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New non-destructive tools with single-cell resolution are needed to reliably
assess B cell and NK cell function for applications including adoptive cell therapy
and immune profiling. Optical metabolic imaging (OMI) is a label-free method
that measures the autofluorescence intensity and lifetime of the metabolic
cofactors NAD(P)H and FAD to quantify metabolism at a single-cell level.
Here, we demonstrate that OMI can resolve metabolic changes between
primary human quiescent and IL-4/anti-CD40 activated B cells and between
quiescent and IL-12/IL-15/IL-18 activated NK cells. We found that stimulated B
and NK cells had an increased proportion of free compared to protein-bound
NAD(P)H, a reduced redox state, and producedmore lactate compared to control
cells. The NAD(P)Hmean fluorescence lifetime decreased in the stimulated B and
NK cells compared to control cells. Random forest models classified B cells and
NK cells according to activation state (CD69+) based on OMI variables with an
accuracy of 93%. Our results show that autofluorescence lifetime imaging can
accurately assess B andNK cell activation in a label-free, non-destructivemanner.
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Introduction

Originating from lymphoid progenitor cells, lymphocytes are a class of immune cells
comprised of T cells, B cells, and natural killer (NK) cells (Omman et al., 2020). As a group,
lymphocytes account for 20%–40% of circulating white blood cells and are primarily
involved in the adaptive immune response which provides specific targeting and immune
memory, allowing for long-term protection (Omman et al., 2020). Like T cells, NK cells
show cytotoxicity and immune-modulating activities after activation and are emerging in
early phase trials as a viable adoptive cell therapy for cancer (Vivier et al., 2008; Cho et al.,
2020), particularly using cytokine induced memory-like NK cells (Romee et al., 2016). In
contrast to NK and T cells, B cells are primarily responsible for producing antibodies
(Bonilla and Oettgen, 2010; Wennhold et al., 2019), but can also act as antigen-presenting
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FIGURE 1
OMI is sensitive to metabolic changes between primary human B cells that are quiescent vs activated with IL-4 and anti-CD40. (A) B cells were
isolated from human peripheral blood of three different donors (A-C) and stimulated for 72 h with 5 μg/mL anti-CD40 and 20 ng/mL IL-4 or cultured in
just Advanced RPMI-1640 + 5%FBSmedia (control). Media samples were collected after 72 h of culture. (B) IL-6 concentration wasmeasured frommedia
samples of two different donors cultured in stimulated or control conditions for 72 h. (C)Glucose in the media of stimulated B cells was significantly
decreased compared to the control cell media after 72 h of culture. (D) Lactate levels in stimulated B cell mediawere significantly higher than lactate levels
in the control B cell media. (E) Representative images of NAD(P)H τm, FAD τm, redox ratio, and anti-CD69 staining in the control and stimulated conditions.
(F) Redox ratio normalized to the mean of the quiescent group for each donor significantly increased in activated B cells (CD69+ in stimulated media)
compared to quiescent B cells (CD69−in control media). (G, H)NAD(P)H τm significantly decreased and NAD(P)H α1 significantly increased in the activated
B cells compared to the quiescent B cells. (I) A significant decrease in FAD τm was observed in the activated B cells compared to quiescent B cells. In F-I,
data are displayed as box-and-whisker plots, representing the median and interquartile range (IQR), with whiskers at 1.5*IQR Glass’s Delta measure of
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cells that promote T cell effector functions (Hoffman et al., 2016;
Bonilla and Oettgen, 2010). Additionally, B cells are comprised of
various subsets that can either attenuate or suppress the function of
surrounding immune cells (Hung et al., 2018). Together, these
functions provide several avenues for leveraging B cells as a
platform for cell-based therapies, such as antigen-presenting
B cells in cancer immunotherapy (Hung et al., 2018; Wennhold
et al., 2019). To assess the potency of these cell therapies,
lymphocytes are typically exposed to stimuli including cytokines
and antigens, followed by response measurement via functional
profiling techniques (Cho et al., 2020; Vendrame et al., 2020; Pasero
et al., 2015; van der Leun et al., 2020; Tsioris et al., 2015; Mpande
et al., 2021).

Current functional profiling techniques for lymphocytes include
flow cytometry, cytokine release assays, single-cell RNA sequencing,
and cytometry by time of flight (CyTOF). Flow cytometry provides
single-cell resolution, but requires labelling with fluorescent
antibodies that can be time consuming, may be disruptive to
cells, and complicates further use of cells (Boonyaratanakornkit
et al., 2019). Bulk measurements of cytokine release are also popular
but do not routinely provide single-cell measurements, and
ELISPOT, which provides single-cell cytokine release information
also requires cell labeling (Boonyaratanakornkit et al., 2019). Finally,
single-cell RNA sequencing and CyTOF provide extensive single-
cell information, but destroy the sample (Vendrame et al., 2020;
Chen et al., 2019). In this work, we demonstrate autofluorescence
intensity and lifetime imaging as a compelling alternative to assess B
and NK cell function. Unlike traditional methods, autofluorescence
imaging leverages endogenous sources of contrast, providing a real-
time, non-destructive observation of cellular activation dynamics
(Datta et al., 2020). This approach not only preserves cell viability for
subsequent analysis but also provides insights into metabolic
heterogeneity between cells, making it a powerful tool for
advancing immunological research (Suhling et al., 2005; Lemire
et al., 2022; Miskolci et al., 2022; Heaster et al., 2020; Yakimov
et al., 2019).

