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Introduction: Echocardiography is a first-line noninvasive test for diagnosing
coronary artery disease (CAD), but it depends on time-consuming visual
assessments by experts.

Methods: This study constructed an echocardiographic video-driven multi-task
learning model, denoted Intelligent echo for CAD (IE-CAD), to facilitate CAD
screening and stenosis grading. A 3DdeeplabV3+ backbone and multi-task
learning were simultaneously incorporated into the core frame of the IE-CAD
model to capture the dynamic myocardial contours. Multifarious features
reflecting local semantic structures were extracted and integrated to yield
echocardiographic metrics such as ejection fraction, strain, and myocardial
work. For model training and testing, we used a total of 870
echocardiographic videos from 290 patients with clinically suspected CAD at
Beijing Hospital (Beijing, China), split at an 8:2 ratio. To evaluate the model’s
generalizability, we used an external dataset comprising 450 echocardiographic
videos from 150 patients at Fuwai Hospital (Beijing, China).

Results: The IE-CAD model achieved an AUC of 0.78 and a sensitivity of 0.85 for
detecting significant or severe CAD, with a pearson correlation coefficient of
0.545 for predicting the Gensini score. When applied to the external dataset, the
model achieved an AUCof 0.77 and a sensitivity of 0.78 for detecting significant or
severe CAD.

Discussion: Thus, the IE-CAD model demonstrated effective CAD diagnosis and
grading in patients with clinical suspicion.

Trial registration: This work was registered at ClinicalTrials.gov on 05 April 2019
(registration number: NCT03905200).
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1 Introduction

Coronary artery disease (CAD), a common ischemic heart
disease, is a leading cause of death worldwide. CAD is caused by
the buildup of fats and cholesterol in the walls of the coronary
arteries. This process leads to a narrowing or blockage of the
coronary arteries, resulting in heart ischemia. Early detection of
CAD is vital to avoid myocardial infarction and improve prognostic
outcomes of patients. CAD is diagnosed through a combination of
physical exams, patient medical history, and a variety of tests such as
electrocardiography, echocardiography, and coronary angiography.
Coronary angiography, an invasive procedure that involves injecting
dye into the coronary arteries and taking X-ray images, is considered
the gold standard and definitive diagnostic test for CAD.
Echocardiography is an ultrasound of the heart that provides
information about coronary artery wall motion and chamber
sizes. It is a non-invasive, cost-effective, and easily accessible
imaging technique that is commonly used for CAD screening
and evaluation (Task Force et al., 2013). However, the diagnosis
by echocardiography is mostly grounded on visual assessment and
requires considerable expertise. Emerging myocardial strain analysis
by speckle tracking echocardiography (STE) has allowed a
quantification of the active myocardial deformation and thereby
expanded the echocardiographic approach for CAD detection to a
new level (Malagoli et al., 2020). Nonetheless, STE still requires
extensive experience in imaging data acquisition and interpretation.

With the advancement of Artificial Intelligence (AI) technology,
machine learning algorithms have been used to build predictive
models for CAD based on imaging and non-imaging Data
(Muhammad et al., 2021; Zhang et al., 2021; Kigka et al., 2022).
Currently, most AI-assisted diagnostic workflows for CAD are built
upon computed tomography (CT), which has a number of
disadvantages including radiation exposure, the use of contrast
agent, and high cost (Chu et al., 2023; Ihdayhid et al., 2023).
There have been few reports on CAD evaluation by AI-assisted
echocardiography. In 2021, Salte and colleagues (Salte et al., 2021)
constructed an AI model that was used to assess ventricular global
longitudinal strain (GLS) based on STE videos. This model
successfully performed automatic segmentation, motion
estimates, and GLS measurements across various cardiac
pathologies. In 2021, Upton et al. (2022) developed an AI-
assisted image processing system to extract novel geometric and
kinematic features from stress echocardiograms. This automated
system identified patients with severe CAD with a specificity of
92.7% and a sensitivity of 84.4%, although disease severity was not
quantified. Given that stress echocardiogram is a time-consuming
test that may also have issues such as patient intolerance and poor
image quality, it may not be suitable for early CAD screening and
evaluation. Other advanced echocardiography techniques such as
myocardial work have not yet been integrated with AI.

Traditional CAD diagnosis mainly relies on the percentage of
coronary stenosis and often overlooks the anatomical complexity of
the coronary tree. Relying solely on the degree of luminal narrowing
may lead to underdiagnosis of the disease in certain patient
populations (Mangla et al., 2017). The Gensini score takes into
account the impact of the location of coronary stenosis on heart
function and the cumulative effect of multivessel narrowing. As
such, the Gensini score is commonly used to evaluate the severity of

CAD (Rampidis et al., 2019). In this study, we developed an
echocardiographic video-driven intelligent deep learning model
for coronary stenosis evaluation and severity grading, which we
named IE-CAD. In this model, transthoracic echocardiogram (TTE)
videos of the standard apical 4-chamber (A4C), 3-chamber (A3C),
and 2-chamber (A2C) views were used to calculate
echocardiographic metrics including ejection fraction, GLS, and
myocardial work, as well as the Gensini score that indicates the
severity of coronary stenosis. We used this model to detect and
evaluate CAD in subjects with clinically suspected CAD.

