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Introduction: To investigate themetabolism and distribution of iPSC-MSCs in the
joint cavity of rats with knee osteoarthritis (KOA).

Methods: The iPSC-MSCs labeled with the Antares2 luciferase gene were
injected into the knee joints of rats, and then the metabolism and distribution
of the cells in vivo were revealed by imaging and molecular biomarker methods.

Result: Histopathological results demonstrated that iPSC-MSCs significantly
reversed joint tissue damage of arthritic rats. The fluorescence signal of iPSC-
MSCs labeled with Antares2 luciferase gene was stable and persistent with high
detection sensitivity. The fluorescent signal duration of Antares2-iMSCs in the
joint cavity of KOA rats was approximately 2 weeks, which was significantly longer
than 1 week in the sham-operated group. The proportion of iPSC-MSCs in the
synovial fluid gradually decreased over time, and for the first time, the cells were
observed to attach to the synovium first, followed by the meniscus and cartilage.

Discussion: This study was the first to explore the metabolism and distribution of
iPSC-MSCs after intra-articular injection by labeling the Antares2 luciferase gene,
which provides assurance and theoretical basis for the safety of clinical
application of iPSC-MSCs in treating osteoarthritis.
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1 Introduction

Osteoarthritis (OA) is the most common joint disease worldwide, affecting
approximately 10% of men and 18% of women over 60 years of age (Cao et al., 2024).
There are multiple factors that contribute to the occurrence and progression of OA. It is
characterized by gradual degeneration and exfoliation of the articular cartilage, as well as
structural and functional changes in the joint as a whole, including the synovium, meniscus,
periarticular ligaments, and subchondral bone (Ebada et al., 2022; Mobasheri and Batt,
2016). Currently, there are four main treatments for OA: physical therapy, such as weight
loss and reducing joint damage; using non-steroidal anti-inflammatory drugs (NSAIDs) to
relieve the patient’s pain; intra-articular (IA) injections of drugs such as sodium
hyaluronate; and joint replacement surgery for patients with severe or advanced OA
(Huang et al., 2022). However, current treatments are aimed at relieving patient symptoms
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such as localized swelling and pain, which do not effectively improve
cartilage damage (Hochberg et al., 2012). In the past decade, cell
therapy for OA has developed rapidly, in which stem cell therapy has
achieved excellent results (Ruscitto et al., 2023; Song et al., 2020).

Mesenchymal stem cells (MSCs) have a strong differentiation
potential, can be isolated and extracted from a variety of autologous
and allogeneic sites such as bone marrow (BMMSCs), adipose tissue
(ADMSC), umbilical cord blood and dental pulp. In fact, there have
been relevant reports about clinical trials of bone marrow MSCs,
adipose MSCs, and umbilical cord MSCs for the treatment of OA
(Epanomeritakis and Khan, 2024; Matas et al., 2019; Shariatzadeh et al.,
2019). However, there are still many difficulties to overcome in stem cell
transplantation therapy, including the risk of tumor formation, ethical
issues, and transplant rejection. iPSC-MSCs are constructed by
transferring transcription factors such as Oct3/4, Sox2, c-Myc and
Klf4 into adult cells via lentiviral vectors, which transform them into
pluripotent stem cells with embryonic stem cell-like functions
(Takahashi and Yamanaka, 2006; Yu et al., 2007). It has the
advantages of low immunogenicity and high proliferative capacity
compared to other sources of MSCs. Our pre-experiment confirmed
that iPSC-MSCs were used to treat a rat OA model and achieved
favorable results, and the pathological analysis showed that it could
repair cartilage damage and regenerate damaged cartilage. However, we
are still unknown about the fate of iPSC-MSCs after injection into the
joint cavity of osteoarthritis, including cell viability, cell distribution
location, attachment tissue, and intra-articular retention period. The
exploration of the pharmacokinetics of iPSC-MSCs after knee injections
is essential for adjusting the administration regimen, understanding the
pattern of cellular effects, improving the formulation, and improving
therapeutic efficacy.