Optical metabolic imaging (OMI) is an autofluorescence
imaging technique that measures the fluorescence intensities and
lifetimes of the reduced metabolic redox cofactors nicotinamide
adenine dinucleotide and its phosphorylated counterpart (denoted
as NAD(P)H due to their overlapping spectral properties), and the
oxidized metabolic redox cofactor, flavin adenine dinucleotide
(FAD) (Skala et al., 2007; Georgakoudi and Quinn, 2012; Huang
et al., 2002; Lakowicz et al., 1992). NAD(P)+ and FADH2 are not
fluorescent. However, since NAD(P)H and FAD redox reactions are
coupled, the intensities of NAD(P)H and FAD can be combined to
provide information on the redox state within the cell (Alfonso-
García et al., 2016; Skala et al., 2007; Chance et al., 1979; Ostrander
et al., 2010; Walsh and Skala, 2015). There are many definitions of
the optical redox ratio, though here we define the optical redox ratio
as the fluorescence intensities of NAD(P)H/(NAD(P)H + FAD).

Additionally, the fluorescence lifetimes of NAD(P)H and FAD are
distinct in the free and protein-bound conformations, where multi-
exponential decay fits recover τ1 as the fast decay (free NAD(P)H,
bound FAD) and τ2 as the long decay (bound NAD(P)H, free FAD)
(Lakowicz et al., 1992; Sharick et al., 2018; Schaefer et al., 2019;
Nakashima et al., 1980). The relative proportion of each short and
long lifetime component are recovered as α1 and α2, respectively.

OMI is a promising technique to evaluate lymphocyte activation
because known metabolic shifts occur with activation in NK, B, and
T cells. Unstimulated lymphocytes have lowmetabolic demands and
largely rely on low levels of glycolysis and oxidative phosphorylation
to generate ATP (Cong, 2020; Gardiner and Finlay, 2017; Ripperger
and Bhattacharya, 2021; Donnelly et al., 2014). To fuel rapid
proliferation, cytokine production, and other effector functions,
activated lymphocytes increase energy production through
aerobic glycolysis and oxidative phosphorylation (Gardiner and
Finlay, 2017; Chapman and Chi, 2022; O’brien et al., 2019).
Overnight stimulation with activating cytokines (including IL-2,
IL-12, and IL-15) increases rates of glycolysis and oxidative
phosphorylation in NK cells (Keating et al., 2016; Donnelly et al.,
2014). Similar increases in glycolysis and oxidative phosphorylation
also occur with activation in B and T cells (Ripperger and
Bhattacharya, 2021; Chapman and Chi, 2022).

Prior studies have characterized changes in OMI variables with
T cell function, particularly the correlation between increased
glycolytic demand and elevated levels of free intracellular
NAD(P)H (α1) due to T cell activation (Hu et al., 2020; Walsh
et al., 2021; Paillon et al., 2024). However, the ability of OMI to
discriminate quiescence and activation in B and NK cells remains
less explored. Here, we demonstrate that OMI provides a label-free
and single-cell method to evaluate metabolic changes with activation
of B and NK cells. This metabolic imaging approach could be used to
monitor lymphocyte function in a label-free and single-cell manner
for applications where non-invasive single-cell monitoring is critical
(e.g., adoptive cell therapy manufacturing, monitoring changes over
time within intact systems).

Results

OMI resolves metabolic differences
between quiescent and activated primary
human B cells

A graphical overview of the experimental design is provided
(Figure 1A). Isolated primary human B cells from three donors were
stimulated using anti-CD40 antibody and IL-4 to mimic T cell
mediated activation (Wennhold et al., 2019; Janeway et al., 2001;
Akkaya et al., 2020). After 72 h of in vitro activation, media was
collected for cytokine, glucose, and lactate assays, then cells were
stained with anti-CD69 antibody to identify activated and quiescent

FIGURE 1 (Continued)

effect size given for Δ. Plots are overlaid with data points; each point represents 1 cell, color coded by donor (A–C). n = 1,210 cells (461 activated
B cells, 749 quiescent B cells). *P<0.05, **** P < 0.0001, two-tailed unpaired T-test.
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FIGURE 2
OMI characterizes single cell heterogeneity and accurately classifies activated from quiescent B cells. (A) Heatmap of single-cell OMI variables
across all B cell experiments. Hierarchical cell clustering was calculated based on the z-scores (the difference between cell mean and population mean
divided by the population standard deviation) for nine OMI variables (NAD(P)H τm, τ1, τ2, α1; FAD τm, τ1, τ2, α1; and quiescent-normalized optical redox
ratio). Activated B cells cluster separately from quiescent B cells regardless of donor. (B) UMAP of nine OMI variables visualizes separation between
clusters of activated and quiescent B cells. (C) Pie chart of the relative weight of the nine OMI variables included in the “all variables” random forest
classifier. (D) Receiver operating characteristic (ROC) curve of random forest classifiers trained on different combinations of OMI variables to classify
quiescent and activated B cells, with operating points indicated. “Top variables” classifiers refer to the largest weighted variables in the “all variable”
classifier, found in (C). The classifiers using all the variables or only the NAD(P)H variables (NAD(P)H τm, τ1, τ2, α1) performed best (AUC 0.98), followed by

(Continued )
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cells in each condition for subsequent OMI. To confirm that our
protocol successfully stimulated the B cells, the concentration of IL-6
in the media was measured at 72 h and found to be significantly
higher in the stimulated compared to the control condition
(Figure 1B). Additionally, analysis of glucose and lactate levels in
the spent media at 72 h show decreased glucose and increased lactate
in the media of stimulated B cells compared to control, suggesting
increased glucose consumption and glycolytic activity in stimulated
cells (Figures 1C, D). These media measurements are consistent with
known metabolic changes upon B cell activation (Ripperger and
Bhattacharya, 2021; Chapman and Chi, 2022). Representative
images from OMI are shown in Figure 1E, which include
NAD(P)H mean fluorescence lifetime (τm), FAD τm, optical
redox ratio, and pseudocolored CD69 fluorescence. Qualitatively,
most B cells in the stimulated condition stained positive for
CD69 while few stained positive in the control condition.