2 Materials and methods

2.1 Patients

This prospective, single-center clinical trial was registered at
ClinicalTrials.gov on 05 April 2019. It represents a post hoc analysis
of data from an IRB-approved prospective clinical trial with the
registration number NCT03905200. Subject recruitment started in
April 2019 and is still ongoing. Up to the time of the preparation of
this article, the trial screened 330 subjects with clinically suspected
CAD in Beijing hospital, Beijing, China. The inclusion criteria
included (1) the presence of typical myocardial ischemia-related
symptoms (e.g., shortness of breath, chest tightness, chest pain, and
palpitation) or positive physical examination or blood test results,
(2) the presence of sinus rhythm, and (3) 18 years of age or older.
The exclusion criteria were (1) obstruction or pressure gradient
between the aorta and left ventricle, (2) severe valvular heart disease
or arrhythmia, (3) other extremely severe organ illnesses, and (4)
poor image quality for speckle tracking. Out of the 330 subjects who
were included in the initial screening, 40 were excluded and
290 were included in the data collection. The 290 subjects
received baseline echocardiography 1 day before coronary
angiography. A workflow chart of data collection is illustrated in
Figure 1. We also included 150 subjects at Fuwai Hospital, Beijing,
China according to the inclusion and exclusion criteria for external
validation. This study was approved by our hospital Ethics
Committee (reference number: 2020BJYYEC-021-02) and
conducted in accordance with the Declaration of Helsinki. All
subjects provided written informed consent.

2.2 Echocardiogram

Echocardiogram was performed in accordance with the
Recommendations from the American Society of
Echocardiography (Lang et al., 2015; Nagueh et al., 2016).
Echocardiographic videos were captured on GE’s Vivid E9 and
Vivid E95 ultrasound machines. The data were analyzed offline
using the EchoPac software (EchoPAC v204, GE Vingmed
Ultrasound, Norway). The cardiac images that showed the
clearest visualization of the myocardium were selected for further
analysis. Echocardiographic metrics were derived from the analysis
of relevant features extracted from the videos. These metrics
included left ventricular ejection fraction (LVEF) and factors
related to strain and myocardial work. The Biplane Simpson’s
method was used to calculate LVEF. The subjects were
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categorized into significant or non-significant CAD based on their
extent of coronary stenosis. Significant CAD had a stenosis
percentage of ≥50% for left main coronary artery or ≥70% for
non-left main vessels (Lawton et al., 2022; Upton et al., 2022). All
other subjects were categorized as “non-significant” CAD. The
subjects were also categorized into severe or non-severe CAD
based on their Gensini scores. The Gensini Scores were
calculated using a modified method that incorporates lesion
severity, location-specific multiplying factors, and collateral
adjustments for total occlusions or near-total stenoses (Rampidis
et al., 2019). The subjects with severe CAD had a Gensini score of >=
15 points, and the non-severe subjects had a Gensini score
of <15 points. In accordance with prior studies (Wang et al.,
2019; Yokokawa et al., 2020; Darand et al., 2023), the cutoff
value of 15 was selected to balance sample sizes across groups
and to avoid underestimating the condition of patients
categorized as non-significant, favoring a lower cutoff to include
more cases. The categorization criteria were determined by an
adjudication committee made up of 3 blinded, unbiased experts,
including 1 board-certified cardiologist.

2.3 Data set

All echocardiographic videos and images were stored in the core
echocardiography laboratory of our hospital. The 290 individuals in
the internal dataset were randomly divided into a training set of
234 subjects and a test set of 56 subjects (8:2). The test set matched
the training set in terms of significant vs. non-significant and severe
vs. non-severe CAD distribution (P > 0.1) so that both subsets
accurately represented the overall distribution within the study
cohort. The videos from the 150 subjects included in the external

dataset were acquired on either a Philips EPIQ 7C or CVX
ultrasound system—both different from the system used for the
internal data—and were processed with institution-specific
protocols. This external dataset was used to evaluate the model’s
generalizability across clinical settings, equipment, and
acquisition protocols.

2.4 Data pre-processing

The raw echocardiographic video data were cleaned, organized,
and transformed into a format suitable for deep learning model
training. The videos were first converted from a DICOM file into an
AVI video file, containing the sector-shaped region only. Each frame
and its corresponding annotated segmentation mask had 256 ×
256 pixels with a native aspect ratio. Considering the variations in
video frame rate and the subjects’ heart rate, we pre-processed video
data of a complete cardiac cycle for each subject, including 10 frames
from the end-diastole to end-systole and another 10 frames from the
end-systole to end-diastole. This resulted in a 20 × 256 × 256 video
block with corresponding segmentation masks for each subject.

2.5 Development of the IE-CAD model

A methodology flowchart of the IE-CAD model is illustrated in
Figure 2. Firstly, low-level and deep semantic features were extracted
from the echocardiographic videos through an encoder. The
extracted image features were processed through a classification
decoder, a segmentation decoder, an echocardiographic parameter
decoder, and a CAD decoder to yield cross-sectional classification
results, cardiac structure segmentation masks, GLS curves, LVEF

FIGURE 1
Workflow diagram of data collection.
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curves, global work efficiency (GWE), Gensini scores, and
significant or non-significant CAD classification results.
Specifically, the low-level features were used for image
classification, while the deep semantic features, in combination
with the low-level features, were utilized for cardiac structure
segmentation. The deep semantic features were also employed for
the assessment of cardiac metrics including LVEF, GLS, and GWE.
As a result, the extracted image features were enriched to represent
local features of cardiac structures, as well as global features related
to cardiac function. These local and global features were

subsequently integrated for predictive tasks related to CAD
detection and stenosis grading.

