar axis (TEA) for the femur coordinate system
and the standard Grood and Suntay coordinate system for the tibia. These coordinate systems were defined using the full-length bones. (White) Bone
meshes as 2D triangular surface elements. (Pink) Cartilage meshes as 3D hexahedral volume elements. (Black) Ligaments as 1D non-linear tension-only
connector elements.
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TABLE 2 Modeled knee ligaments and anatomical descriptions of attachment sites and any adjustments used.

Ligament Ligament
major
group

Ligament
abbreviation

Literature description
of ligament origin

Literature description
of ligament insertion

Adjustments to
attachment sites

Anteromedial
Bundle of ACL

ACL ACL_AM Posterior portion of the lateral
femoral condyle. Posterior to
lateral intercondylar ridge.
Superior to bifurcate ridge
(Petersen and Zantop, 2007)

Centralized in the ML direction
on the tibial plateau, at

approximately 30% of the total
AP length of the tibia from the
anterior side (Petersen and

Zantop, 2007)

None

Posterolateral
Bundle of ACL

ACL ACL_PL Posterior portion of the lateral
femoral condyle. Posterior to
lateral intercondylar ridge.
Inferior to bifurcate ridge

(Petersen and Zantop, 2007)

Centralized in the ML direction
on the tibial plateau, at

approximately 44% of the total
AP length of the tibia from the
anterior side (Petersen and

Zantop, 2007)

None

Main Bundle
of LCL

LCL LCL Approximately 1.4 mm superior
and 3.1 mm posterior to the
lateral epicondyle of the femur

(LaPrade et al., 2003)

Inserts into fibula head
approximately 8 mm posterior of
the anterior portion of the fibular
head, and approximately 28 mm
distal to the fibular head apex

(LaPrade et al., 2003)

None

Superficial
Anterior Fiber
of MCL

MCL sMCL_A Slightly superior and anterior to
the medial epicondyle of the

femur (Liu et al., 2010)

Anterior region of the medial side
of the tibia approximately 6 cm
distal to the tibial joint line.

Additional insertion around the
most medial portion of the tibial

plateau (Liu et al., 2010)

In cases with a rapidly narrowing
tibia, insertion was chosen to be
the proximal attachment of the
superficial MCL, rather than the
distal one to approximate correct

line of action

Superficial Middle
Fiber of MCL

MCL sMCL_M Slightly superior to the medial
epicondyle of the femur (Liu

et al., 2010)

Middle region of the medial side
of the tibia approximately 6 cm
distal to the tibial joint line.

Additional insertion around the
most medial portion of the tibial

plateau (Liu et al., 2010)

In cases with a rapidly narrowing
tibia, insertion was chosen to be
the proximal attachment of the
superficial MCL, rather than the
distal one to approximate correct

line of action

Superficial
Posterior Fiber
of MCL

MCL sMCL_P Slightly superior and posterior to
the medial epicondyle of the

femur (Liu et al., 2010)

Posterior region of the medial
side of the tibia approximately
6 cm distal to the tibial joint line.
Additional insertion around the
most medial portion of the tibial

plateau (Liu et al., 2010)

In cases with a rapidly narrowing
tibia, insertion was chosen to be
the proximal attachment of the
superficial MCL, rather than the
distal one to approximate correct

line of action

Deep Bundle Fiber
of MCL

MCL dMCL Posterior and inferior to the
superficial MCL and the medial
epicondyle (Liu et al., 2010)

Medial aspect of the tibial plateau
approximately 6 mm from the
tibial joint line (Liu et al., 2010)

None

Anterolateral
Bundle of PCL

PCL PCL_AL Located on the anterior side of the
medial condyle in the

intercondylar fossa. Inferior to
the medial intercondylar ridge.
Anterior to the medial arch point
(Chahla et al., 2020; LaPrade

et al., 2021)

Anterolateral to PCL_PM and
near the posterior medial edge of
the lateral meniscus (Chahla

et al., 2020; LaPrade et al., 2021)

None

Posteromedial
Bundle of PCL

PCL PCL_PM Located on the anterior side of the
medial condyle in the

intercondylar fossa. Inferior to
the medial intercondylar ridge.
Posterior to the medial arch point
(Chahla et al., 2020; LaPrade

et al., 2021)

Edge of the champagne glass
dropoff (CGD) of the tibial

plateau in the intercondylar facet
(Chahla et al., 2020; LaPrade

et al., 2021)

None

Anterolateral
Structure

ALS ALS Originate on the lateral
epicondyle of the femur just
anteriorly to the origin of the

LCL. In many cases, the origin is
more superior and joins with the
portion of the LCL (Claes et al.,

2013)

Posterior to Gerdy’s tubercle on
the tibial plateau. Approximately
found at the intersection of a ray
cast between the Gerdy’s Tubercle
and the fibular head (Claes et al.,

2013)

None

(Continued on following page)
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bundle of medial collateral ligament (dMCL), anterolateral
bundle of posterior cruciate ligament (PCL_AL),
posteromedial bundle of posterior cruciate ligament (PCL_

PM), anterolateral structure (ALS), popliteofibular ligament
(PFL), posterior oblique ligament (POL), medial posterior
capsule (PCAP_M), and the lateral posterior capsule (PCAP_L).

2.4 Finite element model development

2.4.1 Overview
FEM of the knee was created in Abaqus Explicit (Dassault

Systemes, France) using a previously described modeling
workflow (Rooks et al., 2021) (Figures 3, 4). Models of each
specimen were created in the initial position of the bones
defined by their full-extension position in the CT. Rigid body
reference nodes were defined for the femur and tibia/fibula
geometries. Cylindrical joints were created between the femur
and tibia/fibula rigid body nodes following the Denavit-
Hartenberg convention described by Grood and Suntay (GS)
(Grood and Suntay, 1983). These joints allowed the application
of loads or displacements to each DOF along the cylindrical
joints for medial-lateral (ML), anterior-posterior (AP), and
superior-inferior (SI) or as torques or rotations around the
cylindrical joints for flexion-extension (FE), varus-valgus
(VrVl), and internal-external (IE) (Andreassen et al., 2023).
The bony surface of the cartilage geometry was rigidly fixed to
the rigid body nodes for the femoral and tibial cartilage.
Ligaments were defined with 1D connectors and rigidly fixed
to the bones. Contact was modeled between the cartilage
surfaces of the tibia and the femur with a friction coefficient
of 0.03 (Basalo et al., 2006).