For all our experiments, quiescent cells were defined as
CD69−cells in the control condition, while activated cells were
defined as CD69+ cells in the stimulated condition. The optical
redox ratio (ORR = INAD(P)H/[INAD(P)H + IFAD]) was elevated in
activated B cells compared to quiescent B cells (Figure 1F).
Additionally, NAD(P)H τm and FAD τm decreased while NAD(P)
H α1 (the fraction of free NAD(P)H) increased in activated B cells
compared to the quiescent B cells (Figures 1G–I). These changes were
consistent with the higher glycolytic activity previously reported for
activated B cells (Ripperger and Bhattacharya, 2021; Lawlor et al.,
2021). These OMI changes are also consistent with our glucose and
lactate measurements (Figures 1C, D).

When comparing CD69+ and CD69−cells within the control
condition, there were no significant differences in any OMI
variables (Supplementary Figure 1). However, in the stimulated
condition, CD69+ cells were significantly different compared to
CD69−cells for all OMI variables except for the optical redox ratio
(Supplementary Figure 1).

Single cell clustering and machine learning
models based on OMI separate B cells by
activation state

Next, we investigated whether OMI could visualize single cell
heterogeneity in B cells and whether machine learning models based
on OMI could classify B cell activation state. Unsupervised
clustering using the 9 OMI variables of activated and quiescent
cells revealed that the activated cells cluster separately from the
quiescent cells across all three donors (Figure 2A). Uniform
manifold approximation and projection (UMAP) was used to
visualize the clustering of single B cells based on the same OMI
variables, which similarly revealed distinct clusters of activated and
quiescent cells (Figure 2B). Additionally, a UMAP colored by

activation (activated, quiescent) and donor are provided
(Supplementary Figure 2A).

Next, a random forest classifier based on OMI variables for each
B cell was trained on 70% of the cells and tested on the remaining
30% of cells to identify activated and quiescent B cells. The OMI
variables with the greatest weight in the classification of activated
and quiescent B cells were NAD(P)H α1 (41.72%), NAD(P)H τm
(23.31%), free FAD fluorescence lifetime (τ2) (7.96%), and free
NAD(P)H fluorescence lifetime (τ1) (7.68%) (Figure 2C).
Random forest classifiers performed best when given all variables
or only NAD(P)H variables (AUC = 0.98), revealing that NAD(P)H
is most informative for identifying B cell activation in these
conditions (Figure 2D). The resulting confusion matrix has an
accuracy of 0.934 (Figure 2E). Alternatively, a Fourier transform
can be used to represent the fluorescence decay in frequency space,
which is known as a phasor representation (Digman et al., 2008).
The lifetime decay variables in the time domain and the phasor
representation in the frequency domain both represent the same
underlying fluorescence decay, so a classifier based on phasor
variables should perform similarly to that based on lifetime decay
variables (Digman et al., 2008). Classification based on the NAD(P)
H and FAD phasors at both the laser repetition frequency (80 MHz)
and its second harmonic (160 MHz) predicted B cell activation with
0.939 accuracy (Supplementary Figures 2B-D).

OMI resolves metabolic differences
between quiescent and activated primary
human NK cells

A graphical overview of the NK experiment is provided
(Figure 3A). Isolated primary human NK cells from three donors
were stimulated in vitro for 24 h using IL-12, IL-15, and IL-18 as
previously described for inducing memory-like NK cells (Romee et al.,
2016; Cooper et al., 2009; Ni et al., 2012; Gang et al., 2020). After 24 h of
in vitro activation, media was collected for cytokine, glucose, and
lactate assays, then cells were stained with anti-CD69 antibody to
identify activated and quiescent cells for OMI analysis. To confirm NK
cell stimulation, the concentration of IFN-γ in themedia wasmeasured
at 24 h and found to be significantly increased in the stimulatedNK cell
media when compared to control NK cell media (Figure 3B). Similarly,
analysis of glucose and lactate levels at 24 h show decreased glucose and
increased lactate in the media of stimulated compared to control NK
cells (Figures 3C, D), confirming known metabolic changes with NK
cell activation (O’Brien and Finlay, 2019; Donnelly et al., 2014; Keating
et al., 2016). Representative images of NAD(P)H τm, FAD τm, optical
redox ratio, and pseudocolored CD69 expression are presented
(Figure 3E). Qualitatively, most NK cells in the stimulated
condition stained positive for CD69 while few stained positive in
the control condition.

FIGURE 2 (Continued)

the classifier that used the top four OMI variables (AUC 0.97), three of which are NADH(P)H lifetime variables. (E) Confusion matrix of the nine OMI
variables random forest classifier shows performance for classification of activated and quiescent B cells with an accuracy score of 0.934. n = 1,210 cells
(461 activated B cells, 749 quiescent B cells) with a 70/30 split for training and test sets.
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FIGURE 3
OMI is sensitive to metabolic changes between primary human NK cells that are quiescent vs activated with IL-12, IL-15, and IL-18. (A)NK cells were
isolated from human peripheral blood of three different donors (D-F) and stimulated for 24 h with 10 ng/mL IL-12, 50 ng/mL IL-15, and 50 ng/mL IL-18 or
cultured in just TheraPeak X-VIVO-10 medium+10% human serum AB+ 1 ng/mL IL-15 (control). (B) IFN-γ concentration was measured from media
samples of two different donors cultured in stimulated or control conditions for 24 h. (C) Glucose in the media of stimulated NK cells was
significantly decreased compared to the control cell media after 24 h of culture. (D) Lactate levels in stimulated B cell media were significantly higher than
lactate levels in the control cell media. (E) Representative images of NAD(P)H τm, FAD τm, redox ratio, and anti-CD69 staining in the control and stimulated
conditions. (F) Redox ratio normalized to themean of the quiescent group for each donor significantly increased in activated (CD69+ in stimulatedmedia)
NK cells compared to quiescent (CD69−in control media) NK cells. (G, H)NAD(P)H τm significantly decreased andNAD(P)H α1 significantly increased in the