It has been demonstrated that after MSCs with the luciferase gene
were injected into the joint cavity, fluorescent signals could be
observed at different time points. Moreover, the cells in the
osteoarthritis group survived longer than those in the control
group, suggesting that different joint cavity microenvironments
affect cell metabolism and proliferation (Li et al., 2024). There is
also direct evidence suggesting that MSCs are still acting locally, but
their distribution within the joint cavity is unknown (Li et al., 2016). In
vivo biofluorescence imaging refers to the utilization of luciferase genes
expressed in animals to produce luciferase protease that reacts with the
corresponding substrate to generate a light signal and then forms an
image in vitro through sensitive charge-coupled device equipment
(Yeh et al., 2017). The current cell labeling methods have drawbacks
such as low sensitivity, low specificity, and dependence on gene-edited
animals (He et al., 2023). Antares2 is an excellent bioluminescent
reporter gene with a stable and long-lasting fluorescent signal,
favorable biosafety, and high detection sensitivity (Hikita et al.,
2020; Yeh et al., 2017). Currently, no relevant studies use the
Antares2 luciferase reporter gene to observe the metabolic and
distributional characteristics of iPSC-MSCs in rats.

In this study, we injected Antares2-iMSCs into the knee joints of
non-transgenic rats and then explored the metabolism and
distribution of the cells by in vivo fluorescence imaging. Our
previous work confirmed that iPSC-MSCs had a favorable
therapeutic effect on OA rats by pathological analysis including,
HE staining and immunohistochemistry. Exploring the distribution
and metabolic change patterns of Antares2-iMSCs in different joint
microenvironments is conducive to further optimizing stem cell

therapy protocols, which provides the experimental basis for
applying iPSC-MSCs in the clinical treatment of OA.

2 Materials and methods

2.1 Cell culture

The iPSC-MSCs (Lot No.: 202011006) and Antares2-iMSCs (Lot
No.: 20201206) were purchased from Nuwacell Biotechnology Co
(Hefei, China). The above cells were cultured in MEM-α medium
containing 10% fetal bovine serum (FBS). MEM-α medium was
obtained from Procell Life Science & Technology Co (Wuhan,
China). FBS was purchased from Biological Industries® (Kibbutz
Beit Haemek, Israel).

2.2 Animals

Specific pathogen-free (SPF)-grade SD rats (weighing about
250 g, male) were purchased from the SiBeiFu Biotechnology
Co., Ltd. (Beijing, China) (Certification: SXK (Beijing) 2019-
0010). The animals are fed in an SPF-grade environment with
constant temperature (25°C ± 2°C) and constant humidity
(70% ± 5%). The relevant operations in this study were carried
out following relevant guidelines for animal experiments and were
approved by the Animal Research Ethics Committee of the Institute
of Clinical Pharmacology of Anhui Medical University.

2.3 Establishment of rat osteoarthritis model

The operation was performed in a sterile SPF animal laboratory.
First, the rats were anaesthetised with Zoletil 100 (100 g/0.1 mL)
(Virbac, France). The left hind limb of the rats was shaved and
disinfected with 75% alcohol, and then a 20 mm incision was made
to expose the left knee joint. The medial collateral ligament and the
anterior cruciate ligament were cut after exposing the rat knee joint,
and then the medial meniscus of the knee joint was excised.
However, the rats in the sham operation group did not destroy
any ligaments or menisci after exposing the joint cavity.

2.4 Cell therapy grouping and administration

Forty rats were randomly divided into four groups (n = 10):
sham operation group (single intra-articular injection of 50 μL
saline), model group (single intra-articular injection of 50 μL
saline), iPSC-MSCs group (single intra-articular injection of
50 μL saline containing 2.0 × 106 cells), and sodium hyaluronate
(SH) group (intra-articular injection of 50 μL sodium hyaluronate
containing 0.5 mg; weekly; five times).

2.5 Histopathological studies

At the end of the experiment, the knee joints of the rats were
collected for histopathological evaluation. Tissue sections of the
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knee joint were stained by hematoxylin and eosin to observe
inflammatory cells, synovial infiltration, and cartilage damage.
To assess the articular cartilage damage, the tissue sections of the
knee joint were immunostained with antibodies against MMP-13
(diluted 1:200, ab219620, Abcam, United Kingdom), OPG
(diluted 1:200, ab203061, Abcam, United Kingdom), type I
collagen (diluted 1:200, abs120555, Absin, Shanghai, China),
and type II collagen (diluted 1:100, ab34712, Abcam,
United Kingdom), respectively.