TABLE 2 (Continued) Modeled knee ligaments and anatomical descriptions of attachment sites and any adjustments used.

Ligament Ligament
major
group

Ligament
abbreviation

Literature description
of ligament origin

Literature description
of ligament insertion

Adjustments to
attachment sites

Popliteofibular
Ligament

PFL PFL Approximately 18.5 mm from the
LCL origin on the femur in the

inferior/anterior direction
(LaPrade et al., 2003)

Inserts into the fibula
approximately 3 mm inferior to
the apex of the fibula head on the
anteromedial slope (LaPrade

et al., 2003)

PFL femoral attachment was
moved approximately to the

medial epicondyle to approximate
the line of action of the force of the
combined popliteofibular ligament
and popliteal tendon rather than

true anatomic accuracy

Posterior Oblique
Ligament

POL POL Superior and posterior to the
origin of the Superficial MCL.

Approximately 8mm inferior and
6.4 mm posterior to the adductor
tubercle and 1 mm inferior and

3 mm anterior to the
gastrocnemius tubercle (LaPrade

et al., 2007)

Slightly inferior to the tibial
posteromedial portion of the

tibial plateau near the
posteromedial portion of the

medial meniscus (LaPrade et al.,
2007)

None

Medial Posterior
Capsule

PCAP PCAP_M Originates on the posteromedial
portion of the femoral cortex a
few centimeters above the most
superior portion of the femoral
cartilage (De Maeseneer et al.,

2004)

Posteromedial portion of the
tibial plateau, approximately

1–2 cm below the knee joint line
(De Maeseneer et al., 2004)

Femoral origin was moved to the
edge of the posterior condyles of
the femur, where the contact of the
capsule with the condyles would

occur

Lateral Posterior
Capsule

PCAP PCAP_L Originates on the posterolateral
portion of the femoral cortex a
few centimeters above the most
superior portion of the femoral
cartilage (De Maeseneer et al.,

2004)

Posterolateral portion of the tibial
plateau, approximately 1–2 cm

below the knee joint line

Femoral origin was moved to the
edge of the posterior condyles of
the femur, where the contact of the
capsule with the condyles would

occur

FIGURE 4
FEM of Specimen 1 and Specimen 2. (White) 2D bone elements
(Pink) 3D cartilage elements (Black) 1D ligament elements.
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2.4.2 Bone meshes
Bones of the femur and a combined tibia and fibula were

modeled as rigid triangular surfaces (R3D3 elements in Abaqus)
rigidly fixed to a rigid body node following previous work (Harris
et al., 2016; Rooks et al., 2021). Elements of geometries were
approximately 1.5 mm in size.

2.4.3 Cartilage meshes
Cartilage geometries generated for the distal femur and the

medial and lateral proximal tibia were exported to Hypermesh
(Altair, Troy, MI), and the articular surface and bony surfaces
were identified. A quadrilateral mesh was created on the bony
surface. The quadrilateral mesh and the original articular and
bony surfaces were used in Hypermesh to create 3D reduced-
integration hexahedral cartilage meshes (C3D8R elements in
Abaqus). While stress was not critical to this study, the cartilage
was meshed as hexahedral elements with appropriate element sizes
to allow for future use for stress analysis with non-linear material
models. Following previous methods (Halloran et al., 2005;
Fitzpatrick et al., 2010; Huff et al., 2020), the cartilage was

modeled with a calibrated (unique to each specimen) tri-linear
pressure overclosure material property to improve computational
performance. The details of this calibration are provided in the
Supplementary Material.

A mesh convergence study was performed following the
recommendations for calculation verification from Anderson
et al. (2007). Convergence of contact area, contact pressure, total
displacement, and von Mises stress was verified, and results are
reported in the SupplementaryMaterial. All cartilage geometries had
target element lengths at the largest between 1 mm and 0.5 mm.

After the hexahedral meshes were created from the original
triangulated surfaces, initial overclosures were observed between the
femoral and tibial cartilage. Overclosures often create instability and
convergence problems for explicit finite element analysis (FEA). Our
previously developed and publicly available code package and
corresponding algorithm using generalized regression neural
networks (GRNNs) was used to remove initial overclosures
between cartilage geometries via equal weighting of the resulting
deformations between tibial and femoral cartilage (Andreassen
et al., 2024b).

TABLE 3Modeled ligaments organized by bundle, number ofmodeled fibers, and design variable assigned to ligamentmaterial parameter. X1 represents the
first design variable, X2 represents the second design variable, and so on.

Ligament Ligament
major group

Ligament
abbreviation

Number
of fibers

Reference
strain design

variable

Reference
strain range

Stiffness
design
variable

Stiffness
range
(N/mm)

Anteromedial
Bundle of ACL

ACL ACL_AM 2 X1 [0.95–1.25] X15 [50–150]

Posterolateral
Bundle of ACL

ACL ACL_PL 2 X2 [0.95–1.25] X16 [50–150]

Main Bundle
of LCL

LCL LCL 3 X3 [0.55–1.15] X17 [60–200]

Superficial
Anterior Fiber
of MCL

sMCL sMCL_A 1 X4 [0.70–1.05] X18 [40–180]

Superficial Middle
Fiber of MCL

sMCL sMCL_M 1 X5 [0.70–1.05] X18 [40–180]

Superficial
Posterior Fiber
of MCL

sMCL sMCL_P 1 X6 [0.70–1.05] X18 [40–180]

Deep Bundle Fiber
of MCL

dMCL dMCL 3 X7 [0.55–1.05] X19 [40–180]

Anterolateral
Bundle of PCL

PCL PCL_AL 2 X8 [0.85–1.15] X20 [30–100]