(Continued )
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OMI revealed several changes with activation in NK cells. The
optical redox ratio significantly increased in activated NK cells
compared to quiescent NK cells (Figure 3F). NAD(P)H τm
decreased, and NAD(P)H α1 increased in activated NK cells
compared to quiescent NK cells (Figures 3G–I). Within
stimulated or control media, OMI variables did not change with
CD69 status except for one variable; in the control condition,
NAD(P)H τ1 was slightly lower in CD69+ NK cells versus the
CD69− NK cells (Supplementary Figure 3).

Single cell clustering and machine learning
models based on OMI separate NK cells by
activation state

Next, we investigated whether OMI could visualize single cell
heterogeneity in NK cells and whether machine learning models
based on OMI can classify NK cell activation state. Unsupervised
clustering of the 9 OMI variables from quiescent and activated cells
revealed that NK cells were somewhat heterogeneous, resulting in the
emergence of a dominant cluster with several smaller clusters of activated
and quiescent cells (Figure 4A; Supplementary Figure 4A). UMAP was
used to visualize the clustering of single NK cells based on the sameOMI
variables, which demonstrated a cluster of activated NK cells separate
from a mixed cluster of activated and quiescent NK cells (Figure 4B).

A random forest classifier based on single-cell OMI variables was
trained and tested on 70% and 30%, respectively, of the NK cells to
identify activated or quiescent cell states. The highest weighted OMI
variables were the optical redox ratio (20.45%), NAD(P)H α1 (20.15%),
protein-bound NAD(P)H fluorescence lifetime (τ2) (17.45%), and free
NAD(P)H fluorescence lifetime (τ1) (13.35%) (Figure 4C). Random
forest classifiers performed best (AUC = 0.97) when given the top four
variables, which include the optical redox ratio and three NAD(P)H
lifetime variables (NAD(P)H τ1, τ2, α1), revealing that NAD(P)H is
most informative for identifying NK cell activation in these conditions
(Figure 4D). The resulting confusion matrix has an accuracy of 0.926
(Figure 2E). Classification based on the NAD(P)H and FAD phasors at
both the laser repetition frequency (80 MHz) and its second harmonic
(160MHz) predicted NK cell activation with a similar accuracy of 0.892
(Supplementary Figures 4B-D).

Single cell heterogeneity of activated and
quiescent B and NK cells

Single cell heterogeneity within activated and quiescent B and
NK cells was summarized with the coefficient of variation
(Supplementary Figure 5). NAD(P)H τ1 was heterogeneous
across B cells in the quiescent state but became more

homogeneous with B cell activation. Additionally, FAD τm was
heterogeneous across both quiescent and activated B cells, which is
driven by heterogeneous FAD τ1 in these cells (Supplementary Figure 5).
This heterogeneity in FAD τm and τ1 within quiescent and activated
B cells may explain their poor predictive power in classifying B cell
activation (Figure 2C). Similarly, FAD τ1 within quiescent and activated
NK cells demonstrated relatively high heterogeneity, indicating that
protein-bound FAD drives the observed heterogeneity in
autofluorescence variables across B and NK cells.

Discussion

Several areas of research and clinical care rely on lymphocyte
functional assessments and would benefit from a non-destructive,
single-cell, touch-free technology to assess lymphocyte activation
state, which could reduce the cost and time for analysis. In this
report, we have demonstrated that OMI is sensitive to metabolic
changes that occur with activation in primary human B cells and NK
cells. Additionally, machine learning models trained on single-cell
OMI variables reliably classify quiescent B cells from IL-4/anti-
CD40 activated B cells and quiescent NK cells from IL-12/IL-15/IL-
18 activated memory-like NK cells.

Importantly, we observed consistent changes in OMI variables
with activation in B cells and NK cells, including increased optical
redox ratio, decreased NAD(P)H τm, and increased NAD(P)H α1,
which is consistent with prior work on primary human T cells (Hu
et al., 2020; Walsh et al., 2021; Paillon et al., 2024). These
observations suggest a conserved metabolic shift when
lymphocytes become activated, consistent with prior studies
demonstrating that T, B, and NK cells upregulate oxidative
phosphorylation and aerobic glycolysis when activated to fuel
effector functions, rapid growth, and proliferation (Chapman and
Chi, 2022; Donnelly et al., 2014; Keating et al., 2016; Assmann et al.,
2017; Poznanski et al., 2018). Previous studies have demonstrated
that OMI is sensitive to metabolic pathway preferences in the cell
(Sharick et al., 2018; Walsh et al., 2013). In this report,
measurements of glucose and lactate levels in media from control
and stimulated B and NK cells revealed that the glucose
concentration significantly decreased whereas the lactate
concentration significantly increased with activation. This
observation is consistent with prior studies that observed an
upregulation of aerobic glycolysis with B and NK cell activation,
which underlies changes in OMI variables (Lawlor et al., 2021).