The detailed architecture of the low-rank multi-task deep learning
model, including the number of layers, the number of filters in each
convolutional layer, and the specific operations performed in each
block, is illustrated in Figure 3; Table 1. The echocardiographic video
clips were input into a 3D-DeepLabV3+ encoder backbone based on
3D-ResNet50 to generate low-level features (represented in blue in
Figure 3) and deep semantic features (represented in green in Figure 3).
The low-level features were first processed through a down-sampling

FIGURE 2
Methodology flowchart of the IE-CAD model.

FIGURE 3
Architectural diagram of the multi-task learning model.
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network to match the dimensions of the deep semantic features and
then through a view classification decoder to yield the view classification
results. The deep semantic features were processed through a
convolution block to generate the backbone features of the image
(represented in dark green in Figure 3). After up-sampling, the
backbone features were integrated with the low-level features before
down-sampling, and the combined features were processed through a
segmentation decoder to generate the segmentation masks of the
ventricle and myocardium. The low-rank convolution block,
compared to regular convolution block, can better extract sparse
features, which can be utilized in multi-task learning to complement
the primary features (Yang et al., 2024). The deep semantic features
were further processed through three specific low-rank convolution
blocks to extract sparse complementary features associated with GLS,
LVEF, and GWE (represented in light green in Figure 3). The backbone
and sparse features were integrated and processed through specific
decoders to generate GLS, LVEF (in the form of curves), and GWE (in
numerical values). The deep semantic features were again processed
through a different low-rank convolution block to extract sparse
complementary features associated with the Gensini score
(represented in light green in Figure 3), which were fused with the
backbone features, specialized features for GLS, LVEF, and GWE, and
the low-level features used for view classification. The integrated
features were processed through a score decoder and a CAD
classification decoder to yield the Gensini score and CAD
classification results, respectively.

2.6 Model training, testing and external
validation

This model was trained in three steps. The first step involved
training on view classification and heart structure segmentation. The

cross-entropy loss function was used for training on view classification,
while both the cross-entropy loss and Dice loss functions were
employed for training on heart structure segmentation. The second
step involved training on regression models for estimating GLS, LVEF,
and GWE using the mean squared error loss. The third step involved
training on the network for CAD classification and Gensini score
prediction while the backbone weight fractions of view classification,
heart structure segmentation, and metrics regression remained
constant. The cross-entropy loss and mean squared error loss were
used for training on CAD classification and Gensini score prediction,
respectively. The entire training process consisted of three sequential
phases: 30 epochs in the first step, 30 epochs in the second step, and
90 epochs in the third step. The final training results were generated
from the last epoch. The training was performed on two NVIDIA
A6000 GPUs, using the Adam optimizer and following a cosine
annealing schedule. Each time the training loss function was altered,
the learning rate was re-warmed, starting with an initial rate of 2 × 10−4

and a weight decay of 1 × 10−5. The batch size was 16, with parameters
updated after every three gradient accumulations.

During model testing, the A4C, A3C, and A2C views of each
echocardiogram were tested separately. The final Gensini score was
defined as themaximum predicted value from the three views. The case
was classified as significant CAD if one or more views were classified as
significant. This approach maximizes the model’s sensitivity to detect
CAD andminimizes underdiagnosis due to variations between different
views. The samemethodswere applied to the external dataset to validate
the generalizability of the IE-CAD model.

2.7 Statistical analysis

Continuous variables with normal distribution are presented as
the mean and standard deviation, whereas those not conforming to

TABLE 1 Specifications of all network module architectures of the IE-CAD model.

Module Input size Output size Architecture

Conv Block 256 × 20 × 16 × 16 256 × 20 × 16 × 16 Conv3d (256, 256, 3 × 3 × 3), BN, ReLU
Conv3d (256, 256, 1 × 1 × 1), BN, ReLU

Low-Rank Conv Block 256 × 20 × 16 × 16 256 × 20 × 16 × 16 Low-Rank Conv3d (256, 256, 3 × 3 × 3, r = 4), BN, ReLU
Low-Rank Conv3d (256, 256, 1 × 1 × 1, r = 4), BN, ReLU

View class decoder 48 × 20 × 16 × 16 3 × 1 AvgPool3d (1, 1, 1), FC (48, 3), Softmax

Seg decoder 304 × 20 × 64 × 64 3 × 20 × 256 × 256 Conv3d (304, 256, 3 × 3 × 3), BN, ReLU
Conv3d (256, 3, 1 × 1 × 1), Upsample, Softmax

GLS decoder 256 × 20 × 16 × 16 20 × 1 AvgPool3d (None, 1, 1)
Bi-LSTM, FC (512, 1)

LVEF decoder 256 × 20 × 16 × 16 20 × 1 AvgPool3d (None, 1, 1)
Bi-LSTM, FC (512, 1)

GWE decoder 256 × 20 × 16 × 16 1 × 1 AvgPool3d (1, 1, 1), FC (256, 1)

Gensini score decoder 1,072 × 20 × 16 × 16 1 × 1 Conv3d (1,072, 512, 3 × 3 × 3), BN, ReLU
Temporal Attention (nhead = 8, dim = 512)
Mean (1), FC (512, 256), GELU, FC (256, 1)

Significant CAD decoder 1,072 × 20 × 16 × 16 1 × 1 Conv3d (1,072, 512, 3 × 3 × 3), BN, ReLU
Temporal Attention (nhead = 8, dim = 512)
Mean (1), FC (512, 256), ReLU, FC (256, 2)

Softmax

CAD, coronary artery disease; GLS, global longitudinal strain; GWE, global work efficiency; LVEF, left ventricular ejection fraction.
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TABLE 2 Summary of demographic and clinical characteristics of the CAD-positive and CAD-negative subjects and their echocardiographic metrics
predicted by the IE-CAD model.