Posteromedial
Bundle of PCL

PCL PCL_PM 2 X9 [0.85–1.25] X21 [30–100]

Anterolateral
Structure

ALS ALS 2 X10 [0.75–1.25] X22 [20–125]

Popliteofibular
Ligament

PFL PFL 3 X11 [0.85–1.15] X23 [10–90]

Posterior Oblique
Ligament

POL POL 2 X12 [0.75–1.15] X24 [30–95]

Medial Posterior
Capsule

PCAP PCAP_M 3 X13 [0.85–1.25] X25 [50–100]

Lateral Posterior
Capsule

PCAP PCAP_L 3 X14 [0.85–1.25] X26 [50–100]
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2.4.4 Ligament connectors
Ligaments were modeled as non-linear 1D tension-only spring

connectors (Axial type CONN3D2 elements in Abaqus) like those
previously used (Blankevoort and Huiskes, 1996) and formally
described by Yu et al. (2001). Ligaments were modeled with a
reference strain parameter defining the initial tension present in
the ligament in its initial configuration and the stiffness of the
ligament in the linear region (Table 3). The range of values used for
the reference strain and ligament stiffness was approximately the
same as those reported in the “Knee Model Calibration
Specification” document for Team DU in the KneeHub Project
(SimTK: Reproducibility in Simulation-Based Prediction of Natural
Knee Mechanics: Project SimTK, 2018; Erdemir et al., 2019; Rooks
et al., 2021; Andreassen et al., 2023). A constant quadratic toe-in
region was created for all ligaments with an assumed strain
parameter of 0.03 (Blankevoort et al., 1991). Ligaments were
separated into models of individual bundles based on anatomical
descriptions, with several fibers modeled for each bundle. The
location of the individual fibers was determined by visually
identifying the approximate major axis of the ligament
attachment region and choosing points equidistant along the
major axis based on the number of desired fibers to approximate
the span of the overall region (Supplementary Material). Reference
strain and stiffness parameters were unique for each ligament, but all
fibers within a single bundle shared the same material properties.
Ligament attachments were tied to the respective bone’s rigid body
nodes (multi-point constraint beam type in Abaqus).

2.4.5 Simulation of knee motion
The position of the tibia and fibula rigid body nodes was

rigidly fixed in all DOF (boundary encastre in Abaqus) during
every step, while the position of the femur was determined by a
series of three cylindrical (rotation and translation about a
single axis) joint connectors (Cylindrical type
CONN3D2 elements in Abaqus). All DOF for the joint
connectors were placed in load control except for the FE
connector, which applied the desired knee flexion angle in
displacement control. All simulations of knee dynamics
utilized two sequential steps in Abaqus Explicit.

The first step, a settling step, placed the model in equilibrium
and resolved any initial contact penetration before simulation of a
target load and pose in step two. The first step began with the bones
in their initial CT full-extension pose, and applied a desired
compression level in the SI direction to the cylindrical SI
connector (connector load in Abaqus) using a load starting at
0 N and linearly ramping to the desired compression level
causing the femur to compress into the tibia. The model was
highly damped in the first step to reduce vibrations caused by
ligament tension as the model settled into a stable initial pose.
Damping was applied to the joint connectors (connector damping in
Abaqus) for the translation and rotational DOF. To ensure the
high damping did not affect the motion in the second step, the
damping was defined as dependent on temperature. A high
temperature during the first step resulted in significant damping
(100 N*s/mm for translation and 100 N*s*mm/rad for rotation).

FIGURE 5
Chosen laxity targets for knee calibration selected from measurements made with the KLA and RKS. Points are the loads and corresponding knee
angles of the true experimental data used as targets for the model calibration instead of the approximate knee flexion angle and loads.
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FIGURE 6
Workflow of the corresponding laxity groups created by grouping together similar trials and experimental laxity points. Values in parentheses
represent the correspondingweight applied to errors between the simulation predicted kinematics and the actual experimentally observed kinematics for
that DOF.
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During the second step, the knee was flexed to the
desired knee angle (based on the angle for the specific target
described in more detail below) by applying a rotation about the
cylindrical FE connector in displacement control (connector
motion in Abaqus) causing the rigid body node of the femur to
rotate, as well as all tied ligaments. Target loads from the
corresponding model target (described in detail below) were
applied to the respective DOF in force control (connector load
and CLOAD in Abaqus). This step had a low temperature
resulting in negligible damping. The load in each DOF was
linearly increased to the target value and held constant for the
final 30% of the step.

2.5 Model Calibration

Ligament reference strain and stiffness parameters were
calibrated in an optimization process that simulated knee model
movement in response to target loading conditions and minimized
the error between the measured and predicted kinematics
(Andreassen et al., 2023). Specifically, a set of calibration targets
(matched kinematics and load data) were defined from the laxity
measurements described above at discrete knee flexion angles and
levels of applied load. Separate calibration targets were created from
the laxity measurements made using the KLA and the
RKS (Figure 5).

TABLE 4Optimized ligament parameters for KLA and RKSmodels for both specimens, respectively. KLA is model calibration using data from the knee laxity
apparatus. RKS is model calibration using data from the robotic knee simulator. X1 represents the first design variable, X2 represents the second design
variable, and so on.