The single-cell resolution of OMI makes it a powerful tool for
characterizing differences within a population. Here, we
characterized changes within control and stimulated B cell and
NK cell populations. We observed that there was a mixture of CD69+

and CD69−cells within both control and stimulated groups, and

FIGURE 3 (Continued)

activated NK cells compared to the quiescent NK cells. (I) No change in FAD τm was observed in the activated NK cells compared to quiescent NK
cells. In (F–I), data are displayed as box-and-whisker plots, representing the median and interquartile range (IQR), with whiskers at 1.5*IQR. Glass’s Delta
measure of effect size given for Δ. Plots are overlaid with data points; each point represents 1 cell, color coded by donor (D–F). n = 1,221 cells
(554 activated NK cells, 667 control NK cells). **P<0.01, **** P < 0.0001, two-tailed unpaired T-test. ns = not significant.
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FIGURE 4
OMI characterizes single cell heterogeneity and accurately classifies activated from quiescent NK cells. (A) Heatmap of single-cell OMI variables
across all NK cell experiments. Hierarchical cell clustering was calculated based on the z-scores (the difference between cell mean and populationmean
divided by the population standard deviation) of nineOMI variables (NAD(P)H τm, τ1, τ2, α1; FAD τm, τ1, τ2, α1; and quiescent-normalized optical redox ratio).
(B) UMAP of nine OMI variables displays clustering of activated and quiescent NK cells. (C) Pie chart of the relative weight of the nine OMI variables
included in the “all variables” random forest classifier. (D) Receiver operating characteristic (ROC) curve of random forest classifiers trained on different
combinations of OMI variables to classify quiescent and activated NK cells, with operating points indicated. “Top variables” classifiers refer to the largest
weighted variables in the “all variable” classifier, found in (C). The classifier using the top fourOMI variables performed the best (AUC 0.97), followed by the
classifier that used all nine OMI variables (AUC 0.96) and the classifier that used only NAD(P)H lifetime variables (NAD(P)H τm, τ1, τ2, α1) (AUC 0.96). (E)
Confusion matrix of the nine OMI variables random forest classifier shows performance for classification of activated and quiescent NK cells with an
accuracy score of 0.926. n = 1,221 cells (554 activated NK cells, 667 quiescent NK cells) with a 70/30 split for training and test sets.
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fluorescence lifetime variables were consistently different between
CD69−and CD69+ B cells in the stimulated condition
(Supplementary Figure 1), while only NAD(P)H τ1 differed
between CD69−and CD69+ NK cells in the control group only
(Supplementary Figure 3). These observations indicate that OMI
provides similar, but not identical information to CD69 status,
which will be explored in future work. In this work, we chose to
focus the single-cell analysis on cells that we could confirm to be
quiescent (i.e., CD69−cells in the control condition) and cells that we
could confirm to be activated (i.e., CD69+ cells in the stimulated
condition) to better characterize the ability of OMI to assess these
cells without complications that could arise from the absence of the
transiently expressed CD69 marker.

Consistent with our time-domain findings, phasor analysis
revealed expected changes in B cell localization within the phase
diagram, primarily along the line connecting the two components of
NAD(P)H fluorescence decay (Supplementary Figure 2B). This
observation aligns with our ROC classification results, where
NAD(P)H α1 alone accurately predicted B cell activation state
(ROC AUC = 0.94). This high predictive performance is
expected, given the large effect size for NAD(P)H α1 upon
activation (Glass’s delta = 2.92). In contrast, NK cell phasor
analysis showed differences that were not aligned with the
primary axis but rather perpendicular to it (Supplementary
Figure 4B). Since the effect size for NAD(P)H α1 in NK cell
activation was smaller (Glass’s delta = 0.73), we anticipated that
additional features would be required for accurate classification.
This expectation is supported by our ROC classifier results, where
single-variable classification performed poorly (ROC AUC = 0.71).

Although a complete set of NAD(P)H and FAD intensities and
lifetimes were collected in this study, all 9 OMI variables may not be
necessary for accurate classification. NAD(P)H lifetime variables
alone accurately classified activation within B cells (AUC 0.98) and
activation within NK cells (AUC 0.96) (Figure 2D; Figure 3D). This
indicates that simplified hardware with only NAD(P)H excitation
and emission capabilities would perform as accurately as a two-color
NAD(P)H and FAD imaging system, which is an important
consideration in the design of simplified hardware for use in
clinical labs. Additionally, we have recently demonstrated that
NAD(P)H lifetime measurements can be reliably performed in a
flow geometry, which improves throughput and automation for
real-time single-cell analysis (Samimi et al., 2024).

Unlike flow cytometry, OMI is relatively new and does not
provide traditional phenotyping based on surface markers.
Therefore, OMI is not appropriate for studies where high depth
molecular information is needed. High-content single-cell analysis is
better performed with flow cytometry, CyTOF, and/or single-cell
RNA sequencing. However, OMI is advantageous when single-cell
metabolic information is needed from living cells. OMI is also
advantageous when touch-free, non-invasive, rapid, and single
cell measurements are beneficial, such as continuous monitoring
within unperturbed systems (cell culture, 3D culture, in vivo), cell
therapy production where good manufacturing practice (GMP)
must be maintained to generate cells for patient use, and when
rapid reactivity tests are needed (e.g., immune profiling).

Overall, these studies demonstrate that OMI can effectively
classify B and NK cell activation with single cell resolution in a
touch-free manner. This label-free single-cell imaging and

classification method allows non-invasive, real-time monitoring
of B and NK cell metabolism, which could be used in several
settings including rapid assessment of immune responses to
stimuli, or cell manufacturing for therapeutic purposes.