2.6 Analysis of cell proliferation

The MSCs (2.5 × 104 cells/well) were seeded into 24-well
plates and cultured for 48 h. Then the cells were washed three
times with phosphate buffer solution (PBS) and fixed with 4%
paraformaldehyde for 30 min. The nuclei were stained with
DAPI (Solarbio, Beijing, China) for 3 min. The number of MSCs
in each group was calculated by high-content imaging to
determine the value-added of Antares2-labeled MSCs and
unlabeled MSCs.

2.7 In vitro and in vivo biofluorescent
imaging

To determine the in vitro detection threshold, a 100 μL PBS
suspension containing Antares2-iMSCs (106, 105, 104, 103, 0 cells)
was first prepared. Then, 100 μL of the configured
Diphenylterazine (DTZ, 2 mg/mL, MCE, China) solution was
added to each EP tube and mixed well. At the same time, the same
dose of Antares2-iMSCs was injected into the knee joint cavity of
the rats, and then the configured 100 μL of DTZ solution (2 mg/
mL) was injected into the rats through the tail vein. The rats were
immediately scanned by a small animal live imager (Amix,
Spectral Instruments Imaging, United States) to determine the
detection threshold in vivo. The same method was used to
investigate the metabolism profile of Antares2-iMSCs in the
knee joint at different time periods.

2.8 Metabolic distribution study grouping
and administration

After 8 weeks of modelling, the Antares2-iMSCs were injected
into the knee joint cavity of rats. The rat knee joint was injected with
50 μL of saline containing 2.0 × 106 cells. The rats were then
randomly divided into six groups (n = 5): stem cell injection for
5 h; stem cell injection for 24 h; stem cell injection for 72 h; stem cell
injection for 1 week; stem cell injection for 2 weeks; and stem cell
injection for 6 weeks.

2.9 Biofluorescence imaging of joint tissue
from rats

The synovium, meniscus, and cartilage tissues were taken
from the joint cavity and placed in a Petri dish after euthanising

the rats. Subsequently, 50 μL of DTZ (2 mg/mL) solution was
added dropwise to the joint tissue, and the DTZ solution was
removed from the tissue after 30 s. Finally, fluorescence imaging
of joint tissue was performed using a small animal
imaging system.

2.10 Detection of CD90 expression in
different tissues by immunofluorescence

The synovium, cartilage and meniscus embedded in the OCT
were sliced into 3.5um thick sections using a frozen microtome
(CM1950, Leica, Germany). To assess the expression of CD90 in
tissues, the tissue sections were immunofluorescence stained with an
antibody against CD90 (diluted 1:100, ab92574, Abcam,
United Kingdom).

2.11 Detection of CD90 expression in
synovial fluid by flow cytometry

The synovial fluid was filtered with a sieve (200mesh) to obtain a
single-cell suspension. Subsequently, the cells were washed twice
with PBS and stained with FITC-CD90 antibody (BD Pharmingen,
United States). Finally, the fluorescence signal of each group was
detected by flow cytometry (BD FACSC anto, BD Biosciences,
United States).

2.12 Statistical analysis

Data were statistically analyzed by statistical program SPSS
version 22.0 (SPSS Inc., Chicago, IL). The comparison between
the multiple groups uses one-way ANOVA, followed by Dunnett’s
test to detect intergroup differences. The data were presented as the
mean ± SD. P-value <0.05 was considered statistically significant.

3 Results

3.1 The therapeutic efficacy of iPSC-MSCs
for OA

Pathological changes of OA in rats were investigated by HE
staining. Compared with the sham-operated group, the
pathology of the knee in the model group showed the typical
changes of OA, including severe cartilage destruction, disturbed
chondrocyte arrangement and synovial infiltration into the
cartilage layer (Figure 1). However, treatment with iPSC-MSCs
significantly increased the thickness of the articular cartilage
layer, increased the number of chondrocytes, and decreased
inflammatory cell infiltration in the joint cavity. Compared
with the sham-operated group, cartilage tissue in the model
group showed remarkably higher expression of MMP-13 and
type I collagen, whereas osteoprotegerin (OPG) and type II
collagen were significantly reduced (Figure 1). In contrast,
iPSC-MSCs reversed the above alterations, with expression
levels close to those of the sham-operated group.
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3.2 The influence of the Antares2 luciferase
gene on the proliferation of iPSC-MSCs

Whether the Antares2 luciferase gene affects the proliferation of
iPSC-MSCs was verified by measuring the mean value of cells per
unit area in each group with a high-content imaging system. The
results showed that the proliferation rates of Antares2-iMSCs
cultured for 24, 48 and 72 h had no statistical difference from
that of iPSC-MSCs (Supplementary Figure S1).