Material parameter Design variable Ligament Specimen 1 Specimen 2

KLA RKS KLA RKS

Reference Strain X1 ACL_AM 1.14 1.07 1.16 1.14

X2 ACL_PL 1.00 1.00 1.21 1.23

X3 LCL 0.94 0.96 0.76 1.06

X4 sMCL_A 0.79 0.80 1.05 0.94

X5 sMCL_M 0.90 0.91 1.00 0.92

X6 sMCL_P 0.84 0.85 0.98 0.90

X7 dMCL 0.95 0.94 0.79 0.74

X8 PCL_AL 0.91 0.92 0.88 0.89

X9 PCL_PM 0.93 0.94 0.87 0.94

X10 ALS 1.00 1.00 0.76 0.82

X11 PFL 0.99 1.14 1.15 1.15

X12 POL 1.06 1.00 0.92 0.90

X13 PCAP_M 1.25 1.25 1.08 1.11

X14 PCAP_L 1.17 1.22 1.12 1.14

Stiffness (N/mm) X15 ACL_AM 79.41 68.53 103.85 79.21

X16 ACL_PL 114.56 115.94 50.19 58.17

X17 LCL 90.35 92.57 111.76 125.14

X18 sMCL 95.58 102.06 85.05 40.65

X19 dMCL 157.53 153.26 111.79 133.03

X20 PCL_AL 72.87 77.64 64.25 63.70

X21 PCL_PM 82.13 85.37 30.17 30.14

X22 ALS 120.16 114.86 53.58 49.17

X23 PFL 19.90 32.56 89.52 65.68

X24 POL 73.99 65.06 71.60 66.43

X25 PCAP_M 71.12 74.38 72.41 71.49

X26 PCAP_L 61.58 60.51 70.00 67.23
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The optimization process was managed in MATLAB. For each
iteration of the optimization process, a custom MATLAB script was
used to set the ligament parameters (26 parameters total, Table 3) in
Abaqus for the simulation of a given calibration target. Using the
Abaqus API, custom Python scripts extracted simulation results,
including kinematics. The squared error between simulated GS
kinematics and experimental GS kinematics was calculated for
each kinematic DOF. This was repeated for each of the given
calibration targets to calculate the optimization cost function
(described below). The optimization process occurred in two
phases for each knee model. First, a particle swarm global
optimization (Kennedy and Eberhart, 1995) narrowed the search
space to the location of the most likely global minimum. Then, using
the ligament parameters at this approximate minimum as an initial
point, a Nelder-Meade Simplex solver determined the true local
minimum around this point (Nelder and Mead, 1965). The
approximate number of iterations to reach a minimum was
750 for the particle swarm optimization and 500 for the Nelder-
Meade Simplex solver. While the exact time required to complete an
iteration for each model calibration depended on the number of
calibration targets and elements within the model, the average clock
time was approximately 210 s per iteration. Therefore, the overall
time to complete calibration for each knee model was approximately
73 h (single Intel Xeon Gold 6134 CPU @ 3.2 GHz).

The optimization process minimized a cost function consisting
of the squared error between themeasured and simulated calibration
targets and a penalty term. Trials were grouped in similar categories
(e.g., anterior laxity at 30° of knee flexion for multiple loads), and the
75th percentile of the root mean squared error (RMSE) for each
DOF of a given group was calculated and normalized to the range
between the minimum and maximum observed for each kinematic
DOF across all experimental results. Targets were grouped together
(Figure 6) to bias the optimization across the range of flexion angles
and DOF (rather than, for instance, AP at 30° at 10 N, 20 N, 30 N,
and 40 N). The normalized errors for each DOF were then scaled by
chosen scalar weights and summed across all categories into a total
cost. This weighting allowed selected DOF to be more emphasized
based on the primary DOF for a given laxity trial (AP for anterior at
30°, IE, for internal at 90°, etc.) while allowing for secondary DOF
(IE, for anterior at 30°, AP for internal at 90°, etc.) to also be included
with less emphasis. Additionally, a penalty term squared the cost if
any trials reached joint limits on the SI and ML DOF. The penalty
improved optimization speed by quickly guiding the search away
from unrealistic solutions. An example calculation from a single

iteration of the optimization for the Specimen 2 model calibrated to
KLA targets is included in the Supplementary Material as a
spreadsheet file.

2.6 Model performance comparison and
validation

2.6.1 Ligament parameters
The resulting ligament material property parameters (reference

strain and stiffness) for each calibrated model were compared to
evaluate the differences between the KLA and RKS models, and
between specimens. Values reported are the true parameters
calibrated for each model. However, because of the large range of
resulting material parameters, particularly between reference strains
and stiffnesses, percentage differences were also calculated in each
case to simplify model and specimen comparisons.

2.6.2 AP laxity
To compare AP laxity of the models, AP loads of 133 N

and −133 N were applied to each model at 30, 60, and 90° of
knee flexion. A magnitude of 133 N (30 lbf) load was chosen as it is
commonly used when evaluating knee laxity clinically (Un et al.,
2001; Starkel et al., 2014). Simulation of AP laxity was performed as
described above with the addition of a third simulation step in
Abaqus/Explicit that linearly increased and decreased the AP
loading between 133 N and −133 N. The GS kinematics for the
AP direction were recorded and root-mean-squared difference
(RMSD) was calculated between the models calibrated with laxity
measurements from the KLA and RKS.

2.6.3 Passive flexion
Passive flexion was simulated by applying zero loads for all DOF

and prescribing knee flexion angle from 0 to 90°. A two-step Abaqus/
Explicit simulation was performed as described above. Results were
obtained for the predicted passive flexion kinematics of AP, IE, and
VrVl vs. knee flexion angle. Results were compared to the
experimental values measured for passive flexion, namely, Intact
Leg Experimental and Dissected Knee Experimental data.

2.6.4 Pivot shift
To compare the models during complex motions, a simulated

pivot shift test was performed. The pivot shift test is a clinical
evaluation that aims to determine the stability of the knee as a means

FIGURE 7
AP GS kinematics from 133 N anterior (top points) and posterior (bottom points) tibial load at three knee flexion angles for all models and both
specimens. (KLA) Simulated AP laxity frommodel calibrated with data from the knee laxity apparatus. (RKS) Simulated AP laxity frommodel calibrated with
data from the robotic knee simulator.
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of predicting possible anterior cruciate ligament (ACL) injury
(Matsushita et al., 2013). Following previous work, a pivot shift
was simulated by placing the knee in 30° of flexion and applying an
8 N*m valgus torque combined with a simultaneous 4 N*m internal
torque (Schafer et al., 2016; Thein et al., 2016). A two-step
simulation was performed as described above. Model kinematics
were recorded for the KLA and RKS models for both specimens. In
addition, an ACL-deficient pivot shift was simulated for all models
and calibrations. The ACL-deficient condition was simulated by
creating a parameter that controlled the presence of a failure in the
connectors representing the ACL for both the anteromedial and
posterolateral bundles (connector failure in Abaqus). A parameter
equation was created that caused an immediate failure of the ACL
connectors in the first simulated time increment of the model.
Following the failure of the connectors, the simulation progressed
through the remaining time steps as if the ACL was not present,
simulating a complete tear of the ligament. Kinematics and ligament

forces were compared between models for the intact and ACL-
deficient conditions.