Materials and methods

Isolation of primary human lymphocytes

Primary human lymphocytes were isolated from peripheral
blood of healthy adult donors under approval by the UW-
Madison Institutional Review Board. After obtaining informed
consent from the donors, 10–50 mL whole blood was drawn
using a sterile syringe with heparin. Peripheral blood
mononuclear cells were first isolated by diluting peripheral blood
with an equal volume of DPBS +2% FBS, then centrifuging at 1,200 ×
g for 10 min in SepMate tubes containing a layer of Lymphoprep
(STEMCELL Technologies). The isolated PBMCs were then washed
with DPBS +2% FBS and further processed for specific lymphocyte
cell type enrichment. B cells or NK cells were then isolated from
PBMCs using negative isolation kits.

For the B or NK cell isolation (EasySep, STEMCELL
Technologies), the PBMCs were washed with DPBS +2% FBS
and centrifuged at 100 g for 10 min. The resulting pellet was
resuspended to a concentration of 50 million cells/mL in EasySep
Buffer (STEMCELL Technologies). 50 μL/mL isolation cocktail was
added to the sample, according to the EasySep protocol and allowed
to incubate for 5 min. 50 μL/mL RapidSpheres solution was then
added and the mixture was topped to 2.5 mL with DPBS +2% FBS
and transferred to a magnet for 3 min. The enriched B or NK cells
were poured into a new tube and the sample was again placed into a
magnet for 1 min. The enriched cell population was then washed
with the respective culture medium and transferred to a cell culture
flask or well plate for culture.

Cell culture and activation

NK cells were cultured in TheraPeak X-VIVO-10 medium
(Lonza) supplemented with 10% human serum AB (Sigma
Aldrich) and 1 ng/mL IL-15 (Biolegend). B cells were cultured in
RPMI containing 5% fetal bovine serum and 1% penicillin-
streptomycin. Following isolation, each cell population was
divided into two groups: a control population cultured in normal
medium, and an activated population cultured in control medium
supplemented with additional components. NK cell activating
medium was supplemented with 10 ng/mL IL-12 (Invivogen),
50 ng/mL IL-15, and 50 ng/mL IL-18 (Biolegend) (Ni et al.,
2012; Cooper et al., 2009). B cell activating medium was
supplemented with 5 μg/mL anti-CD40 antibody (R&D systems)
and 20 ng/mL IL-4 (R&D Systems) (Wennhold et al., 2019; Van
Belle et al., 2016).

The cells were cultured separately in activating or control
medium for a number of hours depending on the cell type;
B cells were stimulated for 72 h, and NK cells for 24 h (Ni et al.,
2012; Cooper et al., 2009; Bonilla and Oettgen, 2010; Van Belle et al.,
2016). Cells were seeded at a density of one million cells/mL
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medium. At the end of the stimulation period, a sample of spent
media from each group was taken for cytokine and metabolite
analysis. A summary of the isolation and activation conditions
used is provided in Table 1.

Staining with PerCP conjugated anti-
CD69 antibody

At the end of the stimulation period, cells were stained with a
PerCP-conjugated anti-CD69 antibody (Biolegend) to distinguish
activated from quiescent cells within each condition (Keating et al.,
2014; Van Belle et al., 2016). The cells were centrifuged at 300 g for
8 min, then resuspended to a concentration of 10 million cells/mL
medium. 5μL (200 μg/mL) PerCP-conjugated anti-CD69 antibody
per million cells was added to the sample. The cells were then
incubated for 30 min at room temperature. Following incubation,
the cells were washed twice with media and centrifuged at 300 g for
8 min to remove excess antibody from the sample.

Fluorescence lifetime imaging of B and
NK cells

For imaging, cells were plated 1 h before imaging on poly-D-
lysine coated glass-bottomed dishes (MatTek) at a seeding density of
200,000 cells in 50 μL media. The cells were imaged with a custom-
built multiphoton fluorescence microscope (Ultima, Bruker) using a
100x (NA = 1.45) oil immersion objective and time-correlated single
photon counting electronics (SPC-150, Becker and Hickl GbH,
Berlin, Germany). The femtosecond-pulsed laser (Insight DS+,
Spectra-Physics Inc., Santa Clara, CA, United States) with
80 MHz pulse repetition rate was tuned to 750 nm for NAD(P)H
excitation, 890 nm for FAD excitation, and 980 nm or 1,040 nm
excitation for PerCP. Fluorescence emission was detected using a
H7422PA-40 GaAsP photomultiplier tube (Hamamatsu
Corporation, Bridgewater, NJ, United States) and isolated using a
440/80 nm bandpass filter for NAD(P)H, 550/50 nm (NK cells) or
550/100 nm (B cells) bandpass filter for FAD, and 690/50 nm
bandpass filter for PerCP. Average power on the sample was kept
below 10 mW at 750 nm and below 20 mW at 890 nm to avoid
photodamage. The laser power was maintained at a consistent value
within each experiment.

270 μm× 270 μm fluorescence lifetime images (256 × 256 pixels)
were collected consecutively for NAD(P)H and FAD in the same
field of view, with a pixel dwell time of 4.8 μs and an integration time

of 60s. An instrument response function was collected during
imaging from the second harmonic generation of a urea crystal,
and photon count rates were maintained around 1 × 105 photons per
second. A matched intensity image of PerCP fluorescence was
collected for the same field of view. Images were collected from
three to six fields of view for each sample.