Characteristics Total (n = 290) CAD-negative (n = 168) CAD-positive (n = 122) P-value

Gensini score 26.89 ± 26.69 13.18 ± 13.56 45.77 ± 28.76 <0.001***

Age, year 62.88 ± 9.92 62.71 ± 10.46 63.11 ± 9.16 0.731

Male, n (%) 245 (84.48) 137 (81.55) 108 (88.52) 0.105

Family history of CAD, n (%) 82 (28.28) 50 (29.76) 32 (26.23) 0.510

Diabetes mellitus, n (%) 128 (44.14) 65 (38.69) 63 (51.64) 0.028*

Smoking, n (%) 181 (62.41) 99 (58.93) 82 (67.21) 0.150

Hyperlipidemia, n (%) 225 (77.59) 132 (78.57) 93 (76.23) 0.637

Hypertension, n (%) 207 (71.38) 120 (71.43) 87 (71.31) 0.983

BMI, kg/m2 25.37 ± 3.23 25.51 ± 3.38 25.17 ± 3.00 0.384

Systolic BP, mmHg 132.51 ± 17.02 133.27 ± 17.08 131.48 ± 16.95 0.377

Diastolic BP, mmHg 79.24 ± 48.67 81.55 ± 63.32 76.07 ± 10.35 0.344

Suspected myocardial ischemia by electrocardiogram, n (%) 90 (31.03) 46 (27.38) 44 (36.07) 0.115

BNP, pg/mL 60.73 ± 138.13 37.92 ± 49.27 92.14 ± 201.26 0.004**

HbA1c, % 6.46 ± 1.03 6.31 ± 0.96 6.66 ± 1.09 0.004**

Creatinine, μmol/L 79.68 ± 53.57 73.18 ± 14.03 88.63 ± 80.27 0.037*

FPG, mmol/L 5.99 ± 1.75 5.83 ± 1.42 6.21 ± 2.11 0.064

Uric acid, μmol/L 348.02 ± 85.04 345.17 ± 85.53 351.95 ± 84.54 0.503

LDL-C, mmol/L 2.13 ± 0.86 2.10 ± 0.86 2.19 ± 0.87 0.385

Echocardiographic metrics

Left atrial diameter, mm 35.06 ± 4.07 34.95 ± 4.15 35.20 ± 3.97 0.603

Interventricular septum end-diastolic thickness, mm 10.17 ± 1.18 10.11 ± 1.17 10.25 ± 1.19 0.296

Left ventricular end-diastolic diameter, mm 46.63 ± 4.76 46.29 ± 3.95 47.10 ± 5.66 0.175

Left ventricular posterior wall end-diastolic thickness, mm 9.90 ± 1.14 9.75 ± 1.11 10.11 ± 1.16 0.007**

Left ventricular end-diastolic volume, mL 101.99 ± 23.15 99.80 ± 20.21 105.00 ± 26.47 0.070

Mitral E/e’ ratio 12.66 ± 4.57 12.25 ± 3.64 13.22 ± 5.57 0.095

LVEF, % 61.47 ± 6.77 63.17 ± 4.46 59.13 ± 8.52 <0.001***

Regional wall motion abnormality, n (%) 35 (12.07) 10 (5.95) 25 (20.49) <0.001***

GLS, % −18.43 ± 3.42 −20.11 ± 2.12 −16.11 ± 3.54 <0.001***

PSD, ms 56.09 ± 23.54 50.10 ± 19.24 64.34 ± 26.35 <0.001***

GWI, mmHg% 1872.49 ± 425.87 2023.61 ± 345.37 1,664.39 ± 439.53 <0.001***

GCW, mmHg% 2,190.76 ± 486.64 2,374.68 ± 387.62 1937.50 ± 496.61 <0.001***

GWW, mmHg% 124.39 ± 92.79 111.46 ± 86.65 142.20 ± 98.24 0.005**

GWE, % 93.26 ± 4.95 94.65 ± 3.56 91.34 ± 5.89 <0.001***

GPW, mmHg% 2099.77 ± 447.85 2,262.46 ± 368.27 1875.75 ± 452.23 <0.001***

GNW, mmHg% 215.36 ± 90.63 223.68 ± 87.73 203.90 ± 93.64 0.066

GSCW, mmHg% 2063.90 ± 454.53 2,232.77 ± 365.47 1831.35 ± 463.65 <0.001***

(Continued on following page)
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normal distribution are presented as the median and interquartile
range. Categorical variables were compared using the Chi-square
test or Fisher’s exact test. Comparative analysis of continuous
variables was conducted utilizing the t-test or Mann-Whitney U
test. The performance of diagnostic measures was indicated by 95%
confidence intervals. This study used the Dice coefficient to quantify
cardiac structure segmentation performance, a common metric in
image segmentation that measures the overlap between binary
masks. The Mean Absolute Error (MAE), a metric that calculates
the average absolute errors between the predicted and actual values,
was used to assess the performance of the regression models for EF,
GLS, and GWE prediction, with lower scores reflecting lower
prediction errors. The predictive performance for significant and/
or severe CAD was evaluated in terms of accuracy, precision,
sensitivity, specificity, and the F1 Score and through receiver
operating characteristic (ROC) curve analysis. The intra- and
inter-observer variability of the strain indices was gauged by
intraclass correlation coefficients. Test outcomes with a P-value
of less than 0.05 were considered significantly different. All statistical
computations were executed utilizing SPSS software version 26.0.