3 Results

3.1 Ligament parameters

The calibrated material properties for ligament reference strain
and stiffness are reported in Table 4. The smallest reference strain on
average was observed in the dMCL with a value of 0.85 and the
largest observed in the PCAP_M with a value of 1.17. The smallest
stiffness on average was observed in the PFL with a value of 51.9 N/
mm and the largest observed in the dMCL with a value of 138.9 N/
mm. Percent differences between stiffnesses were approximately
4 times greater than the percent differences observed for reference
strains on average. The percent differences for the reference strains

TABLE 5 Predicted ligament loads from 133N anterior and posterior tibial load at three kneeflexion angles for KLA vs. RKSmodels for both specimens. KLA is
model calibration using data from the knee laxity apparatus. RKS is model calibration using data from the robotic knee simulator. All loads recorded under
5 N are represented as a “-”.

Laxity
direction

Knee
angle
(deg)

Specimen Model ACL
(N)

ALS
(N)

LCL
(N)

MCL_S
(N)

MCL_D
(N)

POL
(N)

PCAP
(N)

PCL
(N)

PFL
(N)

Anterior 30 1 KLA 163.4 - - - 14.1 - - - -

Anterior 30 1 RKS 173.1 - - - 16.5 - - - -

Anterior 30 2 KLA 248.5 - - - - - - - 83.3

Anterior 30 2 RKS 246.9 - 60.1 - - - - - 66.6

Anterior 60 1 KLA 161.4 13.2 - - 21.5 - - - -

Anterior 60 1 RKS 146.3 38.3 - - 40.2 - - - -

Anterior 60 2 KLA 203.8 - - 18.1 - - - - 34.0

Anterior 60 2 RKS 206.3 - 12.4 - - - - - 35.9

Anterior 90 1 KLA 120.3 58.2 - - 57.6 - - - -

Anterior 90 1 RKS 85.2 93.5 - - 84.7 - - - -

Anterior 90 2 KLA 194.0 16.9 - 32.3 - - - - 13.0

Anterior 90 2 RKS 195.0 8.9 - 23 - - - - -

Posterior 30 1 KLA - - - - - 73.4 - - 89.9

Posterior 30 1 RKS - - - - - 65.3 - - 75.2

Posterior 30 2 KLA - - - 14.1 - - - 121.8 80.6

Posterior 30 2 RKS - - 33.7 - - - - 128.9 73.1

Posterior 60 1 KLA - - - - - 60.0 - - 65.6

Posterior 60 1 RKS - - - - - 56.1 - - 64.0

Posterior 60 2 KLA - - - - - - - 138.2 51.6

Posterior 60 2 RKS - - - - - - - 130.0 50.3

Posterior 90 1 KLA - - - - - 66.4 15.2 - 58.7

Posterior 90 1 RKS - - - - - 41.5 33.4 - 60.2

Posterior 90 2 KLA - - - - - - - 166.8 -

Posterior 90 2 RKS - - - - - - - 155.5 32.8

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Andreassen et al. 10.3389/fbioe.2025.1554836

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1554836


FIGURE 8
Passive knee flexion GS kinematics for both specimens and all model simulations vs. experimental measures for anterior-posterior (AP), internal-
external (IE), and varus-valgus (VrVl) vs. knee flexion angle. (KLA) Simulated passive knee flexion from calibration of model with data from the knee laxity
apparatus. (RKS) Simulated passive knee flexion from calibration ofmodel with data from the robotic knee simulator. (Intact Leg Exp) Experimental passive
knee flexion collected via manual manipulation of the limb by the experimenter through the range of motion for the fully intact lower-limb. (Dissect
Knee Exp) Experimental passive knee flexion collected via a robotic knee simulator no-load motion on the dissected knee.

TABLE 6 Predicted GS kinematics during simulated pivot shift at 30° of knee flexion with 8 N*m valgus torque and 4 N*m internal torque. KLA is model
calibration using data from the knee laxity apparatus. RKS is model calibration using data from the robotic knee simulator. Models with an “*” denote a
simulation with a predicted dislocation between the femur and tibia wherein the kinematics reported may be unreliable.

Specimen ACL condition Model F (+)/E
(deg)

Vr/Vl (+)
(deg)

I/E (+)
(deg)

M/L (+)
(mm)

A (+)/P
(mm)

S (+)/I
(mm)

1 Intact KLA 30.9 2.7 −13.3 0.4 3.9 −17.3

1 Intact RKS 30.9 5.3 −15.0 −0.2 4.7 −18.3

1 No ACL KLA 30.9 5.9 −11.3 −0.7 8.1 −18.4

1 No ACL RKS 30.9 6.8 −13.6 −0.1 7.0 −18.9

2 Intact KLA 29.9 −3.1 −28.8 0.0 4.6 −28.8

2 Intact RKS 29.9 1.6 −31.6 −2.2 1.8 −30.5

2 No ACL KLA* 29.9 3.7 −25.1 −2.1 21.6 −24.4

2 No ACL RKS* 29.9 12.2 −19.8 −11.4 23.1 −24.8
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were lower between models (KLA vs. RKS) as compared with
between specimens, with the average differences found of 4.6%
and 12.3% for inter-model (KLA vs. RKS) and inter-specimen
(Specimen 1 vs. Specimen 2), respectively. The same effect was
observed for stiffness where the average difference was 14.3% and
55.8% for inter-model and inter-specimen, respectively.