3.3 Detecting the sensitivity of Antares2-
iMSCs for biofluorescence imaging

The fluorescence intensity signal was positively correlated with the
number of Antares2-iMSCs. The results showed that EP tubes containing
106 and 105 Antares2-iMSCs showed distinct strong fluorescence,
whereas EP tubes with 104 Antares2-iMSCs showed detectable
marginal fluorescence (Figures 2A,B). No significant fluorescent signal
could be detected in EP tubes containing 103 Antares2-iMSCs, suggesting

that the in vitro detection threshold of the IVIS Spectrum system for
Antares2-iMSCs is between 104 and 103 cells.

After determining the sensitivity of the in vitro assay, the in vivo
noninvasive detection threshold was explored by injecting Antares2-
iMSCs into the knee joint of the rat. The results showed that rats
injected with 106 and 105 Antares2-iMSCs displayed significant
fluorescence signals, whereas rats injected with 104 cells had no
detectable signals, suggesting that the in vivo detection threshold of
the IVIS Spectrum system for Antares2-iMSCs lies between 105 and 104

cells (Figures 2C,D).

3.4 The metabolism of Antares2-iMSCs after
injection into the rat knee joint cavity

After determining the detection threshold, our study further
explored the metabolic characteristics of Antares2-iMSCs at
therapeutic doses in the knee joint. Firstly, 2 × 106 Antares2-
iMSCs were injected into the left knee joints of rats in the sham-
operated group and the OA group, and the results showed that the

FIGURE 1
HE and immunohistochemical analyses of joint slices from different groups to evaluate the therapeutic effect of iPSC-MSCs.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Yuan et al. 10.3389/fbioe.2025.1555983

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1555983


fluorescence intensity was the strongest in the knee joints of the rats
after 5 h and gradually decreased over time (Figure 3A). The results
showed that the fluorescent signals disappeared in the sham-
operated group 2 weeks after cell injection; however, the
fluorescent signals of Antares2-iMSCs lasted longer in the model
group of rats than in the sham-operated group (Figure 3B). The
fluorescent signals detected in both groups were located near the
knee joint cavity and did not migrate to other sites in the
body (Figure 3A).

3.5 The distribution of iPSC-MSCs in
joint tissues

After euthanasia of the rats, the synovial, meniscus and cartilage
tissues were removed from the joint cavity, and then the distribution
of Antares2-iMSCs in each tissue was detected by fluorescence
imaging. The results showed that the fluorescence signal in
synovial, meniscal and cartilage tissues of the sham-operated and
OA groups was strongest at 5 h and diminished over time (Figures
4B,D). The overall trend of decreasing fluorescence intensity was
smoother in the OA group compared to the sham-operated
group. After 1 week, the fluorescence signals of all three tissues
in the OA group were higher than those in the sham-operated group
(Figures 4E–G). There was the highest fluorescence intensity in the
synovial membrane of both the sham-operated group and the OA

group, followed by the meniscus and cartilage (Figures 4B,D). In
addition, the fluorescence intensity of the three tissues decreased to
similar levels at 1 week and 6 weeks in the sham-operated and OA
groups, respectively.

3.6 The level of CD90 expression of iPSC-
MSCs in joint tissues

In addition to the initial investigation of the distribution of
iPSC-MSCs in joint tissues by a biofluorescence imaging system, this
study further used immunofluorescence to detect the expression of
CD90 on synovium, cartilage and meniscus. The results showed that
the expression of CD90 in the synovium, cartilage and meniscus of
the sham-operated and OA groups was strongest at 5 h, and the
expression of CD90 in various tissues decreased significantly with
time (Figure 5; Supplementary Figures S2, S3). The decreasing trend
of CD90 expression in the sham-operated and OA groups was
similar to the results of fluorescence intensity detection.