3 Results

3.1 Clinical characteristics and
echocardiographic metrics of CAD patients

The 290 subjects who were included in data collection had an
average age of 62.9 ± 9.9 years. There were 45 (15.5%) women and
245 (84.5%) men. A total of 122 (42.1%) subjects were diagnosed
with CAD by coronary angiography. Table 2 summarizes the
demographic and clinical characteristics of the 122 CAD-positive
and 168 CAD-negative subjects and their echocardiographic metrics
estimated using the IE-CAD model. Compared with the CAD-
negative subjects, the CAD-positive subjects had a substantially
higher Gensini score (45.77 vs. 13.18, P < 0.001). They also had
higher incidence rate of diabetes (51.6% vs. 38.7%, P = 0.028) and
elevated plasma levels of HbA1c (6.66% vs. 6.31%, P = 0.004), brain
natriuretic peptide (BNP) (92.14 pg/mL vs. 37.92 pg/mL, P = 0.004),
and creatinine (88.63 μmol/L vs. 73.18 μmol/L, P = 0.037). There
were no significant differences in other characteristics between the
two groups, including age, gender, body mass index (BMI), family
history of CAD, smoking, hyperlipidemia, systolic and diastolic
blood pressures, suspected myocardial ischemia by
electrocardiogram, fasting plasma glucose, uric acid and LDL
cholesterol (P > 0.05).

There were significant differences in most echocardiographic
metrics between the two groups (P < 0.05), which included left
ventricular posterior wall end-diastolic thickness, LVEF, regional
wall motion abnormality, GLS, peak strain dispersion, global work
index, global constructive work, global wasted work, GWE, global
positive work, and global systolic constructive work. GLS is an
indicator of the left ventricle deformation (strain) in the longitudinal
direction (Voigt et al., 2015). Myocardial work incorporates both left
ventricle deformation (strain) and afterload (pressure the heart must
work against), allowing for a better evaluation of cardiac
performance (Edwards et al., 2019; Guo et al., 2022). In regard to
strain and myocardial work metrics, absolute values of GLS, global
work index and GWE were significantly higher in non-significant
CAD patients when compared to significant CAD patients (P <
0.001). These results supported the inclusion of GLS, global work
index and GWE as assistant tasks in informative feature extraction
for CAD evaluation. There were no significant differences between
the two groups in left atrial diameter, left ventricular end-diastolic
volume, and Mitral E/e’ ratio (P > 0.05), which were conventional
echocardiographic indices.

3.2 Predictive performance of the
IE-CAD model

3.2.1 Gensini score prediction
The Gensini score prediction results of the IE-CAD model are

shown in Figure 4; Table 3. The maximal predicted scores across the
A4C, A3C, and A2C views showed a Pearson correlation coefficient
of 0.545 (Table 3), while the mean predicted scores across the three
apical chamber views showed a slightly lower Pearson correlation
coefficient of 0.540. Thus, the maximal predicted scores were used
for subsequent CAD classification.

3.2.2 Echocardiographic metrics prediction
The cardiac structure segmentation and echocardiographic

metrics prediction performance results of the IE-CAD model are
presented in Tables 4, 5. Figure 5 shows sample cardiac structure
segmentation results. The model’s predictions exhibited strong
agreement with the ground truth annotations and maintained
good temporal continuity throughout the complete cardiac cycle.
This demonstrates the model’s effective capture of the structural
and motion characteristics of both the left myocardium and left
ventricle, providing a solid foundation for subsequent CAD-
assisted diagnostic predictions. The MAEs for predicting GLS,
LVEF, and GWE were 1.88%, 5.11%, and 2.6%, respectively.

TABLE 2 (Continued) Summary of demographic and clinical characteristics of the CAD-positive and CAD-negative subjects and their echocardiographic
metrics predicted by the IE-CAD model.

Characteristics Total (n = 290) CAD-negative (n = 168) CAD-positive (n = 122) P-value

GSWW, mmHg% 88.55 ± 71.01 81.79 ± 66.55 97.87 ± 76.02 0.057

*P < 0.05.

**P < 0.01.

***P < 0.001 compared with CAD-negative subjects.

All bolded results indicate P < 0.05, meaning that the differences between the CAD-negative and CAD-positive groups are statistically significant.

BMI, body mass index; BP, blood pressure; CAD, coronary artery disease; FPG, fasting plasma glucose; GCW, global constructive work; GLS, global longitudinal strain; GNW, global negative

work; GPW, global positive work; GSCW, global systolic constructive work; GSWW, global systolic wasted work; GWE, global work efficiency; GWI, global work index; GWW, global wasted

work; LDL-C, low-density lipoprotein cholesterol; LVEF, left ventricular ejection fraction; PSD, peak strain dispersion; TDI, tissue doppler imaging.
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Compared to AI-assisted regression black box models for
echocardiography (Christensen et al., 2024; Kwan et al., 2024),
the IE-CAD model was able to extract latent features related to
GLS, LVEF, and GWE more effectively, thus achieving a better
performance in capturing the temporal myocardium features. By
integrating these features into cross-sectional classification,
cardiac structure segmentation, and model-learned features
pertinent to CAD diagnosis, the IE-CAD model was able to

achieve high performance in Gensini score prediction and
CAD classification.