3.2 AP laxity

Predicted AP translation in response to 133 N anterior and
posterior load was similar between the models calibrated with KLA
and RKS measurements (Figure 7). The RMSD in the anterior
direction between the KLA and RKS models was 2.38 mm and
1.94 mm for Specimen 1 and Specimen 2, respectively. RMSD in the
posterior direction was 2.45 mm and 1.90 mm. The ACL was the
most loaded ligament for the anterior laxity trials at all flexion angles
for all models (Table 5). For the posterior direction, the PFL and
POL were loaded for both models in Specimen 1. The PCL was the
most loaded ligament for Specimen 2. The RMSD of ligament loads
between the KLA and RKS models was 10.3 N and 11.4 N for
Specimen 1 and 2, respectively.

3.3 Passive flexion

Predicted AP translation of the tibia was similar in magnitude
and trend for both models and specimens during simulated passive
flexion (Figure 8).While the prediction of IE, and VVwas similar for
both models and specimens, some differences were noted. The
RMSD between the KLA and the RKS model was 3.5 mm, 2.6°,
and 0.4° for AP, IE, and VrVl, respectively, for Specimen 1 and
1.1 mm, 1.2°, and 0.3° for Specimen 2. The kinematics for the
experimental datasets varied even for the same specimen. The
differences between experimental curves were more significant
for the rotational DOF (IE, and VrVl) as compared to the
translation DOF (AP). Moreover, the differences between
experimental curves were larger than the differences between the
model predictions, with the model predictions generally falling
within the envelope of motion between experimental curves.

Kinematics for the IE, DOF in specimen 2 for the models
diverged for flexion angles greater than 70°.

3.4 Pivot shift

Kinematics during the simulated pivot shift were within 2.6° and
2.8 mm between the KLA and RKS models for all simulations for
rotations and translations, respectively (Table 6). The simulated
ACL-deficient condition for Specimen 2 was an exception, where
both the RKS and KLA models predicted a dislocation. All models
predicted increases in tibial anterior translation and valgus rotation
for the ACL-deficient condition relative to the intact model. All
models predicted an increase in the anterolateral structure (ALS)
ligament load for the ACL-deficient condition compared with the
intact condition (Table 7). Ligament loads for the collateral
ligaments (LCL and MCL) were zero for both models of
Specimen 1 but were non-zero for Specimen 2. In both the KLA
and RKS models for Specimen 2, the sum of the LCL and MCL
ligament loads decreased for the ACL-deficient condition relative to
the intact condition, with the KLA model decreasing by 67.4 N,
while the RKS model decreased by 53.2 N.

4 Discussion

Recent calls for more personalized approaches to medicine,
including digital twins and in silico clinical trials, have prompted
an increased demand for computational models of living people.
Personalized knee models could be used in conjunction with existing
surgical planning tools to better predict and understand the short-
and long-term outcomes of various treatment options. However, the
necessary tools to obtain measurements of the living knee for model
calibration are limited. While knee laxity is a routine clinical
evaluation, these measurements have historically been insufficient
to calibrate models with useful accuracy. Furthermore, while recent
work has examined the effects of modeling methodologies on model
performance, the impact of the data used to build and calibrate
models has received little attention. This study investigated the
effects of experimental inputs on model predictions following

TABLE 7 Predicted ligament loads during simulated pivot shift at 30° of knee flexion with 8 N*m valgus torque and 4 N*m internal torque. KLA is model
calibration using data from the knee laxity apparatus. RKS is model calibration using data from the robotic knee simulator. Models with an “*” denote a
simulation with a predicted dislocation between the femur and tibia wherein the loads reported may be unreliable.

Specimen ACL
condition

Model ACL
(N)

ALS
(N)

LCL
(N)

MCL_S
(N)

MCL_D
(N)

POL
(N)

PCAP
(N)

PCL
(N)

PFL
(N)

1 Intact KLA 46.9 121.8 0.0 0.0 0.0 103.1 0.0 0.0 0.0

1 Intact RKS 17.5 145.9 0.0 0.0 0.0 86.2 0.0 0.0 0.0

1 No ACL KLA 0.0 163.7 0.0 0.0 0.9 85.6 0.0 0.0 0.0

1 No ACL RKS 0.0 159.3 0.0 0.0 5.2 81.3 0.0 0.0 0.0

2 Intact KLA 175.1 0.3 0.0 215.4 0.0 0.0 0.0 0.0 93.1

2 Intact RKS 141.6 28.7 190.2 88.6 0.0 0.0 6.9 95.7 0.4

2 No ACL KLA* 0.0 187.3 0.0 148.0 0.0 0.0 29.1 0.0 46.9

2 No ACL RKS* 0.0 271.3 41.1 184.5 0.1 0.0 0.6 −0.1 0.1
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model calibration using knee laxity measurements from in vivo
(KLA) and in vitro (RKS) methods. Specimen-specific FEM of the
knee were developed and calibrated, and model performance was
compared. Our results showed that accurate model calibration may
be achieved using measurements available from living subjects.

Whether calibrated from KLA or RKS measurements, the
models captured the distinctly different behavior of the two knee
specimens. The differences in calibrated material parameters were
greater inter-specimen as compared to inter-model (Table 4). This
highlights that the models built using different calibration data (KLA
vs. RKS) can capture the unique material behavior of each specimen.
However, for almost every ligament, we observed that the percent
differences for reference strain were smaller than those for stiffness.
Previous work from Baldwin et al. used Monte Carlo and Advanced
Mean Value (Wu et al., 1989) analyses to determine the relative
importance of model parameters on knee joint laxity (Baldwin et al.,
2009). They found that the reference strain was frequently more
important than stiffness for accurate recreations of joint laxity. This
may explain why reference strain values in our models were more
similar than the overall ligament stiffness, because accurate
recreation of joint motion, particularly in loaded conditions, was
more sensitive to reference strain rather than stiffness.