3.7 Detection of CD90 expression level in
synovial fluid by flow cytometry

To explore the number of iPSC-MSCs in the synovial fluid of the
joint cavity, we examined the expression of the MSCs marker

FIGURE 2
Detecting the tracking sensitivity of biofluorescence imaging. (A) The fluorescent signal in serial cell dilutions. (B) The results of quantitative analysis
of cellular fluorescence signals in vitro. (C) The fluorescence signals of rats injected with serial cell dilutions. (D) The results of quantitative analysis of
fluorescence signals in vivo. **P < 0.01.
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(CD90) at different time points using flow cytometry. The
expression of CD90 in the synovial fluid of the sham-operated
and OA groups was highest at 5 h and gradually decreased over time,
with the greatest decrease between 5 and 24 h (Supplementary
Figure S4). The expression of CD90 in synovial fluid of the OA
group (25.18% ± 6.42%) was higher than that of the sham-operated
group (20.79% ± 1.87%) at 5 h (Figure 6).

4 Discussion

Many previous studies have shown that intra-articular injection of
MSCs has promising efficacy in the treatment of OA (Lamo-Espinosa
et al., 2020; Lamo-Espinosa et al., 2018; Lin et al., 2024). Our
experimental results suggest that treatment with iPSC-MSCs can
significantly improve cartilage damage (Figure 1). In addition, iPSC-
MSCs could reduce the expression of MMP-13 and elevate the
expression of OPG in the knee joint, which could inhibit cartilage
degradation and slow down the progression of OA (Abshirini et al.,
2021). The expression of type I collagen was significantly elevated in the
articular cartilage of rats in the OA group. iPSC-MSCs administration
elevated the expression of type II collagen in the cartilage of rats and
promoted the recovery of cartilage matrix. As an alternative source of

stem cells, iPSC-MSCs can be induced from patient-specific adult cells
and have similar characteristics to embryonic stem cells in terms of
morphology, self-renewal and differentiation ability (Yu et al., 2007). In
addition, iPSC-MSCs have superiority over other sources of MSCs in
terms of cell proliferation, immunomodulation, production of
exosomes with regulatory functions, and secretion of biologically
active cytokines (Abe et al., 2023; Rosochowicz et al., 2024).
However, the distribution and metabolism of iPSC-MSCs in the
joint cavity after injection have not yet been reported.

In this study, Antares2 luciferase gene-labelled iPSC-MSCs were
used as labelled cells, and DTZ was used as a luciferase substrate to
study the metabolism and distribution of iPSC-MSCs in rats.
Antares2, a BRET (bioluminescence resonance energy transfer)-
based reporter, was created by inserting the fluorescent protein
CyOFP1 into teLuc, which further improves bioluminescence
detection in deep tissues (Yeh et al., 2017). Antares2-iMSCs as a
new labellingmethod can be observedwith strong fluorescence signals
in the 695 ± 50 nm band by small animal in vivo imagers, which has
the advantages of stable fluorescence signals and avoids spontaneous
fluorescence in animals. Excitation of the external light source avoids
the interference of the background signal from natural fluorescent
substances, and possesses the characteristics of high specificity,
excellent signal-to-noise ratio and extremely high sensitivity (Li

FIGURE 3
The metabolism of Antares2-iMSCs in the rat knee joint cavity. (A) The fluorescence signals were dynamically recorded in the sham-operated rats
and the OA rats. (B) Quantified fluorescence intensity of the sham-operated and OA groups. (Values are presented as means ± sd.).
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et al., 2016). In addition, the results of the high-content proliferation
assay showed that there was no significant difference in the
proliferation of Antares2-iMSCs and iPSC-MSCs cultured for
different time periods, suggesting that Antares2 labelling had no
effect on the cellular activity of iPSC-MSCs (Supplementary Figure
S1). Similarly, Antares2-iMSCs have a high detection sensitivity
because the minimum detectable cell concentration is
approximately 104 cells in vitro and 105 cells in vivo (Figure 2).