3.2.3 Detection of significant CAD and severe CAD
The ROC curves for the detection of significant CAD and/or

severe CAD (predicted Gensini score >= 15) by the IE-CAD model
are presented in Figure 6. The detection performance results are
presented in Table 6. The IE-CAD model detected significant CAD

FIGURE 4
Scatter plots of Gensini scores predicted by the IE-CAD model vs. those determined by coronary angiography. Gensini label, Gensini scores by
coronary angiography; Gensini pred, Gensini scores predicted by the IE-CAD model; A4C, the apical 4-chamber view; A3C, the apical 3-chamber view;
A2C, the apical 2-chamber view; mean, mean Gensini scores predicted by the IE-CADmodel across the A4C, A3C, and A2C views; max, maximal Gensini
scores predicted by the IE-CAD model across the A4C, A3C, and A2C views.

TABLE 3 Performance of the IE-CAD model in Gensini score prediction.

View MAE PCC

A2C 22.0 0.463

A3C 22.2 0.500

A4C 19.8 0.542

Mean 19.7 0.540

Max 20.5 0.545

MAE, mean absolute error; PCC, pearson correlation coefficient; A2C, apical 2-chamber;

A3C, apical 3-chamber; A4C, apical 4-chamber; Mean, mean value across the A2C, A3C,

and A4C views; Max, maximal value across the A2C, A3C, and A4C views.

TABLE 4 Performance of the IE-CAD model in cardiac structure
segmentation.

Dice value

View Left myocardium Left ventricle

A2C 0.825 0.902

A3C 0.842 0.908

A4C 0.844 0.912

Mean 0.837 0.907

A2C, apical 2-chamber; A3C, apical 3-chamber; A4C, apical 4-chamber; Mean, mean value

across the A2C, A3C, and A4C views.
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with an AUC of 0.77 and severe CAD with an AUC of 0.76. It
detected cases that were classified as either significant or severe CAD
but not both with an AUC of 0.78 and a sensitivity of 0.85. Finally,
the model detected cases that were classified as both significant and
severe CAD with an AUC of 0.75.

3.2.4 External validation of model performance
In the external dataset, the ROC curves for detecting significant

CAD and/or severe CAD are presented in Figure 7, and the
corresponding performance metrics are summarized in Table 7.
The IE-CAD model achieved an AUC of 0.71 for detecting
significant CAD and 0.75 for severe CAD. For cases classified as
either significant or severe CAD (but not both), the model achieved
an AUC of 0.77. For cases classified as both significant and severe
CAD, the AUC was 0.71.

4 Discussion

In this study, an echocardiographic video-driven AI model
denoted IE-CAD was established using a deep learning-based
3DdeeplabV3+ network for automatic myocardial motion
estimation and cardiac structure segmentation. This model
integrated traditional LVEF, GLS, and myocardial work
measurements for CAD diagnosis and stenosis severity
assessment. In a prospective single-center trial, the IE-CAD
model automatically and accurately classified cardiac views,
tracked myocardial motion, and estimated echocardiographic
metrics such as GLS, LVEF, and GWE in subjects with clinically
suspected CAD. This model detected significant CAD with an AUC
of 0.77 and severe CAD with an AUC of 0.76, allowing rapid,
noninvasive, and cost-effective CAD diagnosis and evaluation. As
shown in Table 7; Figure 7, IE-CAD demonstrated strong
generalizability on the external dataset, achieving an AUC of
0.71 for significant CAD detection and 0.75 for severe CAD
detection. These results highlight the model’s robust performance
across different imaging equipment and clinical settings. This study
presents a novel integration of myocardial work metrics with GLS
and LVEF within a multi-task learning framework for CAD
diagnosis and severity grading. This approach builds on previous
work and represents a significant advancement in leveraging
echocardiographic data for comprehensive and automated CAD
assessment (Salte et al., 2021; Upton et al., 2022).

TABLE 5 Performance of the IE-CAD model in echocardiographic metrics
estimation.

Parameter MAE

GLS (%) 1.88

LVEF (%) 5.11

GWE (%) 2.6

GLS, global longitudinal strain; LVEF, left ventricular ejection fraction; GWE, global work

efficiency; MAE, mean absolute error.

FIGURE 5
Sample Image of Cardiac Structure Segmentation. “A2C,” “A3C,” and “A4C” denote the corresponding standard image planes. The “IE-CAD” column
displays the model’s predicted segmentation results, while the “GT” column shows the ground truth segmentation annotations. In the segmentation
results, the red region indicates the predicted left myocardium, and the blue region indicates the predicted left ventricle.
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Among all imaging techniques for diagnosing CAD,
echocardiography is a common, first-line test thanks to its
convenience, cost-effectiveness, and diagnostic performance.
Echocardiogram-derived strain and myocardial work metrics
can provide better evaluation of cardiac performance than

conventional echocardiography and other diagnostic methods,
and as a result, they have emerged as innovative instruments for
CAD detection and evaluation (Smiseth et al., 2021; Guo et al.,
2022; Guo et al., 2023). Although the measurement of strain and
myocardial work from echocardiographic videos has been made

FIGURE 6
ROC curves illustrating the performance of the IE-CAD model in detecting significant CAD and/or severe CAD within the internal cohort.