For each specimen, results were similar for both the passive
flexion and the AP laxity simulations despite the differing
calibration targets from each data source (Figures 5, 6). The RKS
measurements provided laxity data for 3 DOF at four knee flexion
angles while the KLA in vivomeasurement device provided laxity in
only 2 DOF at two knee flexion angles. Still, the predictions of the AP
displacement in response to applied load were similar and unique to
each specimen, with similar ligament loading observed for all AP
conditions (Table 5). The resulting errors between model predicted
kinematics for the AP conditions across both specimens were less
than 2.5 mm and 2.0 mm for anterior and posterior laxity,
respectively (Figure 7); these errors are within the minimum
detectable change (MDC) for AP laxity reported from other in
vivo knee laxity devices, withMDCs ranging from 1.1 mm to 4.5 mm
(Mouton et al., 2015; Smith et al., 2022; Imhauser et al., 2024).
Notably, posterior knee laxity was accurate despite no posterior
loading targets in the KLA model calibration. Additionally, model
predictions of AP laxity were similar at 60° of knee flexion, despite
the KLA model not having this flexion angle in the calibration
targets for either specimen. Furthermore, the low RMSD between
KLA and RKSmodels during passive flexion (flexion free of dynamic
loads) suggests that both models predict nearly the same kinematics
despite not being calibrated to passive data. For both specimens,
differences between calibration with RKS or KLA data were within
the errors reported for passive flexion from another study, wherein
knee models were built from the same experimental data but with
different modeling workflows (Andreassen et al., 2023). These
results help demonstrate that laxity measurements from in vivo
techniques, such as those from the KLA, can provide sufficient
targets for model calibration in subject-specific modeling.

The models calibrated from RKS and KLA predicted similar
kinematics for a simulated pivot shift test. The maximum differences
between model predictions were within 2.6° and 2.8 mm for rotation
and translation, respectively. Inter-specimen differences in
kinematics were far greater than inter-model differences in both
ACL-intact and deficient conditions (Table 6). Additionally, both

the KLA and the RKS models predicted the same dislocation
behavior in Specimen 2 for the ACL-deficient condition. In
agreement with Thein et al., force in the ALS of the knee
increased without the ACL in all models (Thein et al., 2016).
This demonstrates that models calibrated using data acquired
with in vivo methods can make meaningful predictions beyond
the calibration data, including dislocation behavior. Still, while
similar ligament loads were observed between the KLA and RKS
models for the ACL-intact and deficient conditions, differences
remain. For Specimen 2, in the intact condition with KLA
calibration, the LCL force was 0.0 N and the superficial MCL
force was 215.4 N; in contrast, the RKS calibration predicted the
LCL force to be 190.2 N and the superficial MCL force to be 88.6 N
(Table 7). In addition, there are portions where the reference strain
of a ligament for Specimen 1 is greater for the KLAmodel compared
to value for Specimen 2, but the opposite scenario is found for the
RKS model between the two specimens, such as for the LCL
(Table 4). Together, these results highlight that while models
may yield similar joint-level force-displacement behavior from
different ligament material properties, the resulting ligament
loads may be variable. Similarly, recent work by Theodorakos
et al. showed that model calibration is sensitive to initial
conditions for the material properties used for model calibration
(Theodorakos and Andersen, 2024). They showed that different
initial conditions resulted in different material properties following
model calibration and different ligament forces despite small overall
kinematic and kinetic differences at the joint-level. Thus, subject-
specific models created to predict in vivo ligament loads may not
provide accurate results using joint-level calibration alone.
Additional calibration constraints or penalties informed by
subject-specific information may be necessary to drive the
calibration to a set of material properties that ensure feasible
predictions of ligament loads. These penalties could integrate
physiologically relevant phenomena that further enhance the
realism of the results. For example, the inclusion of an overall
muscle activation penalty based on various expenditure and
muscle synergy laws is frequently used in musculoskeletal
modeling to distribute muscle activation (Delp et al., 2007).
These types of additional penalties have been shown to distribute
muscle activation more closely to experimentally observed
distributions from electromyography than from force-
displacement optimization alone (Michaud et al., 2020). Similar
modeled penalties, such as minimizing overall ligament strain or
force, could be implemented in these model calibration workflows,
which may better explain the underlying physiology and improve
model predictions of ligament forces.

While the FEA results from the KLA and RKS models are highly
consistent with each other overall, there are some inconsistencies
with experimental measurements in passive flexion. In Figure 8, the
KLA and RKS model results are similar to the experimental
measurements in AP, IE, and VrVl at full extension, and in AP
kinematics as the knee flexes and largely fall within the envelope of
passive motion of the experimentally observed data. However, with
increasing knee flexion, IE experimental trends diverge. Likewise,
the model results and experimental measurements diverge in VrVl
with increasing flexion. These differences primarily in IE and VrVl
occur for two reasons. First, the differences in kinematics observed
experimentally highlight the uncertainty in passive knee motion
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under small input loads. Blankevoort et al. described how small
changes in loads result in large differences in joint kinematics
(Blankevoort et al., 1988), particularly when the overall joint
compression is small. Furthermore, internal and external rotation
range of motion at the knee naturally increases as the knee flexes,
especially beyond 30° of flexion (Zarins et al., 1983). Second, there
were unmeasured loading differences in the Intact Leg Experimental
data and the Dissected Knee Experimental data. In the Intact Leg
Experimental data, fully intact lower limbs were manually moved by
cable through knee flexion to extension, while in the Dissected Knee
Experimental, passive knee flexion of the dissected knees was
robotically controlled. Meanwhile, simulation of passive flexion
with the KLA and RKS models was fully unloaded, with only
knee flexion kinematically driven and lacking significant modeled
soft-tissue structures. The large envelope of passive motion between
the experimental curves highlights the need for near-identical
conditions between situations, particularly with small loads, even
for the same knees. For these reasons, the kinematics of the KLA and
RKS models are similar but do not always match the trends of
experimental data. These results highlight that the inherent
variability and sensitivity of passive flexion to loading conditions,
and the presence of soft-tissue structures, make it potentially
unsuitable for validation.