It has been shown that MSCs maintain tissue homeostasis and
repair through replacement of mature cells lost due to physiological
renewal, aging, and injury (Wu et al., 2024). The fate of MSCs in the
knee joint is still unknown, and we need to understand the survival
time and distribution characteristics of MSCs in the joint. In this
way, we can explore their therapeutic mechanisms. The
experimental results showed that iPSC-MSCs persisted in the
joint cavity over 2 weeks after local injection and did not migrate

to other sites, providing direct evidence that iPSC-MSCs exert
therapeutic effects and carry out tissue repair locally rather than
systemically (Figure 3A). Compared with the sham-operated group,
the fluorescence signals of Antares2-iMSCs lasted longer in the rats
from the OA group, which may be related to the inflammatory
microenvironment of OA. The cytokines secreted in the
inflammatory microenvironment of OA can attract MSCs to
homing and staying locally for longer time (Fan et al., 2023).

Related studies have reported on the metabolism of synovial-
derived MSCs in a knee meniscectomy model and showed that more
synovial MSCs were attached to the meniscus in the model group
compared to the control group (Baboolal et al., 2018). Therefore, we
observed the distribution of iPSC-MSCs on tissues such as
synovium, meniscus and cartilage in the joint cavity by
fluorescence imaging and immunofluorescence (Figures 4, 5). The
experimental results showed that iPSC-MSCs injected into the joint

FIGURE 4
Tracking the distribution of iPSC-MSCs in joints. (A) Fluorescence imaging of synovial, meniscal and cartilage tissues in the joint cavity of rats in the
sham-operation group. (B) Fluorescence intensity of synovium, meniscus and cartilage tissue in the sham-operation group. (C) Fluorescence imaging of
synovial, meniscus and cartilage tissues in the joint cavity of rats in the OA group. (D) Fluorescence intensity of synovium, meniscus and cartilage tissue in
the OA group. (E–G) Fluorescence intensity of synovial (E), meniscal (F) and cartilage (G) tissues in the sham-operated and OA groups.
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cavity were predominantly distributed in the synovium, followed by
the meniscus and cartilage, and the cells were still detectable in the
tissue until 6 weeks. According to our analysis, when cells are
injected into the joint cavity they are first adsorbed onto the
synovium, which consists of loose connective tissue, while the
smooth meniscus and cartilage are difficult to adsorb. Therefore,
the idea that intra-articularly injected MSCs exert a therapeutic
effect by adsorbing to the damaged area and directly differentiating
into new tissue needs further validation. In addition, it has been
reported in the literature that synovial fluid has a complex
composition containing a variety of inflammatory factors and
chemokines (Ragni et al., 2022). MSCs can effectively reduce the
level of pro-inflammatory monocytes/macrophages in synovial fluid
(Chahal et al., 2019). Positive CD90 expression is the minimum
criterion for MSC identification as defined by the International
Society for Cellular Therapy, so we examined the level of

CD90 expression in synovial fluid. The results showed the largest
decrease of CD90 expression between 5 and 24 h, which is consistent
with the results of in vivo fluorescence imaging
(Supplementary Figure S4).

5 Conclusion

Although MSCs have shown significant efficacy in preclinical
animal models, due to factors such as individual differences among
patients and a certain proportion of non-response phenomena,
MSCs therapy still faces many challenges in the process of
clinical transformation. In this study, a novel cell labeling
method was adopted to explore the metabolism and distribution
of iPSC-MSCs after intra-articular injection. The results showed that
the fluorescence signal duration of Antares2-iMSCs in the OA group

FIGURE 5
The expression of CD90/Thy protein in the synovium of rat joint cavities.
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exceeded 2 weeks, which was longer than that in the sham operation
group. Moreover, stem cell administration fully alleviated the
phenomenon of articular cartilage loss in OA rats; Intra-articular
injection of iPSC-MSCs is widely distributed in the synovium,
cartilage, meniscus and synovial fluid, among which the
proportion contained in the synovium is the largest. Exploring
the metabolic and distribution characteristics of iPSC-MSCs is
helpful for guiding the administration frequency and
understanding its mechanism of action. Therefore, Antares2 is an
excellent bioluminescence reporter gene. This study further
demonstrated the safety and feasibility of intra-articular injection
of iPSC-MSCs in the treatment of OA.
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