Image analysis

Fluorescence lifetimes were extracted through analysis of the
fluorescence decay at each pixel in SPCImage software (Becker and
Hickl). To provide more robust calculations of the fluorescence
lifetimes, a threshold was used to exclude background pixels with a
low intensity, and images were binned up to a bin factor of three to
reach a peak of at least 100 photons in the decay. Both NAD(P)H
and FAD can exist in a quenched and an unquenched configuration
with distinct lifetimes. To extract these lifetimes, fluorescence decays
were fit to a two-component exponential decay function that was re-
convolved with the instrument response function (Equation 1):

I t( ) � α1e
- t
τ1 + α2e

- t
τ2 + C (1)

Where I(t) is the light intensity at time t following the laser pulse,
τ1 and τ2 are the short (quenched) and long (unquenched) lifetimes
of the fluorophore, and α1 and α2 are the fractional proportion of
each component. C is included to account for background light. For
NAD(P)H, the short lifetime (τ1) corresponds to free NAD(P)H and
the long lifetime (τ2) corresponds to protein-bound NAD(P)H
(Lakowicz et al., 1992). The opposite is true of FAD: the short
and long lifetime correspond to bound FAD and unbound FAD,
respectively (Nakashima et al., 1980). A mean lifetime (Equation 2)
at each pixel was also computed as the amplitude-weighted average
of the short and long lifetimes:

τm � α1 τ1 + α2 τ2( )/ α1 + α2( ) (2)

Following extraction of the fluorescence lifetimes, images were
segmented to create single-cell masks using NAD(P)H intensity
images. Segmentation was carried out in CellProfiler, resulting in
masks of cells, cell nuclei, and cell cytoplasm. PerCP-CD69
fluorescence images were manually segmented by a trained
observer. The observer was blinded to whether PerCP-CD69
images came from the activated or control condition. The
resulting masks were used to identify activated and quiescent
cells in each condition based on 75% overlap between PerCP-
CD69 masks and cell masks.

TABLE 1 Isolation and activation conditions for each lymphocyte subtype.

Cell type Touch-free isolation method Control medium Activation medium Activation
time

B cell EasySep Human Naïve B Cell Isolation Kit (StemCell
Technologies)

RPMI +5% FBS +1% penicillin/
streptomycin

Control medium +5 μg/mL anti-CD40
antibody +
20 ng/mL IL-4

72 h

NK Cell EasySep Human NK Cell Isolation Kit (StemCell
Technologies)

TheraPeak X-VIVO-10 medium
(Lonza) +
10% human serum AB+ 1 ng/mL
IL-15

Control medium +
10 ng/mL IL-12 +
50 ng/mL IL-15 +
50 ng/mL IL-18

24 h
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Mean values of fluorescent lifetime components for each cell
were calculated in R. The values of NAD(P)H τm, NAD(P)H τ1,
NAD(P)H τ2, NAD(P)H α1, FAD τm, FAD τ1, FAD τ2, and FAD α1
were calculated for each cell by averaging across all pixels in the cell
cytoplasm. Cells with low photon counts (<5,000 photons), small
masks that are unlikely cells (<250 pixels or 75 μm2 whole cell area),
and pixels with poor goodness-of-fit (χ2 > 1.3) were not included in
this analysis. In the results, α1 and α2 refer to the normalized
fractions α1/(α1+ α2), and α2/(α1+ α2), respectively, and are
presented as percentage values. An additional variable, the optical
redox ratio, was computed for each cell, defined here as the NAD(P)
H intensity divided by the sum of the NAD(P)H and FAD
intensities. This definition of the redox ratio is bound between
0 and 1. To account for variations in intensity from day-to-day
equipment and setting changes, the redox ratio of each cell was
normalized to the mean redox ratio of the control group
for each day.

Phasor analysis of lifetime images

Phasor representation (Digman et al., 2008) is a fit-free and fast
way to reduce a decay histogram (at either pixel or cell level) to a
single point on the two-dimensional phasor plot that provides
contrast between different fluorescence lifetimes. Mathematically,
phasors are the complex coefficients of the Fourier series expansion
of the fluorescence decay at harmonics of the excitation laser
repetition frequency. The real and imaginary parts of each
coefficient are denoted with G (Equation 3) and S (Equation 4),
respectively. Usually, the base harmonic carries most of the
information about the decay and subsequent harmonics add
progressively less information. Here, we use the first and the
second harmonics for each cell decay (i.e., aggregated decay from
all pixels inside the cell mask) as alternative features to lifetime fit
variables for classification. We also plot the first harmonic phasor
plot for visual representation of the cell distributions. The phasor
coordinates are calculated as follows.

G ω( ) � ∑Nbins
t�1 I t( ) · cos ωt( )

∑Nbins
t�1 I t( ) (3)

S ω( ) � ∑Nbins
t�1 I t( ) · sin ωt( )

∑Nbins
t�1 I t( ) (4)

where ω � 2πnf is the phasor frequency with f being the laser
repetition frequency (80 MHz) and n being the harmonic number
(1 or 2). A scale and rotation transformation in the polar coordinates
was performed to account for the effect of the instrument response
as described in the literature (Ranjit et al., 2018; Martelo et al., 2015).

Measurement of cytokines and glucose/
lactate levels in primary cell media

To validate the activation of lymphocytes in each condition,
cytokine levels were measured in the spent media samples collected
from control and stimulated conditions (24 h for NK cells, and 72 h
for B cells). IFN-γ levels were measured in NK cell media samples
using the human IFN-γ DuoSet ELISA kit (R&D Systems). IL-6

levels were measured in B cell media samples using the human IL-6
DuoSet ELISA kit (R&D Systems) (Van Belle et al., 2016; Duddy
et al., 2004). The ELISA assay was carried out according to the
provided protocol. Plates were incubated overnight with 2 μg/mL
IFN-γ or IL-6 capture antibody. The plates were then washed and
blocked with a 1% bovine serum albumin solution for 1 h. Following
washing, media samples and standards were incubated on the plates
for 2 h at room temperature, followed by a 2-h incubation with
200 ng/mL IFN-γ or 50 ng/mL IL-6 detection antibody. Finally, the
plates were incubated with streptavidin-conjugated horseradish
peroxidase B, then an H2O2-tetramethylbenzidine substrate
solution. The color reaction was stopped at 20 min with a 4 M
H2SO4 solution, and the plates were transferred to a plate reader,
where they were read at 450 nm with wavelength correction at
570 nm. Standard curves were calculated from a serial dilution of the
standards using a sigmoidal four parameter logistic model. The
coefficient of determination R2 of the standard curves for the IL-6
and IFN-γ ELISA experiments were 0.9993 and 0.9997, respectively.