The larger point of Figure 8 is to demonstrate that the models
behave very similarly to one another, despite using different data
sources, and are close to the overall envelope of motion observed
experimentally. Any discrepancies remaining are likely limitations
of the “art” of modeling itself, due to the lack of certain structures
and the inability to recreate the exact loading conditions of the
original experiment. Even so, passive flexion was investigated here
primarily to enable comparison to prior work that evaluated the
impact of modeling calibration workflow on model performance
(Andreassen et al., 2023); in particular, with this work using the
samemodeling workflow and steps as the TeamDUmodel from that
work. In the aforementioned KneeHub project, five different groups
performedmodel development and calibration on specimen-specific
models using each group’s chosen modeling and calibration
workflow, but with the same experimental data (Erdemir et al.,
2019; Rooks et al., 2021; Andreassen et al., 2023). Using raw data
reported from that work, average inter-model RMSD in passive
flexion were as high as 6.2 mm, 14.9°, and 6.8° for AP, IE, and VrVl,
respectively; considerably higher than the maximum values found
herein of 3.5 mm, 2.6°, and 0.4°, for AP, IE, and VrVl, respectively.
Moreover, Andreassen et al. found an average 10% difference in
inter-model reference strain between the five modeling strategies,
compared with the 4.6% inter-model observed here. These
differences suggest that when comparing passive flexion, the
modeling workflow, or “art”, has as great an influence on model
performance as measurement methodology and the specific targets
used for calibration. Moreover, it is important to consider that for in
vivomodeling, it is impractical to record a truly passive joint motion
even with anesthesia, making it a poor kinematic target for ligament
material property calibration and benchmarking, apart from full
extension. Thus, while the consistent results in the three conditions
we tested (passive, AP laxity, and pivot shift) support the use of
calibration with in vivo experimental measurements, the calibration
of models to the living knee should include measurements that
reflect the intended context of use.

This study has limitations. The first limitation is the small
number of knee specimens utilized, which limited the power of
the study to investigate subject variation and make generalizable
claims. The results found should be considered as indicative of
potential but insufficient to establish scientific consensus. Still, the
sample size of two specimens was comparable to other studies of
subject-specific knee modeling (Kia et al., 2016; Ali et al., 2017; Razu
et al., 2023) and this work highlights the promise of using recently
available tools in vivo as a means to calibrate knee models. However,
future work should include larger sample sizes and specimen
variation to ensure these initial results hold in the presence of
greater variability. A second limitation is the applicability of the
laxity measurements made herein to those performed in living
individuals. In measuring knee laxity in vivo, there is the
potential for physiological factors such as passive muscle tone,
coactivation, spinal reflexes, pathology, and other contributions
to muscle force that influence the amount of knee laxity
measured from the passive structures alone. Previous work has
shown that laxity in the knee during an anterior drawer test
increases in patients under anesthesia compared to when awake
(Matsushita et al., 2013). Future work using living individuals should
include methods to reduce the possibility of muscle-reduced knee
laxity by employing muscle stretch-relaxation techniques (Osternig
et al., 1987) or fatiguing muscle contractions (Nawata et al., 1999),
which has been shown to increase knee laxity. In addition, future
studies involving living subjects should include methods to
determine the relative activation of muscles such as
electromyography (EMG). Another related limitation is that
models were developed using CT and white-light surface scans,
which would be impractical in vivo. We chose to use the surface scan
combined with CT, as compared to MRI or statistical methods, to
ensure the highest possible accuracy for identifying ligament
attachment sites and minimize the variability this would cause on
the results and analysis. Moreover, other groups have focused on
developing accurate methods of predicting attachment sites, with
promising results (Pillet et al., 2016; Malbouby et al., 2025). Future
work should investigate the impacts of all in vivo measurements to
show how these effects may compound. Another limitation is that
while the RMSD between model predictions herein is small, within
2.5 mm for AP laxity, and for passive flexion less than the errors
found in the KneeHub project (Andreassen et al., 2023), regions of
higher flexion in Figure 8 show differences between model
performance and measurements under small loads. While we
tested three conditions to demonstrate the efficacy of ligament
material property calibration using methods and measurements
available to living subjects, the differences emphasize the
importance of calibration to measurements relevant to the
context of use when modeling the living knee. For some
applications, the current accuracy may not be sufficient. The final
limitations are the representation of cartilage as linear elastic
isotropic and the lack of a meniscus or patella in the model. The
cartilage model was simplified to decrease computational burden,
and previous work has shown that models utilizing linear-elastic
isotropic representations of cartilage can accurately predict
experimentally measured joint contact (Kiapour et al., 2014).
Furthermore, as this work aimed to examine the kinematics of
the knee and not contact patterns or stress, the choice of cartilage
material property likely had little effect on the observed results. Still,
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future work should investigate if there are significant effects of the
choice of cartilage material models on ligament material calibration.
The models did not include the menisci, in line with other studies
(Farshidfar et al., 2022), as inclusion of the menisci has been shown
to have little effect on the kinematics of the knee at less than 90° of
knee flexion (Amiri et al., 2006). Still, for certain contexts of use,
inclusion of menisci is crucial. Additionally, the models did not
include a patella, in line with other studies (Harris et al., 2016;
Farshidfar et al., 2022; Rooks et al., 2022). The primary objective of
this work was to recreate tibiofemoral kinematics, and therefore, the
patella was not included. Still, the lack of a patella and meniscus may
have impacted some of the results herein, such as in the passive
flexion curves in Figure 8. Future studies should investigate if the
presence of menisci and patella influences ligament material
calibration.

In summary, this study reported small errors for the models
calibrated to data measured with a laxity measurement apparatus,
designed for the living knee, compared with models calibrated to
data measured with a robotic knee joint simulator. The viability of
using knee laxity measurements in future calibration of living
subjects was demonstrated by close agreement with knee
calibration using measurements from cadaveric testing. Still some
differences were observed between models, particularly in predicted
loads, suggesting that modeling workflow has as great an influence
on model performance as measurement methodology and the
specific targets used for calibration. Overall, the workflows and
optimization strategies described here can act as a basis for future
subject-specific modeling and the development of digital twins. The
experimental data, models, results, and tools created are publicly
available to encourage model reproducibility.
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