TABLE 6 Performance of the IE-CAD model for detecting significant CAD and/or severe CAD.

Assignment Accuracy Precision Sensitivity Specificity F1 score AUC

Assignment 1 0.73 (0.71, 0.75) 0.82 (0.80, 0.84) 0.76 (0.73, 0.79) 0.68 (0.64, 0.72) 0.79 (0.77, 0.81) 0.77 (0.76, 0.78)

Assignment 2 0.70 (0.66, 0.74) 0.74 (0.71, 0.77) 0.84 (0.83, 0.85) 0.39 (0.32, 0.46) 0.79 (0.77, 0.81) 0.76 (0.75, 0.77)

Assignment 3 0.71 (0.68, 0.74) 0.77 (0.75, 0.79) 0.85 (0.84, 0.86) 0.41 (0.34, 0.48) 0.80 (0.78, 0.82) 0.78 (0.77, 0.79)

Assignment 4 0.71 (0.68, 0.74) 0.79 (0.77, 0.81) 0.75 (0.72, 0.78) 0.65 (0.61, 0.69) 0.77 (0.75, 0.79) 0.75 (0.73, 0.77)

Assignment 1: Detection of cases classified as significant CAD.

Assignment 2: Detection of cases classified as severe CAD.

Assignment 3: Detection of cases classified as either significant CAD, or severe CAD but not both.

Assignment 4: Detection of cased classified as both significant CAD, and severe CAD.
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a partially automatic process (Smiseth et al., 2021; Guo et al.,
2022; Guo et al., 2023), it remains time-consuming and requires
considerable professional expertise and hence, it is not suitable
for early CAD screening in clinical practice. The recent years
have seen a number of studies exploring fully automated GLS

measurement using AI methods (Salte et al., 2021; Deng et al.,
2022; Salte et al., 2023). Nonetheless, there have been few reports
on AI models for fully automated assessment of myocardial
work. The strength of the IE-CAD model lies in its ability to
integrate fully automated assessment of GLS and myocardial

FIGURE 7
ROC curves illustrating the performance of the IE-CADmodel in detecting significant CAD and/or severe CAD within the external validation cohort.

TABLE 7 Performance of the IE-CAD model in external validation.

Assignment Accuracy Precision Sensitivity Specificity F1 score AUC

Assignment 1 0.64 (0.61, 0.67) 0.54 (0.52, 0.56) 0.82 (0.81, 0.83) 0.52 (0.50, 0.54) 0.65 (0.63, 0.67) 0.71 (0.69, 0.73)

Assignment 2 0.73 (0.71, 0.75) 0.72 (0.70, 0.74) 0.71 (0.69, 0.73) 0.75 (0.73, 0.77) 0.72 (0.70, 0.74) 0.75 (0.73, 0.77)

Assignment 3 0.74 (0.72, 0.76) 0.74 (0.73, 0.75) 0.78 (0.76, 0.80) 0.71 (0.68, 0.74) 0.76 (0.74, 0.78) 0.77 (0.76, 0.78)

Assignment 4 0.72 (0.68, 0.76) 0.58 (0.55, 0.61) 0.77 (0.75, 0.79) 0.70 (0.67, 0.73) 0.66 (0.63, 0.69) 0.71 (0.68, 0.74)

Assignment 1: Detection of cases classified as significant CAD.

Assignment 2: Detection of cases classified as severe CAD.

Assignment 3: Detection of cases classified as either significant CAD, or severe CAD but not both.

Assignment 4: Detection of cased classified as both significant CAD, and severe CAD.
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work metrics to achieve rapid and accurate CAD diagnosis in a
clinical setting.

Stress echo, a widely used non-invasive diagnostic tool, has
reported AUCs ranging from 0.84 to 0.92 for detecting significant
CAD, depending on interpreter experience and image quality
(Picano et al., 2008; Banerjee et al., 2012). In a recent study by
Upton et al. (Upton et al., 2022), an AI-assisted stress echo model
achieved a specificity of 92.7% and a sensitivity of 84.4%, and an
AUC of 0.93, demonstrating the potential of AI to enhance
diagnostic accuracy. Resting echo interpretation, primarily based
on strain parameters, has reported AUCs ranging from 0.68 to
0.80 for CAD detection (Billehaug Norum et al., 2015). Stress echo is
generally more effective than resting echo in inducing myocardial
ischemia and segmental wall motion abnormalities, which can lead
to higher diagnostic performance. Additionally, the sample size of
our study is relatively small compared to previous studies on resting
and stress echo, primarily due to the labor-intensive frame-by-frame
annotation required for labeling. Moving forward, we plan to
expand our dataset, streamline the annotation process, and
further optimize the model to enhance its diagnostic performance.