To validate that the cells were upregulating aerobic glycolysis in the
activated cell populations, commercial kits were used tomeasure glucose
and lactate levels in spent media samples from control and stimulated
conditions (24 h for NK cells, and 72 h for B cells). A sample of the
media used for the B cells and NK cells described in Table 1 was also
evaluated as a control. Glucose and lactate assays were carried out
according to the respective protocols for the Glucose Colorimetric/
Fluorometric Assay Kit (BioVision) or the Lactate Colorimetric/
Fluorometric Assay Kit (BioVision). 0.5 μL of each sample was
added to a 96-well plate were an additional 49.5 μL of assay buffer
was added, yielding a 100x dilution of the original samples. 50 μL of
reactionmix (2 μL probe, 2 μL enzymemix, and 46 μL assay buffer) was
then added to each well to yield a total volume of 100 μL per well. The
96-well trays were left to incubate for 30 min in a dark box at room
temperature (glucose assay) or 37°C (lactate assay). The plates were then
transferred to a plate reader where glucose or lactate levels were
quantified by absorbance at OD 570. Standard curves were
calculated from a serial dilution of the standards using an ordinary
least squares regression model. The R2 of the standard curves for the
glucose and lactate assays were 0.9973 and 0.9979, respectively.

Heatmap, UMAP, and classification

Z-score heatmaps were constructed in R using the Complex
Heatmap package (Complex heatmaps reveal patterns and).
Clustering of groups or single cells was performed based on the
OMI variables and calculated using Ward’s method. Labels for
activation and donor were added afterwards and were not
included in cluster analysis.

Uniform Manifold Approximation and Projection (UMAP) is a
non-linear dimension reduction technique that can be used to
visualize high-dimensional data. UMAP projections were made in
Python using scikit-learn, UMAP, and Holoviews (McInnes et al.,
2018; holoviz/holoviews; Scikit-learn). Unless otherwise noted, each
UMAP is a two-dimensional visualization of nine variables
(normalized optical redox ratio; NAD(P)H τm, τ1, τ2, α1; FAD
τm, τ1, τ2, α1). The UMAP projection was computed using
Euclidean distance. The nearest neighbor parameter was set to
15 and the minimum distance was set to 0.4 unless otherwise noted.
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Random forest classifiers were trained in Python using scikit-
learn to classify activation using the NK cell OMI variables or the
B cell OMI variables in their respective cases. The classifiers were
trained on a random selection of 70% of the single-cell data and
tested on the remaining 30% for B cell or NK cell classifiers (i.e.,
Figure 2; Figure 4). The phasor classifier was trained on a random
selection of 50% of the input data and tested on the remaining 50%.
Multiple metrics were used to evaluate the robustness of the
classifier, including the receiver operating characteristic (ROC)
curve, accuracy, precision, and recall. Classifiers were trained and
tested on different random sets of the data to check for consistency
in these metrics. Equal cost was given to a misclassified cell
regardless of category (i.e., misclassification was not weighted by
sample size).

Phasor-based classification was performed using the NAD(P)H
and FAD phasor coordinates (G,S) at the laser repetition frequency
(80 MHz) and its second harmonic (160 MHz) as features. The
phasor coordinates were averaged pixel-wise over each cell mask
using pixel intensities as weights to calculate cell-level phasor
coordinates. Logistic regression classifiers with a logit link
function and random forest classifiers with 100 decision trees
were used, and the classifiers were trained on a random selection
of 50% of the input data and tested on the remaining 50%. Again,
equal cost was given to a misclassified cell regardless of category (i.e.,
misclassification was not weighted by sample size). Both the phasor
and the fit analysis pipelines use the same raw FLIM data and cell
masks to calculate cell-level phasor coordinates and fit parameters,
respectively. However, the exclusion criteria for the two pipelines are
not the same, which results in different final number of cells
included in the phasor-based and fit-based classifiers. For
example, the phasor pipeline removes low-count (with fewer than
5,000 photons) or small (with fewer than 50 pixels) cells, while the fit
analysis also removes cells based on the goodness of the bi-
exponential fit (χ2 > 1.3).

Statistical analysis

Statistical analysis was performed using the statannotations
package v0.5.0 in Python (Charlier et al., 2022). Differences
between groups were tested using Kruskal–Wallis with post hoc
comparisons test for multiple group comparisons, or a two-tailed
unpaired T-test for comparisons of pairs of data. Effect sizes between
quiescent and activated cell groups were calculated with Glass’s
Delta because comparisons of very large sample sizes of individual
cells always pass traditional significance tests unless the population
effect size is truly zero (Kaplan et al., 2014). Glass’s Delta is defined
as Δ = (µcontrol - µtest)/σcontrol where values ranging from 0 to
0.2 represent no change, 0.2–0.5 small change, 0.5–0.8 represent
moderate change, and anything higher than 0.8 signifies a large
change (Sawilowsky, 2009; Glass, 1976).
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