Compared to the degree of coronary artery stenosis alone, the
Gensini score takes into account all major coronary arteries and
their branches, providing a more comprehensive evaluation of the
entire coronary tree. GLS is an indicator of the function and
mechanical properties of the entire myocardium, and it can
reveal areas of myocardial ischemia or injury throughout the
heart. Thus, the Gensini score is closely linked to GLS. In this
study, the maximal Gensini scores predicted by the IE-CAD model
across the three standard apical views positively correlated with the
Gensini scores determined by coronary angiography, showing a
Pearson correlation coefficient of 0.545. This moderate correlation
implies some prediction uncertainty. The Gensini score, while
widely used in research, is not commonly adopted in clinical
practice due to the lack of standardized cutoff values for defining
severe CAD. However, the continuous nature of the Gensini score
provides a more nuanced and precise representation of disease
severity, making it particularly valuable for research and machine
learning applications. In this study, we utilized the Gensini score as a
continuous “soft label,” allowing the model to learn a gradient of
disease severity rather than relying on arbitrary categorical
thresholds. This approach enables the model to associate varying
levels of CAD with subtle features in echocardiographic images,
potentially improving prediction accuracy. Our future work will aim
to bridge the gap between research and clinical utility, by developing
standardized cutoff values and further refining our model for clinical
integration. Intriguingly, the IE-CAD model classified a group of
subjects as non-significant CAD who had a Gensini score of >=
15 points. This group of patients could have been underdiagnosed
for CAD and therefore, they should undergo further diagnostic tests.

In this study, most subjects classified as significant CAD by the
IE-CAD model also had impaired resting myocardial function. The
majority of the myocardial work and strain metrics were found to be
valuable parameters for diagnosing significant CAD, particularly
when there was >= 70% coronary artery stenosis. Consistent with
earlier findings (Edwards et al., 2019), LVEF, regional wall motion
abnormalities, GWE, and global work index were identified as
notable factors for identifying significant CAD. Furthermore,
diabetes mellitus and plasma levels of BNP, HbA1c, and

creatinine were found to provide additional predictive value in
the detection of CAD. No significant differences were detected
between the significant and non-significant CAD cases in other
major clinical indices such as BMI, hyperlipidemia, systolic and
diastolic BPs, fasting blood-glucose, uric acid, and LDL cholesterol.
Notably, many subjects included in this study were taking
medications at the time of enrollment, which may have
influenced the levels of these clinical indices.

The IE-CAD model was developed by employing several
innovative approaches. A 3DdeeplabV3+ backbone and multi-
task learning were simultaneously incorporated into the core
frame of its image processing network, enabling automatic
tracking of the endocardial border in over 90% of cases. Previous
AI-assisted echocardiogram segmentation models typically
annotated only two frames of the images that correspond to the
end-diastole and end-systole of the heart (Batool et al., 2023), which
were not well-suited for the assessment of GLS. The IE-CAD model
annotated a total of 20 frames to capture myocardial motions during
a complete cardiac cycle, including 10 frames from the end-diastole
to end-systole and another 10 frames from the end-systole to end-
diastole. This enabled the IE-CAD model to capture the dynamic
myocardial contours during a complete cardiac cycle to accurately
predict GLS. A novel decoder-focused method for multi-task dense
prediction, called Mixture-of-Low-Rank-Experts (MLoRE) (Yang
et al., 2024), was employed to configure global task relationships in
the IE-CAD model. In particular, the sparse features extracted by
low-rank convolution were utilized to complement the primary
features in multi-task learning to enhance the model’s predictive
performance.

Future work could explore multimodal input strategies to
overcome the limitations inherent in single-modality data.
Integrating clinical data, such as laboratory results and ECG
findings, with echocardiographic data could provide a more
comprehensive assessment. Techniques such as weighted feature
fusion could facilitate this integration. Additionally, incorporating
more echocardiographic views (e.g., short-axis views) andmodalities
(e.g., color and spectral Doppler) could provide richer insights into
cardiac structure, function, and hemodynamics. From a modeling
perspective, exploring different algorithms for multimodal data
integration, such as combining CNNs for spatial image analysis
with RNNs for temporal dynamics could better capture the
complexity of cardiac motion. Advanced fusion techniques, such
as attention mechanisms, may further enhance the integration of
multimodal data and improve diagnostic performance.

4.1 Limitations

This research had a number of limitations. Firstly, this study
involved only two centers with a relatively small sample size, which
may limit the generalizability of the findings. Secondly, the raw data
were obtained on a single ultrasound machine and processed using a
single data-processing algorithm before they were loaded to the IE-
CAD model. This might have caused a certain level of data bias that
limits the generalizability of the model. To enhance the model’s
generalizability, future research should involve data from multiple
centers and incorporate an adaptive learning approach that allows
the model to evolve with the introduction of new data. Thirdly, the
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classification of “significant CAD” in this study was based on the
clinical doctors’ interpretation of coronary angiography, without
quantitative measurements of coronary stenosis to confirm the
severity of the disease. Thus, the reliability of coronary
angiography interpretation could have potentially affected
the results.

In future research, new network architectures such as
transformer or mamba may be incorporated into the model to
improve its predictive performance. In addition, the model could be
improved by automatically incorporating patients’ other diagnostic
reports for rapid extraction of CAD-related features.

5 Conclusion

A fully automated AI model denoted IE-CAD was developed to
automatically “read” the echocardiographic videos for CAD
diagnosis and stenosis severity assessment. This model extracts
informative ultrasound video features to yield multiple
echocardiographic metrics such as LVEF, myocardial work and
GLS and incorporates these factors for CAD diagnosis and
coronary stenosis assessment. This model demonstrated good
sensitivity and accuracy in a single center prospective trial, and it
may be used for early CAD screening in a clinical setting.
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